first structure

main
Felix Jan Michael Mucha 2024-05-01 09:56:36 +02:00
commit 588e20b7b3
2 changed files with 228 additions and 0 deletions

48
README.md 100644
View File

@ -0,0 +1,48 @@
# HSMA Data Science and Analytics SS2024
## ECG Data klassifier and segmentation
[This Project aims to klassify ... and semgment ... ECG Data]
## Table of Contents
- [About](#about)
- [Getting Started](#getting-started)
- [Usage](#usage)
- [Progress](#progress)
- [Contributing](#contributing)
- [License](#license)
## About
[Provide a brief overview of the project, including its purpose and any relevant background information.]
## Getting Started
[Instructions on how to get the project up and running on a local machine. Include prerequisites, installation steps, and any other necessary setup.]
### Prerequisites
[List any software or tools that need to be installed before running the project.]
### Installation
[Step-by-step guide on how to install the project.]
## Usage
[Provide examples and instructions for using the project. Include any relevant code snippets or screenshots.]
## Progress
- Data was searched and found at : https://doi.org/10.13026/wgex-er52
- Data was cleaned:
- Docker Container with MongoDB, because 10 GB and many arrays
- Diagnosis from String to list
- Data filtered to contain only healthy and the needed diagnosis data
## Contributing
[Explain how others can contribute to the project. This might include guidelines for reporting bugs, submitting enhancements, or proposing new features.]
## License
[Specify the license under which the project is distributed. Include any additional terms or conditions.]
## Acknowledgements
[Optional section to thank individuals or organizations that have contributed to the project.]
## Contact
[Provide contact information for inquiries or support.]

