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ABSTRACT
Citation graphs and indices underpin most bibliometric analyses.
However, measures derived from citation graphs do not provide
insights into qualitative aspects of scienti�c publications. In this
work, we aim to semantically characterize citations in terms of
polarity and purpose. We frame polarity and purpose detection
as classi�cation tasks and investigate the performance of convolu-
tional networks with general and domain-speci�c word embeddings
on these tasks. Our best performing model outperforms previously
reported results on a benchmark dataset by a wide margin.
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1 INTRODUCTION
Citation graphs and indices have long been supporting various
analyses in the sociology of science [6, 7]. Citation graphs are
used to detect research communities and retrace the evolution
of ideas over time. Various measures re�ecting the impact of a
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publication, journal, or an author exploit only raw citation counts.
For example, the widely-known h-index [8] is commonly used to
assess the scienti�c impact of a researcher.

Purely quantitative measures alone, however, may o�en be mis-
leading regarding the positive impact of some research. For exam-
ple, a publication on widely-criticized work will still have a large
number of citations. Being based on simple counts, quantitative
scientometric measures re�ect quantitative rather than qualitative
aspects of research – we are not only interested in how o�en a work
is cited, but also why it is being cited. Knoth and Herrmannova
[15] recently introduced the term semantometrics to describe a new
category of scientometric measures that account for qualitative
aspects of citations. Automated qualitative analysis of publications
is challenging, as it requires processing the textual content of all
citing publications. Most existing models for qualitative analysis of
citations employ a range of heavily manually-engineered features.

In this work we evaluate models that require virtually no feature
engineering on tasks of citation polarity and purpose classi�ca-
tion. Citation polarity (also known as citation sentiment classi-
�cation) assigning a polarity (positive, negative or neutral) to a
citation, considering the citation context [2]. Citation purpose
classi�cation (also known as citation function classi�cation) is a
more �ne-grained type of analysis that aims to provide a functional
characterization of a citation [22].

�e contributions of this work are twofold. First, following a
series of successful applications of convolutional neural networks
(CNNs) [17] in short text classi�cation [12, 14], we present the �rst
CNN application in the area of qualitative citation analysis. Using
CNNs allows us to avoid extensive feature-engineering present
in existing semantometric models. Secondly, we investigate the
impact of using domain-speci�c word embeddings1.

Experimental results on a benchmark dataset show that our best
performing CNN models outperform previously reported results
by a wide margin, both for polarity and purpose classi�cation.

1�e domain-speci�c word vector representations produced in this research are avail-
able for download at: h�ps://github.com/anlausch/scienti�c-domain-embeddings.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3127526.3127531&domain=pdf&date_stamp=2017-12-15
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2 RELATEDWORK
A signi�cant body of work exists both for citation polarity classi�-
cation [1, 2, 10, 13] and citation purpose classi�cation [5, 22].

Athar [2] �rst worked on citation polarity classi�cation, com-
bining a range of lexical, dictionary-based, and syntactic features
with a linear support vector machines (SVM) classi�er. Similarly,
Jochim and Schütze [10] fed a range of features for citation polarity
classi�cation to a maximum entropy classi�er, whereas Kim and
�oma [13] trained an SVM model RBF kernel using occurrence
statistics of n-grams in an annotated corpus as features.

Teufel et al. [22] classi�ed function of citations into one of 12
categories. �ey employed a k-NN classi�er using cue phrases,
self-citation, and the position of the citing sentence as features.
Dong and Schäfer [5] analyzed the e�ectiveness of di�erent feature
groups (e.g., positional, lexical, syntactic) for function classi�cation
over a range of classi�ers, pointing to syntactic features as being
most useful. Xu et al. [24] focused on discerning functional from
perfunctory citations, using a combination of textual and external
features. Abu-Jbara et al. [1] and Jha et al. [9] addressed both
polarity and purpose classi�cation with an SVM employing an
extended set of features such as speculation cues and self-citation
indicators. All of the above models rely on heavy manual feature
design and feature engineering.

