move some logic into their own funcs(move,eat,reproduce)
parent
0165c839cd
commit
f0bfe3cb87
283
predator_prey.jl
283
predator_prey.jl
|
@ -46,17 +46,63 @@
|
|||
# example, we could have only one type and one additional filed to separate them.
|
||||
# Nevertheless, for the sake of example, we will use two different types.)
|
||||
using Agents, Random
|
||||
|
||||
using CairoMakie
|
||||
@agent struct Sheep(GridAgent{2})
|
||||
energy::Float64
|
||||
reproduction_prob::Float64
|
||||
Δenergy::Float64
|
||||
#perception::Int32
|
||||
#speed::Float64
|
||||
#endurance::Float64
|
||||
end
|
||||
function move!(sheep::Sheep,model)
|
||||
randomwalk!(sheep, model)
|
||||
sheep.energy -= 1
|
||||
end
|
||||
function eat!(sheep::Sheep, model)
|
||||
if model.fully_grown[sheep.pos...]
|
||||
sheep.energy += sheep.Δenergy
|
||||
model.fully_grown[sheep.pos...] = false
|
||||
end
|
||||
return
|
||||
end
|
||||
function reproduce!(sheep::Sheep, model)
|
||||
if rand(abmrng(model)) ≤ sheep.reproduction_prob
|
||||
sheep.energy /= 2
|
||||
replicate!(sheep, model)
|
||||
end
|
||||
end
|
||||
|
||||
@agent struct Wolf(GridAgent{2})
|
||||
energy::Float64
|
||||
reproduction_prob::Float64
|
||||
Δenergy::Float64
|
||||
#perception::Int32
|
||||
#speed::Float64
|
||||
#endurance::Float64
|
||||
end
|
||||
function move!(wolf::Wolf,model)
|
||||
randomwalk!(wolf, model; ifempty=false)
|
||||
wolf.energy -= 1
|
||||
end
|
||||
function eat!(wolf::Wolf, model)
|
||||
dinner = first_sheep_in_position(wolf.pos, model)
|
||||
if !isnothing(dinner)
|
||||
remove_agent!(dinner, model)
|
||||
wolf.energy += wolf.Δenergy
|
||||
end
|
||||
end
|
||||
function reproduce!(wolf::Wolf, model)
|
||||
if rand(abmrng(model)) ≤ wolf.reproduction_prob
|
||||
wolf.energy /= 2
|
||||
replicate!(wolf, model)
|
||||
end
|
||||
end
|
||||
|
||||
function first_sheep_in_position(pos, model)
|
||||
ids = ids_in_position(pos, model)
|
||||
j = findfirst(id -> model[id] isa Sheep, ids)
|
||||
isnothing(j) ? nothing : model[ids[j]]::Sheep
|
||||
end
|
||||
|
||||
# The function `initialize_model` returns a new model containing sheep, wolves, and grass
|
||||
|
@ -119,56 +165,23 @@ end
|
|||
# Notice how the function `sheepwolf_step!`, which is our `agent_step!`,
|
||||
# is dispatched to the appropriate agent type via Julia's Multiple Dispatch system.
|
||||
function sheepwolf_step!(sheep::Sheep, model)
|
||||
randomwalk!(sheep, model)
|
||||
sheep.energy -= 1
|
||||
move!(sheep, model)
|
||||
if sheep.energy < 0
|
||||
remove_agent!(sheep, model)
|
||||
return
|
||||
end
|
||||
eat!(sheep, model)
|
||||
if rand(abmrng(model)) ≤ sheep.reproduction_prob
|
||||
sheep.energy /= 2
|
||||
replicate!(sheep, model)
|
||||
end
|
||||
reproduce!(sheep, model)
|
||||
end
|
||||
|
||||
function sheepwolf_step!(wolf::Wolf, model)
|
||||
randomwalk!(wolf, model; ifempty=false)
|
||||
wolf.energy -= 1
|
||||
move!(wolf, model)
|
||||
if wolf.energy < 0
|
||||
remove_agent!(wolf, model)
