main
ulusoy 2024-06-05 12:04:33 +02:00
parent 8709e67500
commit 28a34f3ff3
2 changed files with 59 additions and 86 deletions

View File

@ -2,7 +2,7 @@
This project was developed through the Data Science and Analytics course at the Mannheim University of Applied Sciences. A data science cycle was taught theoretically on the basis of lectures and implemented practically in the project. This project was developed through the Data Science and Analytics course at the Mannheim University of Applied Sciences. A data science cycle was taught theoretically on the basis of lectures and implemented practically in the project.
## Analysis of cardiovascular diseases using ECG data # Analysis of cardiovascular diseases using ECG data
## Table of Contents ## Table of Contents

View File

@ -1,105 +1,78 @@
"""
This script reads the WFDB records and extracts the diagnosis information from the comments.
The diagnosis information is then used to classify the records into categories.
The categories are defined by the diagnosis codes in the comments.
The records are then saved to pickle files based on the categories.
"""
import wfdb import wfdb
import os import os
import numpy as np
import pickle import pickle
import bz2
import numpy as np
import pandas as pd
# Directories and file paths # Funktionen zum Bearbeiten der Daten
# --------------------------------------------------------------------------------
# NOTE: Specify the directory where the WFDB records are stored
project_dir = 'C:/Users/felix/OneDrive/Studium/Master MDS/1 Semester/DSA/physionet/large_12_ecg_data/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0'
data_dir = project_dir + '/WFDBRecords'
path_diag_lookup = project_dir + "/ConditionNames_SNOMED-CT.csv"
# --------------------------------------------------------------------------------
# Functions
def get_diagnosis_ids(record): def get_diagnosis_ids(record):
"""
Extracts diagnosis IDs from a record and returns them as a list.
Args:
record (object): The record object containing the diagnosis information.
Returns:
list: A list of diagnosis IDs extracted from the record.
"""
# Get the diagnosis
diagnosis = record.comments[2] diagnosis = record.comments[2]
# clean the diagnosis
diagnosis = diagnosis.replace('Dx: ', '') diagnosis = diagnosis.replace('Dx: ', '')
list_diagnosis = [int(x.strip()) for x in diagnosis.split(',')] list_diagnosis = [int(x.strip()) for x in diagnosis.split(',')]
return list_diagnosis return list_diagnosis
# --------------------------------------------------------------------------------
# Generate the data
# --------------------------------------------------------------------------------
if __name__ == '__main__':
"""
The following categories are used to classify the records:
SB, Sinusbradykardie def get_diagnosis_name(diagnosis):
AFIB, Vorhofflimmern und Vorhofflattern (AFL) name = [diagnosis_lookup[diagnosis_lookup['Snomed_CT'] == x]['Full Name'].to_string(index=False) for x in diagnosis]
GSVT, supraventrikulärer Tachykardie, Vorhoftachykardie, AV-Knoten-Reentry-Tachykardie, AV-Reentry-Tachykardie, Vorhofschrittmacher return name
SR Sinusrhythmus und Sinusunregelmäßigkeiten
""" def filter_signal_df_on_diag(df_dict, diagnosis_dict, filter_codes_df):
categories = { filter_cod_li = list(filter_codes_df['Snomed_CT']) + [0]
filter_dict_diag = {k: v for k, v in diagnosis_dict.items() if all(i in filter_cod_li for i in v)}
filtered_df_dict = {i: df.loc[df.index.isin(filter_dict_diag.keys())] for i, df in df_dict.items()}
return filtered_df_dict
# Verzeichnisse und Dateipfade
project_dir = 'C:/Users/arman/PycharmProjects/pythonProject/DSA/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0'
data_dir = project_dir + '/WFDBRecords'
path_diag_lookup = "C:/Users/arman/PycharmProjects/pythonProject/DSA/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0/ConditionNames_SNOMED-CT.csv"
# Daten erkunden
diagnosis_lookup = pd.read_csv(path_diag_lookup)
categories = {
'SB': [426177001], 'SB': [426177001],
'AFIB': [164889003, 164890007], 'AFIB': [164889003, 164890007],
'GSVT': [426761007, 713422000, 233896004, 233897008, 713422000], 'GSVT': [426761007, 713422000, 233896004, 233897008, 713422000],
'SR': [426783006, 427393009] 'SR': [426783006, 427393009]
} }
diag_dict = {k: [] for k in categories.keys()} diag_dict = {k: [] for k in categories.keys()}
counter = 0
max_counter = 100_000
# Create a counter for the number of records for dir_th in os.listdir(data_dir):
counter = 0 path_to_1000_records = data_dir + '/' + dir_th
max_counter = 100_000 for dir_hd in os.listdir(path_to_1000_records):
failed_records = [] path_to_100_records = path_to_1000_records + '/' + dir_hd
# Loop through the records for record_name in os.listdir(path_to_100_records):
for dir_th in os.listdir(data_dir): if '.hea' not in record_name:
path_to_1000_records = data_dir + '/' + dir_th continue
for dir_hd in os.listdir(path_to_1000_records): record_name = record_name.replace('.hea', '')
path_to_100_records = path_to_1000_records + '/' + dir_hd try:
for record_name in os.listdir(path_to_100_records): record = wfdb.rdrecord(path_to_100_records + '/' + record_name)
# check if .hea is in the record_name diagnosis = np.array(get_diagnosis_ids(record))
if '.hea' not in record_name: for category_name, category_codes in categories.items():
continue if any(i in category_codes for i in diagnosis):
# Remove the .hea extension from record_name diag_dict[category_name].append(record)
record_name = record_name.replace('.hea', '')
try:
# Read the record
record = wfdb.rdrecord(path_to_100_records + '/' + record_name)
# Get the diagnosis
diagnosis = np.array(get_diagnosis_ids(record))
# check if diagnosis is a subset of one of the categories
for category_name, category_codes in categories.items():
# if any of the diagnosis codes is in the category_codes
if any(i in category_codes for i in diagnosis):
diag_dict[category_name].append(record)
break
# Increment the counter of how many records we have read
counter += 1
counter_bool = counter >= max_counter
# Break the loop if we have read max_counter records
if counter % 100 == 0:
print(f"Read {counter} records")
if counter_bool:
break break
except Exception as e: counter += 1
failed_records.append(record_name) counter_bool = counter >= max_counter
print(f"Failed to read record {record_name} due to ValueError. Sum of failed records: {len(failed_records)}") if counter % 100 == 0:
if counter_bool: print(f"Gelesen {counter} Datensätze")
break if counter_bool:
break
except Exception as e:
print(f"Fehler beim Lesen des Datensatzes {record_name}: {e}")
if counter_bool: if counter_bool:
break break
if counter_bool:
break
# write to pickle for cat_name, records in diag_dict.items():
for cat_name, records in diag_dict.items(): print(f"Schreibe {cat_name} in eine komprimierte Datei mit {len(records)} Datensätzen")
print(f"Writing {cat_name} to pickle with {len(records)} records") if not os.path.exists('./data'):
# if path not exists create it os.makedirs('./data')
if not os.path.exists('./data'): compressed_filename = f'./data/{cat_name}.pkl.bz2'
os.makedirs('./data') with bz2.open(compressed_filename, 'wb') as f:
with open(f'./data/{cat_name}.pkl', 'wb') as f: pickle.dump(records, f)
pickle.dump(records, f)