move some logic into their own funcs(move,eat,reproduce)
parent
0165c839cd
commit
f0bfe3cb87
|
|
@ -46,17 +46,63 @@
|
||||||
# example, we could have only one type and one additional filed to separate them.
|
# example, we could have only one type and one additional filed to separate them.
|
||||||
# Nevertheless, for the sake of example, we will use two different types.)
|
# Nevertheless, for the sake of example, we will use two different types.)
|
||||||
using Agents, Random
|
using Agents, Random
|
||||||
|
using CairoMakie
|
||||||
@agent struct Sheep(GridAgent{2})
|
@agent struct Sheep(GridAgent{2})
|
||||||
energy::Float64
|
energy::Float64
|
||||||
reproduction_prob::Float64
|
reproduction_prob::Float64
|
||||||
Δenergy::Float64
|
Δenergy::Float64
|
||||||
|
#perception::Int32
|
||||||
|
#speed::Float64
|
||||||
|
#endurance::Float64
|
||||||
|
end
|
||||||
|
function move!(sheep::Sheep,model)
|
||||||
|
randomwalk!(sheep, model)
|
||||||
|
sheep.energy -= 1
|
||||||
|
end
|
||||||
|
function eat!(sheep::Sheep, model)
|
||||||
|
if model.fully_grown[sheep.pos...]
|
||||||
|
sheep.energy += sheep.Δenergy
|
||||||
|
model.fully_grown[sheep.pos...] = false
|
||||||
|
end
|
||||||
|
return
|
||||||
|
end
|
||||||
|
function reproduce!(sheep::Sheep, model)
|
||||||
|
if rand(abmrng(model)) ≤ sheep.reproduction_prob
|
||||||
|
sheep.energy /= 2
|
||||||
|
replicate!(sheep, model)
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
@agent struct Wolf(GridAgent{2})
|
@agent struct Wolf(GridAgent{2})
|
||||||
energy::Float64
|
energy::Float64
|
||||||
reproduction_prob::Float64
|
reproduction_prob::Float64
|
||||||
Δenergy::Float64
|
Δenergy::Float64
|
||||||
|
#perception::Int32
|
||||||
|
#speed::Float64
|
||||||
|
#endurance::Float64
|
||||||
|
end
|
||||||
|
function move!(wolf::Wolf,model)
|
||||||
|
randomwalk!(wolf, model; ifempty=false)
|
||||||
|
wolf.energy -= 1
|
||||||
|
end
|
||||||
|
function eat!(wolf::Wolf, model)
|
||||||
|
dinner = first_sheep_in_position(wolf.pos, model)
|
||||||
|
if !isnothing(dinner)
|
||||||
|
remove_agent!(dinner, model)
|
||||||
|
wolf.energy += wolf.Δenergy
|
||||||
|
end
|
||||||
|
end
|
||||||
|
function reproduce!(wolf::Wolf, model)
|
||||||
|
if rand(abmrng(model)) ≤ wolf.reproduction_prob
|
||||||
|
wolf.energy /= 2
|
||||||
|
replicate!(wolf, model)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function first_sheep_in_position(pos, model)
|
||||||
|
ids = ids_in_position(pos, model)
|
||||||
|
j = findfirst(id -> model[id] isa Sheep, ids)