|
||||
return
|
||||
end
|
||||
## If there is any sheep on this grid cell, it's dinner time!
|
||||
dinner = first_sheep_in_position(wolf.pos, model)
|
||||
!isnothing(dinner) && eat!(wolf, dinner, model)
|
||||
if rand(abmrng(model)) ≤ wolf.reproduction_prob
|
||||
wolf.energy /= 2
|
||||
replicate!(wolf, model)
|
||||
end
|
||||
end
|
||||
|
||||
function first_sheep_in_position(pos, model)
|
||||
ids = ids_in_position(pos, model)
|
||||
j = findfirst(id -> model[id] isa Sheep, ids)
|
||||
isnothing(j) ? nothing : model[ids[j]]::Sheep
|
||||
end
|
||||
|
||||
# Sheep and wolves have separate `eat!` functions. If a sheep eats grass, it will acquire
|
||||
# additional energy and the grass will not be available for consumption until regrowth time
|
||||
# has elapsed. If a wolf eats a sheep, the sheep dies and the wolf acquires more energy.
|
||||
function eat!(sheep::Sheep, model)
|
||||
if model.fully_grown[sheep.pos...]
|
||||
sheep.energy += sheep.Δenergy
|
||||
model.fully_grown[sheep.pos...] = false
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function eat!(wolf::Wolf, sheep::Sheep, model)
|
||||
remove_agent!(sheep, model)
|
||||
wolf.energy += wolf.Δenergy
|
||||
return
|
||||
eat!(wolf, model)
|
||||
reproduce!(wolf, model)
|
||||
end
|
||||
|
||||
# The behavior of grass function differently. If it is fully grown, it is consumable.
|
||||
|
@ -187,108 +200,110 @@ function grass_step!(model)
|
|||
end
|
||||
end
|
||||
|
||||
sheepwolfgrass = initialize_model()
|
||||
function run()
|
||||
sheepwolfgrass = initialize_model()
|
||||
|
||||
# ## Running the model
|
||||
# %% #src
|
||||
# We will run the model for 500 steps and record the number of sheep, wolves and consumable
|
||||
# grass patches after each step. First: initialize the model.
|
||||
# ## Running the model
|
||||
# %% #src
|
||||
# We will run the model for 500 steps and record the number of sheep, wolves and consumable
|
||||
# grass patches after each step. First: initialize the model.
|
||||
|
||||
using CairoMakie
|
||||
CairoMakie.activate!() # hide
|
||||
CairoMakie.activate!() # hide
|
||||
|
||||
# To view our starting population, we can build an overview plot using [`abmplot`](@ref).
|
||||
# We define the plotting details for the wolves and sheep:
|
||||
offset(a) = a isa Sheep ? (-0.1, -0.1*rand()) : (+0.1, +0.1*rand())
|
||||
ashape(a) = a isa Sheep ? :circle : :utriangle
|
||||
acolor(a) = a isa Sheep ? RGBAf(1.0, 1.0, 1.0, 0.8) : RGBAf(0.2, 0.2, 0.3, 0.8)
