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a b s t r a c t

In this paper we introduce the concept of a BDA-generated model of the genetic code which is based on
binary dichotomic algorithms (BDAs). A BDA-generated model is based on binary dichotomic algorithms
(BDAs). Such a BDA partitions the set of 64 codons into two disjoint classes of size 32 each and provides
a generalization of known partitions like the Rumer dichotomy. We investigate what partitions can be
generated when a set of different BDAs is applied sequentially to the set of codons. The search revealed
that these models are able to generate code tables with very different numbers of classes ranging from 2
to 64. We have analyzed whether there are models that map the codons to their amino acids. A perfect
matching is not possible. However, we present models that describe the standard genetic code with
only few errors. There are also models that map all 64 codons uniquely to 64 classes showing that BDAs
can be used to identify codons precisely. This could serve as a basis for further mathematical analysis
using coding theory, for example. The hypothesis that BDAs might reflect a molecular mechanism taking
place in the decoding center of the ribosome is discussed. The scan demonstrated that binary dichotomic
partitions are able to model different aspects of the genetic code very well.

The search was performed with our tool Beady-A. This software is freely available at
http://mi.informatik.hs-mannheim.de/beady-a. It requires a JVM version 6 or higher.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Almost all organisms use the same mapping of codons to amino
acids – the universal genetic code (see Fig. 1(b)), which maps 64
codons to only 20 amino acid species (and 3 stop signals). There
are 18 alternative genetic code tables annotated which are slightly
different in the assignment of the codons (Osawa et al., 1992; Jukes
and Osawa, 1993).1 Nevertheless, these minor variations largely
preserve the redundancy in amino acid assignment. Hence the
degeneracy of orthologous genetic codes is highly conserved. It
has been shown that there are more than 1084 different genetic
codes with the same degeneracy and it was demonstrated that the
genetic code is far from being random (Koonin and Novozhilov,
2009). Besides several hypotheses that explain why the genetic
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1 See also online at http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.
cgi?mode=c.

code could have been developed as it is (i. e. the frozen acci-
dent theory developed by Crick (Crick, 1968; Sella and Ardell,
2006), the stereo-chemical-theory (originally proposed by Gamow,
1954), the co-evolution theory (Wong, 1975; Giulio, 2008) or the
adaptive theory (Haig and Hurst, 1991; Freeland et al., 2003),
ongoing research still addresses the question whether its struc-
ture reflects informational properties useful for error detection or
frame retrieval in translation (Crick et al., 1957; Arquès and Michel,
1996; Seligmann, 2007; Guilloux and Jestin, 2012). Recent mathe-
matical models addressed the structure of the genetic code using
dichotomic partitions or dichotomic classes, classifying the codons
into two partitions of equal size. The dichotomic classes and their
non-random correlations were proposed to contribute to frame
retrieval and error detection properties, underpinning a robustness
of the code (Giannerini, 2012).

The Russian theoretical physicist Rumer was the first to intro-
duce dichotomic partitions in 1966 (Rumer, 1966). He found that
the set of codons can be divided into two subsets of the same
cardinality such that (1) for codons belonging to the first subset
(represented as digit 0 or class H0) the first two positions within
a codon are sufficient to determine the corresponding amino acid
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Fig. 1. (a) Visual representation of the Rumer-class algorithm (adapted from Fimmel
et al., 2013). (b) Universal genetic code and three overlapping dichotomic parti-
tions generating 8 classes (shown in different colors). A cell contains the dichotomic
classes (from left to right) Rumer, Parity and Complementary. 0: H0, 1: H1. All digits
1 in the Rumer’s class are set in bold. (c) Parameters for the three BDAs. Am: Amino,
etc. as explained in the text. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

while (2) for codons from the second dichotomic class (digit 1, H1)
the third position is indispensable for it (see Fig. 1(b)). These par-
titions have also the remarkable feature that a codon of one class
can be swapped to the other class and vice versa by a bijective
transformation of their bases: A↔C and U↔G. Rumer also gave an
algorithmic description how the Rumer-class can be determined
for a given codon (see Fig. 1(a)).

