178 lines
6.9 KiB
Python
178 lines
6.9 KiB
Python
|
|
||
|
from matplotlib import pyplot as plt
|
||
|
import wfdb.processing
|
||
|
import sys
|
||
|
import json
|
||
|
import scipy
|
||
|
import numpy as np
|
||
|
import neurokit2 as nk
|
||
|
import math
|
||
|
import time
|
||
|
|
||
|
def get_y_value(ecg_cleaned, indecies):
|
||
|
"""
|
||
|
Get the y value of the ECG signal at the given indices.
|
||
|
Args:
|
||
|
ecg_cleaned (list): The cleaned ECG signal.
|
||
|
indecies (list): The list of indices.
|
||
|
Returns:
|
||
|
list: The list of y values at the given indices.
|
||
|
"""
|
||
|
return [ecg_cleaned[int(i)] for i in indecies if not math.isnan(i)]
|
||
|
|
||
|
|
||
|
def calculate_axis(record, wave_peak, r_peak_idx, sampling_rate=500, aVF=5, I=0):
|
||
|
"""
|
||
|
Calculate the R and T axis of the ECG signal.
|
||
|
Args:
|
||
|
record (object): The record object containing the ECG signal.
|
||
|
wave_peak (dict): The dictionary containing the wave peaks.
|
||
|
r_peak_idx (list): The list containing the R peak indices.
|
||
|
sampling_rate (int): The sampling rate of the ECG signal.
|
||
|
aVF (int): The index of the aVF lead.
|
||
|
I (int): The index of the I lead.
|
||
|
Returns:
|
||
|
tuple: The R and T axis of the ECG signal.
|
||
|
"""
|
||
|
# Calculate the net QRS in each lead
|
||
|
ecg_signal_avf = record.p_signal[:, aVF]
|
||
|
ecg_signal_avf_cleaned = nk.ecg_clean(ecg_signal_avf, sampling_rate=sampling_rate)
|
||
|
|
||
|
ecg_signal_i = record.p_signal[:, I]
|
||
|
ecg_signal_i_cleaned = nk.ecg_clean(ecg_signal_i, sampling_rate=sampling_rate)
|
||
|
|
||
|
# r axis
|
||
|
# get amplitude of peaks
|
||
|
q_peaks_avf = get_y_value(ecg_signal_avf_cleaned, wave_peak['ECG_Q_Peaks'])
|
||
|
s_peaks_avf = get_y_value(ecg_signal_avf_cleaned, wave_peak['ECG_S_Peaks'])
|
||
|
r_peaks_avf = get_y_value(ecg_signal_avf_cleaned, r_peak_idx)
|
||
|
|
||
|
q_peaks_i = get_y_value(ecg_signal_i_cleaned, wave_peak['ECG_Q_Peaks'])
|
||
|
s_peaks_i = get_y_value(ecg_signal_i_cleaned, wave_peak['ECG_S_Peaks'])
|
||
|
r_peaks_i = get_y_value(ecg_signal_i_cleaned, r_peak_idx)
|
||
|
|
||
|
# calculate avg peal amplitude
|
||
|
q_peaks_i_avg = np.mean(q_peaks_i)
|
||
|
s_peaks_i_avg = np.mean(s_peaks_i)
|
||
|
r_peaks_i_avg = np.mean(r_peaks_i)
|
||
|
|
||
|
q_peaks_avf_avg = np.mean(q_peaks_avf)
|
||
|
s_peaks_avf_avg = np.mean(s_peaks_avf)
|
||
|
r_peaks_avf_avg = np.mean(r_peaks_avf)
|
||
|
|
||
|
# Calculate net QRS in lead
|
||
|
net_qrs_i = r_peaks_i_avg - (q_peaks_i_avg + s_peaks_i_avg)
|
||
|
net_qrs_avf = r_peaks_avf_avg - (q_peaks_avf_avg + s_peaks_avf_avg)
|
||
|
|
||
|
# t axis
|
||
|
t_peaks_i = get_y_value(ecg_signal_avf_cleaned, wave_peak['ECG_T_Peaks'])
|
||
|
t_peaks_avf = get_y_value(ecg_signal_i_cleaned, wave_peak['ECG_T_Peaks'])
|
||
|
|
||
|
net_t_i = np.mean(t_peaks_i)
|
||
|
net_t_avf = np.mean(t_peaks_avf)
|
||
|
|
||
|
#print("amplitude I", net_qrs.get(I, 0))
|
||
|
#print("amplitude aVF", net_qrs.get(aVF, 0))
|
||
|
|
||
|
# Calculate the R axis (Convert to degrees)
|
||
|
r_axis = np.arctan2(net_qrs_avf, net_qrs_i) * (180 / np.pi)
|
||
|
|
||
|
# Calculate the T axis (Convert to degrees)
|
||
|
t_axis = np.arctan2(net_t_avf, net_t_i) * (180 / np.pi)
|
||
|
|
||
|
return r_axis, t_axis
|
||
|
|
||
|
|
||
|
def extract_features(data_dict, sampling_rate=500, used_channels=[0, 1, 2, 3, 4, 5]):
|
||
|
"""
|
||
|
Extracts the features from the data.