View File

@ -0,0 +1,180 @@
import wfdb
import os
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
# Directories and file paths
# --------------------------------------------------------------------------------
# Specify the directory where the WFDB records are stored
project_dir = 'C:/Users/felix/OneDrive/Studium/Master MDS/1 Semester/DSA/physionet/large_12_ecg_data/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0'
data_dir = project_dir + '/WFDBRecords'
path_diag_lookup = "C:/Users/felix/OneDrive/Studium/Master MDS/1 Semester/DSA/physionet/large_12_ecg_data/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0/ConditionNames_SNOMED-CT.csv"
#project_dir +'/ConditionNames_SNOMED-CT.csv'
# --------------------------------------------------------------------------------
# print if project_dir exists
if not os.path.exists("C:/Users/felix/OneDrive/Studium/Master MDS/1 Semester/DSA/physionet/large_12_ecg_data/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0/ConditionNames_SNOMED-CT.csv"):
print(f"Directory {path_diag_lookup} does not exist")
def get_diagnosis_ids(record):
# Get the diagnosis
diagnosis = record.comments[2]
# clean the diagnosis
diagnosis = diagnosis.replace('Dx: ', '')
list_diagnosis = [int(x.strip()) for x in diagnosis.split(',')]
return list_diagnosis
def get_diagnosis_name(diagnosis):
# get the diagnosis name from the lookup table
name = [diagnosis_lookup[diagnosis_lookup['Snomed_CT'] == x]['Full Name'].to_string(index=False) for x in diagnosis]
return name
def filter_signal_df_on_diag(df_dict, diagnosis_dict, filter_codes_df):
# Create a list with filter codes and add 0 for padding
filter_cod_li = list(filter_codes_df['Snomed_CT']) + [0]
# Filter the diagnosis dictionary based on the filter codes
filter_dict_diag = {k: v for k, v in diagnosis_dict.items() if all(i in filter_cod_li for i in v)}
# Filter the df_dict based on the filtered_dict_diag
filtered_df_dict = {i: df.loc[df.index.isin(filter_dict_diag.keys())] for i, df in df_dict.items()}
return filtered_df_dict
# --------------------------------------------------------------------------------
# Explore the data
# --------------------------------------------------------------------------------
# Read the diagnosis lookup table
diagnosis_lookup = pd.read_csv(path_diag_lookup)
#print(diagnosis_lookup.head())
# Filter data based on the diagnosis
# ----------------------------------------------
healthy_codes = [426177001, 426783006]
categories = {
'Gesund': [426177001, 426783006], # '426177001', '426783006
'Herzrhythmusstörungen': [164890007, 427084000, 164889003, 426761007, 713422000, 427393009, 284470004, 17338001],
'Leitungsstörungen': [270492004, 233917008, 59118001, 164909002, 698252002],
'EKG-Welle': [164934002, 59931005, 428750005, 164917005, 429622005, 164930006, 164931005, 164912004, 164937009],
'Spannungsänderungen': [39732003, 47665007, 251146004, 251199005],
'Hypertrophien': [164873001, 89792004],
'QT': [111975006],
'Repolarisation': [428417006],
'Myokardinfarkt': [164865005]
}
diag_dict = {k: 0 for k in categories.keys()}
# Create a counter for the number of records
counter = 0
max_counter = 100_000#100_000
# Loop through the records
for dir_th in os.listdir(data_dir):
path_to_1000_records = data_dir + '/' + dir_th
for dir_hd in os.listdir(path_to_1000_records):
path_to_100_records = path_to_1000_records + '/' + dir_hd
for record_name in os.listdir(path_to_100_records):
# check if .hea is in the record_name
if '.hea' not in record_name:
continue
# Remove the .hea extension from record_name
record_name = record_name.replace('.hea', '')
try:
# Read the record
record = wfdb.rdrecord(path_to_100_records + '/' + record_name)
# Get the diagnosis
diagnosis = np.array(get_diagnosis_ids(record))
# check if diagnosis is a subset of one of the categories
for category_name, category_codes in categories.items():
if set(diagnosis).issubset(set(category_codes)):
# Increment the counter for the category
diag_dict[category_name] += 1
break
# Increment the counter
counter += 1
counter_bool = counter >= max_counter
# Break the loop if we have read max_counter records
if counter % 100 == 0:
print(f"Read {counter} records")
if counter_bool:
break
except Exception as e:
print(f"Failed to read record {record_name} due to ValueError")
if counter_bool:
break
if counter_bool:
break
"""
ID: Herzrhythmusstörungen, Count: 22571
ID: Leitungsstörungen, Count: 505
ID: EKG-Welle, Count: 2067
ID: Spannungsänderungen, Count: 613
ID: Hypertrophien, Count: 5
ID: QT, Count: 43
ID: Repolarisation, Count: 73
ID: Myokardinfarkt, Count: 1
"""
# # get the data
# dict_healthy, dict_afib, dict_mi = get_diag_filtered_data_dict()
# # get unique diagnosis codes
# unique_health_codes = np.unique(np.array([np.array(get_diagnosis_ids(d)) for d in dict_healthy.values()]).flatten())
# unique_afib_codes = np.unique(np.array([np.array(get_diagnosis_ids(d)) for d in dict_afib.values()]).flatten())
# unique_mi_codes = np.unique(np.array([np.array(get_diagnosis_ids(d)) for d in dict_mi.values()]).flatten())
# print(unique_health_codes)
# print(unique_afib_codes)
# print(unique_mi_codes)
# print(dict_healthy['JS00004'].__dict__)
#print(diag_dict)
for id, count in diag_dict.items():
print(f"ID: {id}, Count: {count}")
print(f'Number of counter diagnoses: {len(diag_dict)}')
print(f'Number of diagnoses in the lookup table: {len(diagnosis_lookup)}')
print('found in the lookup table: ', len(diag_dict) == len(diagnosis_lookup))
# flatten the counters and count the unique values
# healthy_counter = np.array(healthy_counter).flatten()
# afib_counter = np.array(afib_counter).flatten()
# mi_counter = np.array(mi_counter).flatten()
# unique_health_codes, counts_health = np.unique(healthy_counter, return_counts=True)
# unique_afib_codes, counts_afib = np.unique(afib_counter, return_counts=True)
# unique_mi_codes, counts_mi = np.unique(mi_counter, return_counts=True)
# print(unique_health_codes)
# print(counts_health)
# print(unique_afib_codes)
# print(counts_afib)
# print(unique_mi_codes)
# print(counts_mi)
# # get the names of the diagnosis
# names_health = get_diagnosis_name(unique_health_codes)
# names_afib = get_diagnosis_name(unique_afib_codes)
# names_mi = get_diagnosis_name(unique_mi_codes)