DSA_SS24/notebooks/decision_tree.ipynb

106 lines
2.9 KiB
Plaintext
Raw Normal View History

2024-06-21 16:35:16 +02:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Decison Tree"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import Data from Database"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# connect to the database\n",
"conn = sqlite3.connect('../features.db')\n",
"c = conn.cursor()\n",
"# get training, validation and test data\n",
"train = pd.read_sql_query(\"SELECT * FROM train\", conn)\n",
"valid = pd.read_sql_query(\"SELECT * FROM validation\", conn)\n",
"test = pd.read_sql_query(\"SELECT * FROM test\", conn)\n",
"# close the connection\n",
"conn.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Format Data for Machine Learning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the target and features\n",
"train_y = train['y']\n",
"train_y = train_y.map({'GSVT': 0, 'AFIB': 1, 'SR': 2, 'SB': 3})\n",
"train_x = train.drop(columns=['y'])\n",
"\n",
"valid_y = valid['y']\n",
"valid_y = valid_y.map({'GSVT': 0, 'AFIB': 1, 'SR': 2, 'SB': 3})\n",
"valid_x = valid.drop(columns=['y'])\n",
"\n",
"test_y = test['y']\n",
"test_y = test_y.map({'GSVT': 0, 'AFIB': 1, 'SR': 2, 'SB': 3})\n",
"test_x = test.drop(columns=['y'])\n",
"\n",
"# drop id column\n",
"train_x = train_x.drop(columns=['id'])\n",
"valid_x = valid_x.drop(columns=['id'])\n",
"test_x = test_x.drop(columns=['id'])\n",
"\n",
"print('train_x shape:', train_x.shape)\n",
"print('test_x shape:', test_x.shape)\n",
"print('valid_x shape:', valid_x.shape)\n",
"# print column names\n",
"print('features:', train_x.columns.to_list())\n",
"feature_names = train_x.columns.to_list()\n",
"\n",
"# Create an imputer object with a mean filling strategy\n",
"imputer = SimpleImputer(strategy='mean')\n",
"\n",
"train_x = imputer.fit_transform(train_x)\n",
"valid_x = imputer.transform(valid_x)\n",
"test_x = imputer.transform(test_x)\n",
"\n",
"# Scale Data between 0 and 1\n",
"scaler = MinMaxScaler()\n",
"# Fit the scaler to your data and then transform it\n",
"train_x = scaler.fit_transform(train_x)\n",
"valid_x = scaler.transform(valid_x)\n",
"test_x = scaler.transform(test_x)\n",
"\n",
"\n",
"\n",
"# use xgboost\n",
"dtrain = xgb.DMatrix(train_x, label=train_y)\n",
"dvalid = xgb.DMatrix(valid_x, label=valid_y)\n",
"dtest = xgb.DMatrix(test_x, label=test_y)\n",
"\n",
"num_classes= len(set(valid_y.to_list()))\n",
"print('number of classes:', num_classes)"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}