From 4d0cdf876f0ef1e5ea94a97602d783669cb6a184 Mon Sep 17 00:00:00 2001 From: klara Date: Fri, 21 Jun 2024 17:05:39 +0200 Subject: [PATCH] added some Information --- notebooks/decision_tree.ipynb | 97 +++++++++++++++++++++++++++++++++-- 1 file changed, 93 insertions(+), 4 deletions(-) diff --git a/notebooks/decision_tree.ipynb b/notebooks/decision_tree.ipynb index 471cafa..71a61c1 100644 --- a/notebooks/decision_tree.ipynb +++ b/notebooks/decision_tree.ipynb @@ -7,6 +7,29 @@ "# Decison Tree" ] }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import sqlite3\n", + "import os\n", + "from datetime import datetime\n", + "from joblib import dump, load\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import xgboost as xgb\n", + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.metrics import confusion_matrix, f1_score\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", + "from sklearn.impute import SimpleImputer\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "import seaborn as sns" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -16,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -40,9 +63,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train_x shape: (3502, 10)\n", + "test_x shape: (438, 10)\n", + "valid_x shape: (438, 10)\n", + "features: ['age', 'gender', 'artial_rate', 'ventricular_rate', 'qrs_duration', 'qt_length', 'qrs_count', 'q_peak', 'r_axis', 't_axis']\n", + "number of classes: 4\n" + ] + } + ], "source": [ "# get the target and features\n", "train_y = train['y']\n", @@ -93,11 +128,65 @@ "num_classes= len(set(valid_y.to_list()))\n", "print('number of classes:', num_classes)" ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Validierungsgenauigkeit: 0.7557077625570776\n", + "Testgenauigkeit: 0.7922374429223744\n" + ] + } + ], + "source": [ + "# Schritt 1: Importiere die notwendigen Bibliotheken\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.metrics import accuracy_score\n", + "\n", + "# Schritt 2: Erstelle das Decision Tree Modell\n", + "# Beispiel: Begrenzung der Tiefe des Baumes\n", + "dt_classifier = DecisionTreeClassifier(max_depth=5)\n", + "\n", + "# Schritt 3: Trainiere das Modell\n", + "dt_classifier.fit(train_x, train_y)\n", + "\n", + "# Schritt 4: Vorhersagen und Auswertung auf den Validierungsdaten\n", + "valid_pred = dt_classifier.predict(valid_x)\n", + "valid_accuracy = accuracy_score(valid_y, valid_pred)\n", + "print(f'Validierungsgenauigkeit: {valid_accuracy}')\n", + "\n", + "# Optional: Tuning des Modells basierend auf den Validierungsergebnissen\n", + "# Experimentiere mit verschiedenen Parametern und trainiere bei Bedarf neu\n", + "\n", + "# Schritt 6: Endgültige Bewertung mit Testdaten\n", + "test_pred = dt_classifier.predict(test_x)\n", + "test_accuracy = accuracy_score(test_y, test_pred)\n", + "print(f'Testgenauigkeit: {test_accuracy}')\n" + ] } ], "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, "language_info": { - "name": "python" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" } }, "nbformat": 4,