Compare commits

...

3 Commits

14 changed files with 19 additions and 762 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -167,20 +167,6 @@
"test_accuracy = accuracy_score(test_y, test_pred)\n",
"print(f'Testgenauigkeit: {test_accuracy}')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Die Validierungsgenauigkeit des Modells liegt bei 75,5%, was darauf hinweist, dass das Modell in etwa drei Vierteln der Fälle korrekte Vorhersagen auf den Validierungsdaten macht. Dies zeigt eine recht solide Leistung, deutet jedoch auch darauf hin, dass es noch Verbesserungspotenzial gibt, insbesondere bei der Verfeinerung des Modells, um die Fehlerquote zu senken"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mit einer Testgenauigkeit von 79% klassifiziert das Modell die Testdaten überwiegend korrekt. Dieses Ergebnis ist ein Indikator dafür, dass das Modell eine gute Generalisierungsfähigkeit aufweist und zuverlässig auf neuen, unbekannten Daten agieren kann. "
]
}
],
"metadata": {

View File

@ -13,7 +13,7 @@ import cv2 as cv
TODO create overall description
"""
def load_data(only_demographic:bool=False, only_diagnosis_ids=False, path_settings:str="../settings.json"):
def load_data(only_demographic:bool=False, path_settings:str="../settings.json"):
"""
Loads data from pickle files based on the specified settings.
@ -28,10 +28,6 @@ def load_data(only_demographic:bool=False, only_diagnosis_ids=False, path_settin
path_data = settings["data_path"]
labels = settings["labels"]
if only_diagnosis_ids:
with open(f'{path_data}/diagnosis.pkl', 'rb') as f:
return pickle.load(f)
data = {}
if only_demographic:
data = {'age': [], 'diag': [], 'gender': []}

View File

@ -5,7 +5,6 @@ import math
import time
from multiprocessing import Pool
import sqlite3
import random
def get_y_value(ecg_cleaned, indecies):
"""
@ -214,6 +213,7 @@ def extract_features_parallel(data_dict, num_processes, sampling_rate=500, used_
c = conn.cursor()
# get unique data
data_dict = exclude_already_extracted(data_dict, conn)
for label, data in data_dict.items():
print(f"Extracting features for {label} with {len(data)} data entries.")
with Pool(processes=num_processes) as pool:
@ -239,7 +239,7 @@ def extract_features_parallel(data_dict, num_processes, sampling_rate=500, used_
def extract_features(data_dict, sampling_rate=500, used_channels=[0, 1, 2, 3, 4, 5], limit=1000):
def extract_features(data_dict, sampling_rate=500, used_channels=[0, 1, 2, 3, 4, 5]):
"""
Extracts the features from the data.
Args:
@ -266,8 +266,6 @@ def extract_features(data_dict, sampling_rate=500, used_channels=[0, 1, 2, 3, 4,
print("No last file in DB")
for label, data in data_dict.items():
# get limit amount of radom samples out of data
data = random.sample(data, min(len(data), limit))
print(f"Extracting features for {label} with {len(data)} data entries.")
for data_idx, record in enumerate(data):
# Skip the records that are already in the database