Jochim and Schütze [11] �rst applied a deep learningmodel to the
citation polarity classi�cation. In a domain-adaption se�ing, they
trained a marginalized stacked denoising autoencoders (mSDA)
on product reviews and used it to predict the polarity of citations.
To the best of our knowledge, there have been no a�empts to
apply convolutional neural networks, achieving state-of-the-art
performance on a range of text classi�cation tasks [12, 14, 20, 21],
to citation context analysis.

3 CLASSIFICATION MODELS
Our primary goal is to avoid tedious feature engineering for citation
context classi�cation. Here we describe two models that satisfy
this criteria which we evaluated in our experiments.

3.1 Convolutional Neural Network
CNNs [17], introduced to the NLP community by Collobert and
Weston [4], exhibit state-of-the-art performance on a range of text
classi�cation tasks [14, 20, 21]. CNN is a feed-forward neural net-
work consisting of one or more convolution layers. Each convo-
lution layer consists of a set of �lters. When applied to textual
data, convolutions of �lters and text slices – matrices produced by
sequentially sliding a window of size k over the embedding-based
representation of text – are computed. Each convolution layer is
followed by a pooling layer, which subsamples the output of the
convolution layer (e.g., by taking N maximal values). �is archi-
tecture allows the network to capture local aspects, i.e. the most
informative k-grams in text for the task. We use a CNN with a
single convolution and single max-pooling layer. We use recti�ed
linear unit activation and optimize the network parameters with
the RMSprop algorithm [23] to minimize the cross-entropy loss.

To be subdued to a CNN, texts must be represented as numerical
vectors, which can be achieved by using word embeddings [18, 19,
inter alia]. More precisely, each text is represented as a matrix of

size N ⇥ L, where N is the length of the text (in number of tokens)
and L is the length of word embeddings. Because CNN expects the
same number of features for all texts, all instances must be of equal
length. In our experiments we set N to the length of the longest text
in the dataset and pad all other sentences with a special padding
token to which we assign a random embedding vector.

3.2 SVM with Embedding Features
Having in mind (1) that SVM has been widely used for citation
polarity and purpose classi�cation and (2) that by employing word
embeddings we may still avoid manual feature engineering, we
decided to compare CNNs performance to that of an SVM model
using the semantic embedding of the text. We compute the embed-
ding of the text as weighted continuous bag of words (WCBOW)
aggregation of word embeddings Mikolov et al. [18]:

WCBOW (t1, . . . , tk ) =
1Õk

i=1 ai

k’
i=1

ai�(ti )

where ti is the i-th token of a k-token-long text, �(ti ) is the word
embedding of the token ti , and ai is the TF-IDF weight of the token,
computed on the training set, which we use in order to re�ect the
relative informativeness of words. �is results in a single aggregate
embedding vector for each text, which we then feed to the SVM
classi�er with an RBF kernel.

3.3 General vs. Domain-Speci�c Word
Embeddings

Both above models use word embeddings – semantic vectors that
capture the meaning of words. In all our experiments, we classify
texts from a speci�c domain of scienti�c publications from the
area of natural language processing and computational linguistics
(cf. Section 4), which is a sub-domain of all scienti�c publications. A
research question that naturally arises is whether domain-speci�c
word embeddings, i.e., word embeddings trained on large in-domain
corpus, would lead to be�er classi�cation performance than gen-
eral word embeddings. In order to investigate the e�ects of using
domain-speci�c embeddings, we evaluate three di�erent variants of
the above two models, employing (1) general word embeddings, (2)
embeddings trained on domain corpora consisting of scienti�c pub-
lications from various research �elds, and (3) embeddings trained
on the narrowly in-domain corpus of publications from the area of
natural language processing and computational linguistics.

4 DATA
We brie�y describe the corpora used to train di�erent word embed-
dings and the classi�cation dataset used in our experiments.

