small bugfix. forgot to add optimize

main
Michael Brehm 2024-06-27 00:22:20 +02:00
parent dae76c3305
commit 4d24b75f30
2 changed files with 130 additions and 14 deletions

107
optimize.jl 100644
View File

@ -0,0 +1,107 @@
import Pkg
Pkg.activate("./env")
using Distributed
@everywhere include("./predator_prey_generic.jl")
using BlackBoxOptim, Random
using Statistics: mean, median
using Serialization
function load(file)
fh = open(file, "r")
optctrlb, res = deserialize(fh);
close(fh)
return (optctrlb, res)
end
function generator(x,n)
models = []
rng = MersenneTwister(71758)
for i in 1:n
animal_defs = [
#AnimalDefinition(trunc(Int,x[8]),'●',RGBAf(1.0, 1.0, 1.0, 1),x[3], x[3], 1, x[1], x[3], trunc(Int,x[6]), "Sheep", ["Wolf","Bear"], ["Grass"])
#AnimalDefinition(trunc(Int,x[9]),'▲',RGBAf(0.2, 0.2, 0.3, 1),x[4], x[4], 1, x[2], x[4], trunc(Int,x[7]), "Wolf", [], ["Sheep"])
AnimalDefinition(trunc(Int,x[6]),'●',RGBAf(1.0, 1.0, 1.0, 1),0, 0, 1, x[1], x[3], 0, "Sheep", ["Wolf","Bear"], ["Grass"])
AnimalDefinition(trunc(Int,x[7]),'▲',RGBAf(0.2, 0.2, 0.3, 1),0, 0, 1, x[2], x[4], 0, "Wolf", [], ["Sheep"])
]
stable_params = (;
events = [],
animal_defs = animal_defs,
dims = (30, 30),
regrowth_time = 30,
Δenergy_grass = x[5],
#seed = 71758,
)
seed = rand(rng,1000:100000)
push!(models,initialize_model(;seed,stable_params...))
end
return models
end
function cost(x)
steps = 2000
iterations = 10
models = generator(x,iterations)
sheep(a) = a.def.type == "Sheep"
wolf(a) = a.def.type == "Wolf"
eaten(a) = a.def.type == "Sheep" && a.death_cause == Predation
starved(a) = a.def.type == "Sheep" && a.death_cause == Starvation
count_grass(model) = count(model.fully_grown)
adata = [(sheep, count), (wolf, count), (eaten, count), (starved, count)]
mdata = [count_grass]
df1,df2 = ensemblerun!(models, steps; adata, mdata, parallel=true, showprogress=true)
println(x)
fitness_scores = []
for i in 1:iterations
df = df1[df1.ensemble .== i,:]
println(string(count(!iszero,df.count_sheep))*" "*string(count(!iszero,df.count_wolf)))
score = count(iszero,df.count_sheep) + 2*count(iszero,df.count_wolf)
push!(fitness_scores,score)
end
fitness = float(sum(fitness_scores))
println(fitness)
return fitness
end
#result = bboptimize(cost,SearchRange = [(0.0, 1.0),(0.0, 1.0),(0.0, 30.0),(0.0, 30.0),],NumDimensions = 4,MaxTime = 20,)
SearchRange = [
(0.01, 0.4),
(0.01, 0.4),
(5.0, 30.0),
(5.0, 30.0),
(5.0, 30.0),
#(1, 3),
#(1, 3),
(3, 30),
(3, 30),
]
optctrl = bbsetup(cost;SearchRange, MaxTime = 300, Method = :generating_set_search)#, TraceInterval=1.0, TraceMode=:verbose);
#optctrl, res = load("SimpleModellOptimization900.tmp");
res = bboptimize(optctrl)
tempfilename = "./temp" * string(rand(1:Int(1e8))) * ".tmp"
fh = open(tempfilename, "w")
serialize(fh, (optctrl, res))
close(fh)
#cost([0.806586, 0.0481975, 18.5285, 22.329])
#[0.165438, 0.0462449, 15.4501, 12.0382]
#[0.571934, 0.74005, 4.22395, 24.9997, 15.4605, 1.09129, 2.18749, 24.3948, 11.3926]
#Repro_Schaf, Repro_Wolf, Delta_Energie_Schaf, Delta_Energy_Wolf, Delta_Energy_Gras, n_Schaf, n_Wölfe
#[0.26817737483789245, 0.027182763696826588, 14.440470034137558, 27.81279288508929, 15.785601397364756, 28.644469239080397, 13.471462703569484]
#[0.11524114234251756, 0.07378121226251827, 29.31006871020899, 20.47494251025892, 5.915473514486612, 9.568612576389182, 22.299369669891565]
# Schaf stirbt aus obwohl es mehr energy bekommt???
#[0.11524114234251756, 0.07378121226251827, 29.31006871020899, 20.47494251025892, 12.155473514486612, 9.568612576389182, 22.299369669891565]
#Wolf stirbt aus weil Schaf sich zu wenig reproduziert
#[0.016950722103029812, 0.07378121226251827, 29.31006871020899, 20.47494251025892, 5.915473514486612, 9.568612576389182, 22.299369669891565]
#Wolf stirbt aus, da er sich viel zu stark reproduziert
#[0.11524114234251756, 0.25901432860274654, 29.31006871020899, 20.47494251025892, 5.915473514486612, 9.568612576389182, 22.299369669891565]
#Aber hier plötzlich wieder einigermaßen stabil
#[0.11524114234251756, 0.2477989358947258, 29.31006871020899, 20.47494251025892, 5.915473514486612, 9.568612576389182, 22.299369669891565]
#Wolf stirbt weil zu wenig Schafe am Anfang
#[0.11524114234251756, 0.07378121226251827, 29.31006871020899, 20.47494251025892, 5.915473514486612, 3.3286125763891814, 22.299369669891565]
#Einigermaßen stabil, aber Schaf stirbt oft aus, weil zu hohe reproduktion
#[0.39570778081524405, 0.07378121226251827, 29.31006871020899, 20.47494251025892, 5.915473514486612, 9.568612576389182, 22.299369669891565]