|
||
|
Args:
|
||
|
data_dict (dict): The dictionary containing the data.
|
||
|
Returns:
|
||
|
dict: The dictionary containing the extracted features.
|
||
|
"""
|
||
|
start_time = time.time()
|
||
|
feature_data = {}
|
||
|
failed_records = []
|
||
|
|
||
|
for label, data in data_dict.items():
|
||
|
print(f"Extracting features for {label} with {len(data)} data entries.")
|
||
|
for data_idx, record in enumerate(data):
|
||
|
if data_idx % 100 == 0:
|
||
|
stop_time = time.time()
|
||
|
print(f"Extracted features for {data_idx} records. Time taken: {stop_time - start_time:.2f}s")
|
||
|
start_time = time.time()
|
||
|
|
||
|
age = record.comments[0].split(' ')[1]
|
||
|
gender = record.comments[1].split(' ')[1]
|
||
|
if age == 'NaN' or gender == 'NaN':
|
||
|
continue
|
||
|
features = {}
|
||
|
# Extract the features
|
||
|
features['y'] = label
|
||
|
# Demographic features
|
||
|
features['age'] = int(age)
|
||
|
features['gender'] = True if gender == 'Male' else False
|
||
|
# Signal features
|
||
|
|
||
|
ecg_signal = record.p_signal[:, 0]
|
||
|
ecg_cleaned = nk.ecg_clean(ecg_signal, sampling_rate=sampling_rate)
|
||
|
_, rpeaks = nk.ecg_peaks(ecg_cleaned, sampling_rate=sampling_rate)
|
||
|
r_peaks = rpeaks['ECG_R_Peaks']
|
||
|
# Delineate the ECG signal
|
||
|
try:
|
||
|
_, waves_peak = nk.ecg_delineate(ecg_signal, r_peaks, sampling_rate=sampling_rate, method="peak")
|
||
|
except:
|
||
|
failed_records.append(record.record_name)
|
||
|
print(f"Failed to extract features for record {record.record_name} Sum of failed records: {len(failed_records)}")
|
||
|
continue
|
||
|
|
||
|
# TODO Other features and check features
|
||
|
atrial_rate = len(waves_peak['ECG_P_Peaks']) * 6
|
||
|
ventricular_rate = np.mean(nk.ecg_rate(r_peaks, sampling_rate=sampling_rate, desired_length=len(ecg_cleaned)))
|
||
|
|
||
|
features['artial_rate'] = atrial_rate
|
||
|
features['ventricular_rate'] = ventricular_rate
|
||
|
|
||
|
qrs_duration = np.nanmean(np.array(waves_peak['ECG_S_Peaks']) - np.array(waves_peak['ECG_Q_Peaks']))
|
||
|
features['qrs_duration'] = qrs_duration
|
||
|
|
||
|
qt_interval = np.nanmean(np.array(waves_peak['ECG_T_Offsets']) - np.array(waves_peak['ECG_Q_Peaks']))
|
||
|
features['qt_length'] = qt_interval
|
||
|
|
||
|
q_peak = waves_peak['ECG_Q_Peaks']
|
||
|
s_peak = waves_peak['ECG_S_Peaks']
|
||
|
# check if q_peak, r_peak, s_peak are not nan and therefore a solid qrs complex exists
|
||
|
qrs_count = [any([math.isnan(q_peak[i]), math.isnan(r_peaks[i]), math.isnan(s_peak[i])]) for i in range(len(q_peak))].count(False)
|
||
|
features['qrs_count'] = qrs_count
|
||
|
|
||
|
features['q_peak'] = np.mean(get_y_value(ecg_cleaned, q_peak))
|
||
|
|
||
|
r_axis, t_axis = calculate_axis(record, waves_peak, r_peaks, sampling_rate=500, aVF=5, I=0)
|
||
|
features['r_axis'] = r_axis
|
||
|
features['t_axis'] = t_axis
|
||
|
|
||
|
# print the features
|
||
|
#print(json.dumps(features, indent=4))
|
||
|
feature_data[record.record_name] = features
|
||
|
|
||
|
return feature_data
|
||
|
|
||
|
|
||
|
def split_data(feature_data, split_ratio):
|
||
|
print(f"Splitting data with ratio {split_ratio}")
|
||
|
#flatten dictionary
|
||
|
feature_data = {k: v for k, v in feature_data.items()}
|
||
|
# print keys
|
||
|
print("Keys:")
|
||
|
print(len(feature_data.keys()))
|
||
|
# shuffle the data
|
||
|
keys = list(feature_data.keys())
|
||
|
np.random.shuffle(keys)
|
||
|
# split the data
|
||
|
split_data = {}
|
||
|
split_data['train'] = {k: feature_data[k] for k in keys[:int(len(keys) * split_ratio[0])]}
|
||
|
split_data['test'] = {k: feature_data[k] for k in keys[int(len(keys) * split_ratio[0]):int(len(keys) * (split_ratio[0] + split_ratio[1]))]}
|
||
|
split_data['validation'] = {k: feature_data[k] for k in keys[int(len(keys) * (split_ratio[0] + split_ratio[1])):]}
|
||
|
|
||
|
return split_data
|