4.1 Word Embeddings Corpora
We experimented with 50-dimensional GloVe embeddings [19]
trained on three di�erent corpora: (1) general domain Wikipedia +
GigaWord corpus,2 (2) the CORE corpus of scienti�c publications
aggregated from Open Access repositories and journals [16], and
(3) the Association for Computational Linguistics (ACL) Reference

2h�p://nlp.stanford.edu/data/glove.6B.zip
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Dataset Size (in tokens)

Wikipedia + GigaWord 6,000,000,000
CORE corpus 2,530,738,678
ACL Reference Corpus 81,365,802

Table 1: Corpora used to train word embeddings.

Classi�cation Label Proportion

Polarity positive 32.6%
negative 12.4%
neutral 55.0%

Purpose criticizing 16.3%
comparison 8.1%

use 18.0%
substantiating 8.0%

basis 5.3%
neutral 44.3%

Table 2: Dataset distributions of citation labels.

Corpus3 [3]. We compare the sizes of these three corpora in Table 1.
�e CORE corpus is signi�cantly larger than the ACL Reference Cor-
pus, as it aggregates publications over various disciplines, whereas
the ACL Reference Corpus only contains publications related to
computational linguistics and natural language processing.

4.2 Citation Classi�cation Corpus
We used the dataset from [1] and [9] in our experiments. It contains
3,271 citation context instances, each consisting of four sentences:
the sentence citing a given target reference, one preceding sen-
tence, and two following sentences. All of these contexts have
been annotated for citation polarity and citation purpose. Citation
polarity was annotated with one of three labels –positive, negative,
and neutral. On the other hand, one of six categories had to be
chosen as a label for citation purpose: criticism, comparison, use,
substantiation, basis, and neutral. �e distribution of instances over
the di�erent categories for both polarity and purpose are shown
in Table 2. In addition to assigning polarity and purpose labels to
citation contexts, annotators labeled each sentence of the context
as being informative for the polarity and polarity classi�cation or
not. We observe that the dataset is heavily skewed towards the
least informative neutral class for both classi�cation dimensions.

5 EVALUATION
We describe the experimental se�ing, the model variants and base-
lines we evaluate, and the performance levels they reach.

5.1 Models and Baselines
Our primary goal was to evaluate the two models from Section 3,
as models that do not require any feature design e�ort: CNN and
SVM with aggregate text embedding. For each of these two models
we evaluated three variants, using word embeddings trained on

3Version 20160301, ParsCit structured XML.

Model P R F1

Majority 18.3 33.3 23.6
Jha et al. [9] 67.1 70.6 68.8
SVM TF-IDF 77.9 76.3 77.1

SVM General emb. 79.1 74.0 76.5
SVM CORE emb. 83.2 72.1 75.3
SVM ACL emb. 81.3 75.4 77.3

CNN General emb. 82.0 75.9 78.8
CNN CORE emb. 81.8 76.1 78.8
CNN ACL emb. 81.2 75.4 78.2

Table 3: Polarity classi�cation results.

Model P R F1

Majority 7.4 16.7 10.3
Jha et al. [9] 54.9 62.5 58.4
SVM TF-IDF 74.3 70.9 72.6

SVM General emb. 86.8 64.7 74.1
SVM CORE emb. 81.7 66.2 73.1
SVM ACL emb. 81.7 66.0 73.0

CNN General emb. 79.9 68.2 73.6
CNN CORE emb. 80.8 68.8 74.3
CNN ACL emb. 76.7 68.4 72.3

Table 4: Purpose classi�cation results.

di�erent corpora: General, CORE, and ACL (cf. Section 4). We
coupled our models with the following baselines:
(1) Given the heavily skewed label distributions for both classi�ca-
tion tasks, we use the majority class baseline predicting the most
frequent class in the training set (neutral in both cases);
(2) We also evaluate a linear SVM with discrete TF-IDF-weighted
bag-of-words features. Comparing this baselinewith the embedding-
based SVM model provides insights into usefulness of word embed-
dings for citation classi�cation tasks;
(3) Finally, we report the performance of the SVM model with a
rich set of features from [9], since they evaluate their model on the
same dataset [1].