|
||||
# To view our starting population, we can build an overview plot using [`abmplot`](@ref).
|
||||
# We define the plotting details for the wolves and sheep:
|
||||
offset(a) = a isa Sheep ? (-0.1, -0.1*rand()) : (+0.1, +0.1*rand())
|
||||
ashape(a) = a isa Sheep ? :circle : :utriangle
|
||||
acolor(a) = a isa Sheep ? RGBAf(1.0, 1.0, 1.0, 0.8) : RGBAf(0.2, 0.2, 0.3, 0.8)
|
||||
|
||||
# and instruct [`abmplot`](@ref) how to plot grass as a heatmap:
|
||||
grasscolor(model) = model.countdown ./ model.regrowth_time
|
||||
# and finally define a colormap for the grass:
|
||||
heatkwargs = (colormap = [:brown, :green], colorrange = (0, 1))
|
||||
# and instruct [`abmplot`](@ref) how to plot grass as a heatmap:
|
||||
grasscolor(model) = model.countdown ./ model.regrowth_time
|
||||
# and finally define a colormap for the grass:
|
||||
heatkwargs = (colormap = [:brown, :green], colorrange = (0, 1))
|
||||
|
||||
# and put everything together and give it to [`abmplot`](@ref)
|
||||
plotkwargs = (;
|
||||
agent_color = acolor,
|
||||
agent_size = 25,
|
||||
agent_marker = ashape,
|
||||
offset,
|
||||
agentsplotkwargs = (strokewidth = 1.0, strokecolor = :black),
|
||||
heatarray = grasscolor,
|
||||
heatkwargs = heatkwargs,
|
||||
)
|
||||
# and put everything together and give it to [`abmplot`](@ref)
|
||||
plotkwargs = (;
|
||||
agent_color = acolor,
|
||||
agent_size = 25,
|
||||
agent_marker = ashape,
|
||||
offset,
|
||||
agentsplotkwargs = (strokewidth = 1.0, strokecolor = :black),
|
||||
heatarray = grasscolor,
|
||||
heatkwargs = heatkwargs,
|
||||
)
|
||||
|
||||
sheepwolfgrass = initialize_model()
|
||||
sheepwolfgrass = initialize_model()
|
||||
|
||||
fig, ax, abmobs = abmplot(sheepwolfgrass; plotkwargs...)
|
||||
fig
|
||||
fig, ax, abmobs = abmplot(sheepwolfgrass; plotkwargs...)
|
||||
fig
|
||||
|
||||
# Now, lets run the simulation and collect some data. Define datacollection:
|
||||
sheep(a) = a isa Sheep
|
||||
wolf(a) = a isa Wolf
|
||||
count_grass(model) = count(model.fully_grown)
|
||||
# Run simulation:
|
||||
sheepwolfgrass = initialize_model()
|
||||
steps = 1000
|
||||
adata = [(sheep, count), (wolf, count)]
|
||||
mdata = [count_grass]
|
||||
adf, mdf = run!(sheepwolfgrass, steps; adata, mdata)
|
||||
# Now, lets run the simulation and collect some data. Define datacollection:
|
||||
sheep(a) = a isa Sheep
|
||||
wolf(a) = a isa Wolf
|
||||
count_grass(model) = count(model.fully_grown)
|
||||
# Run simulation:
|
||||
sheepwolfgrass = initialize_model()
|
||||
steps = 1000
|
||||
adata = [(sheep, count), (wolf, count)]
|
||||
mdata = [count_grass]
|
||||
adf, mdf = run!(sheepwolfgrass, steps; adata, mdata)
|
||||
|
||||
# The following plot shows the population dynamics over time.
|
||||
# Initially, wolves become extinct because they consume the sheep too quickly.
|
||||
# The few remaining sheep reproduce and gradually reach an
|
||||
# equilibrium that can be supported by the amount of available grass.
|
||||
function plot_population_timeseries(adf, mdf)
|
||||
figure = Figure(size = (600, 400))
|
||||
ax = figure[1, 1] = Axis(figure; xlabel = "Step", ylabel = "Population")
|
||||
sheepl = lines!(ax, adf.time, adf.count_sheep, color = :cornsilk4)
|
||||
wolfl = lines!(ax, adf.time, adf.count_wolf, color = RGBAf(0.2, 0.2, 0.3))
|
||||
grassl = lines!(ax, mdf.time, mdf.count_grass, color = :green)
|
||||
figure[1, 2] = Legend(figure, [sheepl, wolfl, grassl], ["Sheep", "Wolves", "Grass"])