|
||||||
|
isnothing(j) ? nothing : model[ids[j]]::Sheep
|
||||||
end
|
end
|
||||||
|
|
||||||
# The function `initialize_model` returns a new model containing sheep, wolves, and grass
|
# The function `initialize_model` returns a new model containing sheep, wolves, and grass
|
||||||
|
|
@ -119,56 +165,23 @@ end
|
||||||
# Notice how the function `sheepwolf_step!`, which is our `agent_step!`,
|
# Notice how the function `sheepwolf_step!`, which is our `agent_step!`,
|
||||||
# is dispatched to the appropriate agent type via Julia's Multiple Dispatch system.
|
# is dispatched to the appropriate agent type via Julia's Multiple Dispatch system.
|
||||||
function sheepwolf_step!(sheep::Sheep, model)
|
function sheepwolf_step!(sheep::Sheep, model)
|
||||||
randomwalk!(sheep, model)
|
move!(sheep, model)
|
||||||
sheep.energy -= 1
|
|
||||||
if sheep.energy < 0
|
if sheep.energy < 0
|
||||||
remove_agent!(sheep, model)
|
remove_agent!(sheep, model)
|
||||||
return
|
return
|
||||||
end
|
end
|
||||||
eat!(sheep, model)
|
eat!(sheep, model)
|
||||||
if rand(abmrng(model)) ≤ sheep.reproduction_prob
|
reproduce!(sheep, model)
|
||||||
sheep.energy /= 2
|
|
||||||
replicate!(sheep, model)
|
|
||||||
end
|
|
||||||
end
|
end
|
||||||
|
|
||||||
function sheepwolf_step!(wolf::Wolf, model)
|
function sheepwolf_step!(wolf::Wolf, model)
|
||||||
randomwalk!(wolf, model; ifempty=false)
|
move!(wolf, model)
|
||||||
wolf.energy -= 1
|
|
||||||
if wolf.energy < 0
|
if wolf.energy < 0
|
||||||
remove_agent!(wolf, model)
|
remove_agent!(wolf, model)
|
||||||
return
|
return
|
||||||
end
|
end
|
||||||
## If there is any sheep on this grid cell, it's dinner time!
|
eat!(wolf, model)
|
||||||
dinner = first_sheep_in_position(wolf.pos, model)
|
reproduce!(wolf, model)
|
||||||
!isnothing(dinner) && eat!(wolf, dinner, model)
|
|
||||||
if rand(abmrng(model)) ≤ wolf.reproduction_prob
|
|
||||||
wolf.energy /= 2
|
|
||||||
replicate!(wolf, model)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
function first_sheep_in_position(pos, model)
|
|
||||||
ids = ids_in_position(pos, model)
|
|
||||||
j = findfirst(id -> model[id] isa Sheep, ids)
|
|
||||||
isnothing(j) ? nothing : model[ids[j]]::Sheep
|
|
||||||
end
|
|
||||||
|
|
||||||
# Sheep and wolves have separate `eat!` functions. If a sheep eats grass, it will acquire
|
|
||||||
# additional energy and the grass will not be available for consumption until regrowth time
|
|
||||||
# has elapsed. If a wolf eats a sheep, the sheep dies and the wolf acquires more energy.
|
|
||||||
function eat!(sheep::Sheep, model)
|
|
||||||
if model.fully_grown[sheep.pos...]
|
|
||||||
sheep.energy += sheep.Δenergy
|
|
||||||
model.fully_grown[sheep.pos...] = false
|
|
||||||
end
|
|
||||||
return
|
|
||||||
end
|
|
||||||
|
|
||||||
function eat!(wolf::Wolf, sheep::Sheep, model)
|
|
||||||
remove_agent!(sheep, model)
|
|
||||||
wolf.energy += wolf.Δenergy
|
|
||||||
return
|
|
||||||
end
|
end
|
||||||
|
|
||||||
# The behavior of grass function differently. If it is fully grown, it is consumable.
|
# The behavior of grass function differently. If it is fully grown, it is consumable.
|
||||||
|
|
@ -187,6 +200,7 @@ function grass_step!(model)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function run()
|
||||||
sheepwolfgrass = initialize_model()
|
sheepwolfgrass = initialize_model()
|
||||||
|
|
||||||
# ## Running the model
|
# ## Running the model
|
||||||
|
|
@ -194,7 +208,6 @@ sheepwolfgrass = initialize_model()
|
||||||
# We will run the model for 500 steps and record the number of sheep, wolves and consumable
|
# We will run the model for 500 steps and record the number of sheep, wolves and consumable
|
||||||
# grass patches after each step. First: initialize the model.
|
# grass patches after each step. First: initialize the model.
|
||||||
|
|
||||||
using CairoMakie
|
|
||||||
CairoMakie.activate!() # hide
|
CairoMakie.activate!() # hide
|
||||||
|
|
||||||
# To view our starting population, we can build an overview plot using [`abmplot`](@ref).
|
# To view our starting population, we can build an overview plot using [`abmplot`](@ref).
|
||||||
|
|
@ -292,3 +305,5 @@ abmvideo(
|
||||||
# <source src="../sheepwolf.mp4" type="video/mp4">
|
# <source src="../sheepwolf.mp4" type="video/mp4">
|
||||||
# </video>
|
# </video>
|
||||||
# ```
|
# ```
|
||||||
|
end
|
||||||
|
run()
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue