BA-Chatbot/backend/question_answering.py

244 lines
9.1 KiB
Python
Raw Normal View History

2023-11-15 14:28:48 +01:00
from typing import Dict, List
from api.embeddingsServiceCaller import EmbeddingServiceCaller
from retriever.retriever import Retriever
from reader import Reader
from embeddings.transformer_llama import LlamaTransformerEmbeddings
from retriever.retriever_pipeline import CustomPipeline
from embeddings.llama import Embedder
from haystack import Document
import json
import ast
import numpy as np
from scipy.special import softmax
from helper.openai import (
openai_doc_reference_prompt_v1,
openai_doc_citation_prompt_v2,
MAX_GPT4_TOKENS,
GPT4_COMPLETION_TOKENS,
MAX_GPT35_TURBO_TOKENS,
RERANKING_TOKENS,
count_prompt_tokens_gpt4,
count_prompt_tokens_gpt35,
)
from reranker import ReRanker
from expert_search import ExpertSearch
from module_recommendation import WPMRecommendation
from haystack.nodes import FARMReader
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
class QuestionAnswering:
"""
The QuestionAnswering class serves as a comprehensive manager for handling various aspects of question answering, including expert search and module recommendations. It integrates multiple components like retrievers, rerankers, and readers to facilitate efficient information retrieval and processing.
Attributes:
qa_pipeline (CustomPipeline): A pipeline for document retrieval and processing.
caller (LlamaTransformerEmbeddings | EmbeddingServiceCaller): MODEL SERVICE Caller
reranker (ReRanker): A component for reranking documents based on relevance.
retriever (Retriever): A component for retrieving documents.
reader (Reader): A component for reading and interpreting documents.
bert_reader (FARMReader): A FARM-based reader for additional Reader.
expert_search (ExpertSearch): A component for conducting expert searches.
wpm_recommendation (WPMRecommendation): A component for recommending Wahlpflichtmodule (elective modules).
"""
THRESHOLD = 0.5
def __init__(
self,
pipeline: CustomPipeline,
embedder: LlamaTransformerEmbeddings | EmbeddingServiceCaller,
):
"""
Initializes the QuestionAnswering class with required components.
Args:
pipeline (CustomPipeline): A pipeline for document retrieval and processing.
embedder (LlamaTransformerEmbeddings | EmbeddingServiceCaller): MODEL SERVICE CALLER.
"""
self.qa_pipeline = pipeline
self.caller = embedder
self.reranker = ReRanker()
self.retriever = Retriever(pipeline=self.qa_pipeline, caller=self.caller)
self.reader = Reader(caller=self.caller)
# NOTE: The BERT Reader is here and not in reader.py
# TODO: Shift this to reader.py
self.bert_reader = FARMReader(
model_name_or_path="deepset/gelectra-base-germanquad-distilled",
use_gpu=True,
use_confidence_scores=False,
)
self.expert_search = ExpertSearch(
pipeline=self.qa_pipeline,
retriever=self.retriever,
reader=self.reader,
reRanker=self.reranker,
farm_reader= self.bert_reader
)
self.wpm_recommendation = WPMRecommendation(
reader=self.reader, retriever=self.retriever, reRanker=self.reranker, farm_reader=self.bert_reader
)
def search_experts(
self,
query: str,
search_method: str,
retriever_model: str,
generate_answer: bool,
rerank: bool,
):
"""
Conducts an expert search based on the specified parameters.
Args:
query (str): The search query.
search_method (str): The method of search.
retriever_model (str): The retrieval model to be used.
generate_answer (bool): Whether to generate an answer using a reader.
rerank (bool): Whether to rerank the retrieved documents.
Returns:
Varies: The result of the expert search.
"""
return self.expert_search.search_experts(
query=query,
rerank_documents=rerank,
retrieval_method=retriever_model,
generate_anwser=generate_answer,
search_method=search_method
)
def recommend_wpm(
self,
interets: str,
future_carrer: str,
previous_courses: str,
retrieval_method_or_model: str,
recommendation_method: str,
rerank_retrieved_results: bool,
):
"""
Provides recommendations for elective modules (Wahlpflichtmodule, WPM) based on user input.
Args:
interets (str): User's interests.
future_carrer (str): User's future career aspirations.
previous_courses (str): Previously taken courses.
retrieval_method_or_model (str): The retrieval model/method.
recommendation_method (str): The recommendation method.
rerank_retrieved_results (bool): Whether to rerank retrieved results.
Returns:
Varies: Recommendations for elective modules.
"""
return self.wpm_recommendation.recommend_wpms(
interets=interets,
future_carrer=future_carrer,
previous_courses=previous_courses,
recommendation_method=recommendation_method,
rerank_retrieved_results=rerank_retrieved_results,
retrieval_model_or_method=retrieval_method_or_model,
)
def get_top_k(self, query, index, meta, retrieval_method_or_model):
"""
Retrieves the top k documents based on the query and retrieval method.
Args:
query (str): The search query.
index (str): The index to search in.
meta (Dict): Additional metadata for the query.
retrieval_method_or_model (str): The retrieval method or model.
Returns:
List[Document]: A list of retrieved documents.
"""
return self.retriever.get_top_k_passages(
index=index, query=query, meta=meta, method=retrieval_method_or_model
)
# Answers for STUPO and Crawled Data
def get_answers(
self,
query: str,
index: str = "",
meta: Dict = {},
retrieval_method_or_model: str = "mpnet",
reader_model: str = "",
rerank_documents=True,
):
"""
Retrieves answers for a given query using various models and methods.
NOTE: This is only providing answers for stupo or crawled data questions. Expert Search and WPMs have own functions.
Args:
query (str): The query to answer.
index (str, optional): The index to search in.
meta (Dict, optional): Additional metadata.
retrieval_method_or_model (str, optional): Retrieval method/model.
reader_model (str, optional): Reader model for generating answers.
rerank_documents (bool, optional): Whether to rerank documents.
Returns:
Varies: The generated answers.
"""
top_k_passages = self.retriever.get_top_k_passages(
query=query, index=index, meta=meta, method=retrieval_method_or_model
)["documents"]
reranked_passages = None
if rerank_documents:
reranked_passages = self.reranker.rerank_documents_with_gpt35(
documents=top_k_passages, query=query
)
final_passages = self.reranker.get_final_references(
reranked_documents=reranked_passages or [],
retrieved_documents=top_k_passages,
)
if index in ["stupo", "crawled_hsma"]:
if reader_model == "GPT":
return self.reader.get_gpt_answer(
top_k_passages=final_passages, query=query
)
elif reader_model == "Bert":
return (
self.bert_reader.predict(
query=query,
documents=final_passages,
top_k=10,
),
final_passages,
)
elif reader_model == "Llama":
return {
"answers": [
{
"answer": self.reader.generate_llama_answer(
top_k_passages=final_passages, query=query
)
}
]
}, final_passages
else:
return {"choices": [{"text": "Ich weiß die Antwort nicht"}]}
def get_module_credits(self, module: str, index: str = "ib"):
return self.retriever.get_module_credits(
query="", index=index, params={"title": [module]}
)
def apply_softmax(self, documents: Dict):
"""Applies Softmax to the scores of the answers
Args:
documents (Dict): Responses from a pipeline in Haystack format
"""
scores = softmax(np.array([answer.score for answer in documents["documents"]]))
for answer, score in zip(documents["documents"], scores):
answer.score = score
return softmax(scores)