|
||||
figure
|
||||
# The following plot shows the population dynamics over time.
|
||||
# Initially, wolves become extinct because they consume the sheep too quickly.
|
||||
# The few remaining sheep reproduce and gradually reach an
|
||||
# equilibrium that can be supported by the amount of available grass.
|
||||
function plot_population_timeseries(adf, mdf)
|
||||
figure = Figure(size = (600, 400))
|
||||
ax = figure[1, 1] = Axis(figure; xlabel = "Step", ylabel = "Population")
|
||||
sheepl = lines!(ax, adf.time, adf.count_sheep, color = :cornsilk4)
|
||||
wolfl = lines!(ax, adf.time, adf.count_wolf, color = RGBAf(0.2, 0.2, 0.3))
|
||||
grassl = lines!(ax, mdf.time, mdf.count_grass, color = :green)
|
||||
figure[1, 2] = Legend(figure, [sheepl, wolfl, grassl], ["Sheep", "Wolves", "Grass"])
|
||||
figure
|
||||
end
|
||||
|
||||
plot_population_timeseries(adf, mdf)
|
||||
|
||||
# Altering the input conditions, we now see a landscape where sheep, wolves and grass
|
||||
# find an equilibrium
|
||||
# %% #src
|
||||
stable_params = (;
|
||||
n_sheep = 140,
|
||||
n_wolves = 20,
|
||||
dims = (30, 30),
|
||||
Δenergy_sheep = 5,
|
||||
sheep_reproduce = 0.31,
|
||||
wolf_reproduce = 0.06,
|
||||
Δenergy_wolf = 30,
|
||||
seed = 71758,
|
||||
)
|
||||
|
||||
sheepwolfgrass = initialize_model(;stable_params...)
|
||||
adf, mdf = run!(sheepwolfgrass, 2000; adata, mdata)
|
||||
plot_population_timeseries(adf, mdf)
|
||||
|
||||
# Finding a parameter combination that leads to long-term coexistence was
|
||||
# surprisingly difficult. It is for such cases that the
|
||||
# [Optimizing agent based models](@ref) example is useful!
|
||||
# %% #src
|
||||
|
||||
# ## Video
|
||||
# Given that we have defined plotting functions, making a video is as simple as
|
||||
sheepwolfgrass = initialize_model(;stable_params...)
|
||||
|
||||
abmvideo(
|
||||
"sheepwolf.mp4",
|
||||
sheepwolfgrass;
|
||||
frames = 100,
|
||||
framerate = 8,
|
||||
title = "Sheep Wolf Grass",
|
||||
plotkwargs...,
|
||||
)
|
||||
|
||||
# ```@raw html
|
||||
# <video width="auto" controls autoplay loop>
|
||||
# <source src="../sheepwolf.mp4" type="video/mp4">
|
||||
# </video>
|
||||
# ```
|
||||
end
|
||||
|
||||
plot_population_timeseries(adf, mdf)
|
||||
|
||||
# Altering the input conditions, we now see a landscape where sheep, wolves and grass
|
||||
# find an equilibrium
|
||||
# %% #src
|
||||
stable_params = (;
|
||||
n_sheep = 140,
|
||||
n_wolves = 20,
|
||||
dims = (30, 30),
|
||||
Δenergy_sheep = 5,
|
||||
sheep_reproduce = 0.31,
|
||||
wolf_reproduce = 0.06,
|
||||
Δenergy_wolf = 30,
|
||||
seed = 71758,
|
||||
)
|
||||
|
||||
sheepwolfgrass = initialize_model(;stable_params...)
|
||||
adf, mdf = run!(sheepwolfgrass, 2000; adata, mdata)
|
||||
plot_population_timeseries(adf, mdf)
|
||||
|
||||
# Finding a parameter combination that leads to long-term coexistence was
|
||||
# surprisingly difficult. It is for such cases that the
|
||||
# [Optimizing agent based models](@ref) example is useful!
|
||||
# %% #src
|
||||
|
||||
# ## Video
|
||||
# Given that we have defined plotting functions, making a video is as simple as
|
||||
sheepwolfgrass = initialize_model(;stable_params...)
|
||||
|
||||
abmvideo(
|
||||
"sheepwolf.mp4",
|
||||
sheepwolfgrass;
|
||||
frames = 100,
|
||||
framerate = 8,
|
||||
title = "Sheep Wolf Grass",
|
||||
plotkwargs...,
|
||||
)
|
||||
|
||||
# ```@raw html
|
||||
# <video width="auto" controls autoplay loop>
|
||||
# <source src="../sheepwolf.mp4" type="video/mp4">
|
||||
# </video>
|
||||
# ```
|
||||
run()
|
||||
|
|
Loading…
Reference in New Issue