5.2 Experimental Setting
In order to make our results comparable to those reported in [9],
we evaluate the models in 10-fold cross validation (CV) se�ing.
More precisely, for each model we execute a nested CV evaluation,
where for each fold of the outer CV loop, we optimize model’s
hyperparameters via grid search in the inner CV. �e reported
performance is macro-averaged over the folds of the outer CV loop.

5.3 Results
Polarity classi�cation results are shown in Table 3 and purpose
classi�cation results in Table 4. Surprisingly, the linear SVM
with bag-of-word features is a very competitive baseline on both
classi�cation tasks. More surprisingly, it performs 8% (polarity) and
14% (purpose) be�er than the SVM model from Jha et al. [9], which
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Classi�cation Model Context P R F1

Polarity CNN CORE emb. Citing Sentence 81.8 76.1 78.8
CNN CORE emb. Gold Standard 85.8 78.7 82.1
SVM CORE emb Citing Sentence 83.2 72.1 75.3
SVM CORE emb. Gold Standard 84.1 75.6 79.6

Purpose CNN CORE emb. Citing Sentence 80.8 68.8 74.3
CNN CORE emb. Gold Standard 85.2 73.3 78.9
SVM CORE emb. Citing Sentence 81.7 66.2 73.1
SVM CORE emb. Gold Standard 84.8 69.2 76.2

Table 5: Impact of the choice of the citation context on the
classi�cation results.

uses a much richer set of features. �is is probably because Jha et al.
[9], reportedly, do not optimize their model’s hyperparameters.
Also, the SVM models with embedding features do not outperform
the linear SVM baseline, regardless of the corpus used to train the
embeddings. All this suggests that citation polarity and purpose
are strongly indicated by a particular set of lexical clues.

�e CNN model has a slight edge over all SVM-based models,
but the performance gains performance are much lower than for
other text classi�cation tasks [14, 21]. In-domain specialization of
embeddings does not seem to play a signi�cantly positive role. �e
best results are obtained using the super-domain CORE embeddings.
�e in-domain ACL embeddings are probably of lower quality due
to much smaller size of the ACL Reference Corpus.

Table 5 shows the classi�cation results of SVM and CNN with
CORE embedding features when using di�erent context sizes. As it
can be seen, for all models the performance improves by around 3%
to 4% when the gold standard citation context is taken into account
instead of only the directly citing sentence. �is suggests that a
�ne grained identi�cation of the citation context is an important
step that needs to precede the classi�cation tasks at hand.

When analyzing the results in depth we noticed that for both
classi�cation tasks most errors that happened correspond to a mis-
classi�cation of a citation context into the category neutral. �is
type of error occurred in 61% of all the misclassi�cations that hap-
pened in the purpose classi�cation and in 59% of the errors which
occurred when classifying polarity. �is may be due to the skew-
ness of the benchmark dataset we used. Another frequent error
that happened in the purpose classi�cation is the misclassi�cation
of an instance of the category basis as use, which is probably due to
the high interrelation of those two purposes. Similarly, all purpose
classi�ers o�en confused the instances of the class comparison with
instances of the class criticizing.

6 CONCLUSION
Existing models for semantic classi�cation of citations rely on ex-
tensive feature engineering. In this work, we investigated two
models that do not require any manual feature design – CNN and
SVM with aggregate text embeddings – on citation polarity and
citation purpose classi�cation tasks. �e investigated models out-
perform previously reported results on a benchmark dataset by a
wide margin. However, only CNN models slightly outperform a
simple linear SVM with lexical features. �is suggests that lexical

clues alone quite strongly indicate citation polarity and purpose.
We also �nd that using domain-speci�c word embeddings provides
no observable performance boost.
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