View File

@ -23,17 +23,19 @@ mutable struct AnimalDefinition
end end
# some helper functions to get generated model parameters for animals # some helper functions to get generated model parameters for animals
reproduction_prop(a) = abmproperties(model)[Symbol(a.def.type*"_"*"reproduction_prob")] reproduction_prop(a, model) = abmproperties(model)[Symbol(a.def.type*"_"*"reproduction_prob")]
Δenergy(a) = abmproperties(model)[Symbol(a.def.type*"_"*"Δenergy")] Δenergy(a, model) = abmproperties(model)[Symbol(a.def.type*"_"*"Δenergy")]
perception(a) = abmproperties(model)[Symbol(a.def.type*"_"*"perception")] perception(a, model) = abmproperties(model)[Symbol(a.def.type*"_"*"perception")]
reproduction_energy_threshold(a) = abmproperties(model)[Symbol(a.def.type*"_"*"reproduction_energy_threshold")] reproduction_energy_threshold(a, model) = abmproperties(model)[Symbol(a.def.type*"_"*"reproduction_energy_threshold")]
forage_energy_threshold(a) = abmproperties(model)[Symbol(a.def.type*"_"*"forage_energy_threshold")] forage_energy_threshold(a, model) = abmproperties(model)[Symbol(a.def.type*"_"*"forage_energy_threshold")]
energy_usage(a) = abmproperties(model)[Symbol(a.def.type*"_"*"energy_usage")] energy_usage(a, model) = abmproperties(model)[Symbol(a.def.type*"_"*"energy_usage")]
# Animal with AnimalDefinition and fields that change during simulation # Animal with AnimalDefinition and fields that change during simulation
# might be better to use @multiagent and @subagent with predator prey as subtypes. Allows to dispatch different functions per kind and change execution order with schedulers.bykind # might be better to use @multiagent and @subagent with predator prey as subtypes. Allows to dispatch different functions per kind and change execution order with schedulers.bykind
@agent struct Animal(GridAgent{2}) @agent struct Animal(GridAgent{2})
energy::Float64 energy::Float64
color::GLMakie.ColorTypes.RGBA{Float32}
symbol::Char
def::AnimalDefinition def::AnimalDefinition
death_cause::Union{DeathCause,Nothing} death_cause::Union{DeathCause,Nothing}
nearby_dangers nearby_dangers
@ -43,8 +45,8 @@ end
# get nearby food and danger for later when choosing the next position # get nearby food and danger for later when choosing the next position
function perceive!(a::Animal,model) function perceive!(a::Animal,model)
if perception(a) > 0 if perception(a, model) > 0
nearby = collect(nearby_agents(a, model, perception(a))) nearby = collect(nearby_agents(a, model, perception(a, model)))
a.nearby_dangers = map(x -> x.pos, filter(x -> isa(x, Animal) && x.def.type a.def.dangers, nearby)) a.nearby_dangers = map(x -> x.pos, filter(x -> isa(x, Animal) && x.def.type a.def.dangers, nearby))
a.nearby_food = map(x -> x.pos, filter(x -> isa(x, Animal) && x.def.type a.def.food, nearby)) a.nearby_food = map(x -> x.pos, filter(x -> isa(x, Animal) && x.def.type a.def.food, nearby))
if "Grass" a.def.food if "Grass" a.def.food
@ -67,7 +69,7 @@ function move!(a::Animal,model)
else else
randomwalk!(a, model) randomwalk!(a, model)
end end