View File

@ -30,7 +30,7 @@ def get_diagnosis_ids(record):
list_diagnosis = [int(x.strip()) for x in diagnosis.split(',')]
return list_diagnosis
def generate_raw_data(path_to_data, settings, max_counter=100_000, only_ids=False):
def generate_raw_data(path_to_data, settings, max_counter=100_000):
"""
Generates the raw data from the WFDB records.
Args:
@ -43,10 +43,7 @@ def generate_raw_data(path_to_data, settings, max_counter=100_000, only_ids=Fals
failed_records = []
categories = settings["labels"]
if only_ids:
diag_dict = {}
else:
diag_dict = {k: [] for k in categories.keys()}
diag_dict = {k: [] for k in categories.keys()}
# Loop through the records
for dir_th in os.listdir(path_to_data):
path_to_1000_records = path_to_data + '/' + dir_th
@ -63,15 +60,12 @@ def generate_raw_data(path_to_data, settings, max_counter=100_000, only_ids=Fals
record = wfdb.rdrecord(path_to_100_records + '/' + record_name)
# Get the diagnosis
diagnosis = np.array(get_diagnosis_ids(record))
if only_ids:
diag_dict[record_name] = diagnosis
else:
# check if diagnosis is a subset of one of the categories
for category_name, category_codes in categories.items():
# if any of the diagnosis codes is in the category_codes
if any(i in category_codes for i in diagnosis):
diag_dict[category_name].append(record)
break
# check if diagnosis is a subset of one of the categories
for category_name, category_codes in categories.items():
# if any of the diagnosis codes is in the category_codes
if any(i in category_codes for i in diagnosis):
diag_dict[category_name].append(record)
break
# Increment the counter of how many records we have read
counter += 1
counter_bool = counter >= max_counter
@ -89,7 +83,7 @@ def generate_raw_data(path_to_data, settings, max_counter=100_000, only_ids=Fals
break
return diag_dict
def write_data(data_dict, path='./data', file_prefix='', only_ids=False):
def write_data(data_dict, path='./data', file_prefix=''):
"""
Writes the data to a pickle file.
Args:
@ -99,13 +93,6 @@ def write_data(data_dict, path='./data', file_prefix='', only_ids=False):
# if path not exists create it
if not os.path.exists(path):
os.makedirs(path)
if only_ids:
# write to pickle
print(f"Writing diagnosis IDs to pickle with {len(data_dict)} data entries.")
with open(f'{path}/{file_prefix}.pkl', 'wb') as f:
pickle.dump(data_dict, f)
return
# write to pickle
for cat_name, data in data_dict.items():
print(f"Writing {cat_name} to pickle with {len(data)} data entries.")
@ -127,7 +114,7 @@ def generate_feature_data(input_data_path, settings, parallel=False, split_ratio
split_ratio = settings['split_ratio']
print(list(os.listdir(input_data_path)))
for file in os.listdir(input_data_path):
if file.endswith(".pkl") and not file.startswith("diagnosis"):
if file.endswith(".pkl"):
print(f"Reading {file}")
with open(f'{input_data_path}/{file}', 'rb') as f:
data = pickle.load(f)
@ -140,14 +127,13 @@ def generate_feature_data(input_data_path, settings, parallel=False, split_ratio
print(f"Using {max_processes} processes to extract features.")
feature_extraction.extract_features_parallel(data_dict, num_processes=max_processes)
else:
print(f"For even distribution of data, the limit is set to the smallest size: 1000.")
feature_extraction.extract_features(data_dict, limit=1000)
feature_extraction.extract_features(data_dict)
# Split the data
feature_extraction.split_and_shuffle_data(split_ratio=split_ratio)
def main(gen_data=True, gen_features=True, gen_diag_ids=True, split_ratio=None, parallel=False, settings_path='./settings.json', num_process_files=-1):
def main(gen_data=True, gen_features=True, split_ratio=None, parallel=False, settings_path='./settings.json', num_process_files=-1):
"""
Main function to generate the data.
Args:
@ -173,11 +159,6 @@ def main(gen_data=True, gen_features=True, gen_diag_ids=True, split_ratio=None,
if gen_features:
feature_data_dict = generate_feature_data(settings["data_path"], settings, split_ratio=split_ratio, parallel=parallel)
ret_data = feature_data_dict
if gen_diag_ids:
raw_data_dir = settings["wfdb_path"] + '/WFDBRecords'
data_dict = generate_raw_data(raw_data_dir, settings, max_counter=num_process_files, only_ids=True)
write_data(data_dict, path=settings["data_path"], file_prefix='diagnosis', only_ids=True)
ret_data = data_dict
return ret_data
@ -197,7 +178,6 @@ if __name__ == '__main__':
# SB, AFIB, GSVT, SR
# new GSVT, AFIB, SR, SB
# Generate the data
#main(gen_data=True, gen_features=False, gen_diag_ids=False, num_process_files=100_000)
#main(gen_data=False, gen_features=True, gen_diag_ids=False, split_ratio=[0.8, 0.1, 0.1])
main(gen_data=False, gen_features=False, gen_diag_ids=True)
main(gen_data=True, gen_features=False, num_process_files=100_000)
#main(gen_data=False, gen_features=True, split_ratio=[0.8, 0.1, 0.1], parallel=False, num_process_files=100_000)
print("Data generation completed.")

View File

@ -1,8 +1,8 @@
{
"wfdb_path_comment": "Path to the WFDB data. This is the folder where the WFDB data is stored.",
"wfdb_path": "C:/Studium/dsa/large_12_ecg_data/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0",
"wfdb_path": "C:/Users/arman/PycharmProjects/pythonProject/DSA/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0",
"data_path_comment": "Path to the data folder. This is the folder where the genereated data is stored.",
"data_path": "C:/Studium/dsa/data",
"data_path": "C:/Users/arman/PycharmProjects/pythonProject/DSA/DSA_SS24/data",
"labels_comment": "Labels for the different classes. The labels are the SNOMED CT codes.",
"labels": {
"GSVT": [426761007, 713422000, 233896004, 233897008, 713422000],