a.energy -= energy_usage(a) a.energy -= energy_usage(a, model)
end end
# choose best position based on scoring # choose best position based on scoring
@ -86,7 +88,7 @@ function choose_position(a::Animal,model)
end end
end end
for food in a.nearby_food for food in a.nearby_food
if a.energy < forage_energy_threshold(a) if a.energy < forage_energy_threshold(a, model)
distance = findmax(abs.(pos.-food))[1] distance = findmax(abs.(pos.-food))[1]
if distance != 0 if distance != 0
score += 1/distance score += 1/distance
@ -107,7 +109,8 @@ function eat!(a::Animal, model)
if !isnothing(prey) if !isnothing(prey)
#remove_agent!(dinner, model) #remove_agent!(dinner, model)
prey.death_cause = Predation prey.death_cause = Predation
a.energy += Δenergy(prey) prey.symbol = 'x'
a.energy += Δenergy(prey, model)
end end
if "Grass" a.def.food && model.fully_grown[a.pos...] if "Grass" a.def.food && model.fully_grown[a.pos...]
model.fully_grown[a.pos...] = false model.fully_grown[a.pos...] = false
@ -119,7 +122,7 @@ end
# dublicate the animal, based on chance and if it has enough energy # dublicate the animal, based on chance and if it has enough energy
function reproduce!(a::Animal, model) function reproduce!(a::Animal, model)
if a.energy > reproduction_energy_threshold(a) && rand(abmrng(model)) reproduction_prop(a) if a.energy > reproduction_energy_threshold(a, model) && rand(abmrng(model)) reproduction_prop(a, model)
a.energy /= 2 a.energy /= 2
replicate!(a, model) replicate!(a, model)
end end
@ -156,7 +159,7 @@ function move_towards!(agent, pos, model; ifempty=true)
walk!(agent,direction,model; ifempty=ifempty) walk!(agent,direction,model; ifempty=ifempty)
end end
function nearby_fully_grown(a::Animal, model) function nearby_fully_grown(a::Animal, model)
nearby_pos = nearby_positions(a.pos, model, perception(a)) nearby_pos = nearby_positions(a.pos, model, perception(a, model))
fully_grown_positions = filter(x -> model.fully_grown[x...], collect(nearby_pos)) fully_grown_positions = filter(x -> model.fully_grown[x...], collect(nearby_pos))
return fully_grown_positions return fully_grown_positions
end end
@ -207,7 +210,7 @@ function initialize_model(;
for def in animal_defs for def in animal_defs
for _ in 1:def.n for _ in 1:def.n
energy = rand(abmrng(model), 1:(def.Δenergy*2)) - 1 energy = rand(abmrng(model), 1:(def.Δenergy*2)) - 1
add_agent!(Animal, model, energy, def, nothing, [], [], []) add_agent!(Animal, model, energy, def.color, def.symbol, def, nothing, [], [], [])
end end
end end
## Add grass with random initial growth ## Add grass with random initial growth
@ -231,10 +234,16 @@ function animal_step!(a::Animal, model)
move!(a, model) move!(a, model)
if a.energy < 0 if a.energy < 0
a.death_cause = Starvation a.death_cause = Starvation
a.symbol = 'x'
return return
end end
eat!(a, model) eat!(a, model)
reproduce!(a, model) reproduce!(a, model)
#if a.energy < 10 && a.def.type != "Wolf"
# a.color = RGBAf(a.energy/10,a.energy/10,a.energy/10,1)
#elseif a.def.type != "Wolf"
# a.color = RGBAf(1,1,1,1)
#end
end end
function model_step!(model) function model_step!(model)