Gonzalez and co-authors adopted Rumer’s algorithm to their
model of the genetic code and defined in an analogous way two
algorithms for the so called Parity and Hidden classes which
matches in a natural way to their model of the genetic code
(Gonzalez, 2008). The model of the genetic code developed in
Gonzalez (2008) uses a non-power representation of numbers to
explain how 64 codons can be mapped to 20 amino acids. Each
codon is uniquely represented as a binary string of length 6 (refer-
ring to 26 = 64 codons). The Parity class, for instance, is defined as
the parity of the associated binary string. It was demonstrated that
there are short-range correlations of the Parity and Hidden classes
in genes (Giannerini, 2012; Gonzalez et al., 2008).

Interestingly, each of the three algorithms for the calculation
of the Rumer-, Parity- and Hidden-class derive their decision from
biochemical properties of the bases involved. The algorithms dis-
tinguish whether a base is of type purine (denoted as R = {A, G}) or
pyrimidine (Y = {C, U}), keto (K = {U, G} or amino (Am = (C, A), or
strong (S = {C, G}) or weak (W = {A, U}).

As an example, Fig. 1(a) shows a visual representation of the
algorithm producing the Rumer classes. As one can see, the algo-
rithm first determines if the second base of the codon belongs to
the amino or keto class and, if not, it considers the first base of the
codon and asks whether it is strong or weak.

The algorithmic approach for the definition of dichotomic parti-
tions was recently further investigated and generalized in Fimmel
et al. (2013) where the concept of a Binary Dichotomic Algo-
rithm (in short: BDA) was introduced and shown to have a
tentative biological counterpart in the decoding center of the ribo-
some. It has been shown that different dichotomic partitions can
be linked to the chemical nature of the nucleoside bases which
carry the information in the codon (e. g. S/W, Keto/amino; R/Y)
(Giannerini (2012)). From an evolutionary point of view this could
be of relevance for a decoding process, given that these chemical
dichotomies are readily discriminable by biochemical as well as
inorganic means, and therefore could provide a simple basis for
deciphering the information.

Apparently, partitions and in particular dichotomic partitions
like Rumer play an important role in models of the genetic code
and it is therefore interesting to study BDAs in general (Hervé
Seligmann, 2014; Seligmann, 2014; Demeshkina et al., 2012). The
decisions which the algorithms make are binary, i. e. this is a very
simple and yet elegant way to make a decision which can be per-
formed on a biological entity like the ribosome or while recognizing
a tRNA and its cognate amino acid. This paper investigates the
possibility of explaining the structure of the genetic code as an over-
lapping of dichotomic partitions as generated by a set of BDAs. For
instance, Fig. 1(b) shows a code table where the overlapping of the
Rumer, Parity and Complementary partition leads to an assignment
of the codons into 8 classes represented as a binary string of size 3.

Herein, we propose a new way to create novel models for the
genetic code based on overlappings of dichotomic partitions. We
will analyze by means of the software Beady-A what kind of code
tables of this kind can be generated and whether they are suitable
to model aspects of the genetic code. To this aim, different scan
algorithms were developed to find solutions suitable to model the
genetic code through BDAs.

2. Mathematical background

2.1. Preliminary definitions and notations

In the sequel B= A,C,G,U(T) will denote the set of four nucleotide
bases Uracil (Thymine), Cytosine, Adenine, and Guanine, in short
U(T), C, A, G. A codon is an element of B3, e.g. ACU.

In Fimmel et al. (2013) the notion of binary dichotomic algo-
rithms was given taking sequences of nucleotide bases of arbitrary
length as input. For our investigations, it suffices to restrict our-
selves to codons, i. e. sequences of length three. Let us recall the
definition of a BDA in this special case:

Definition 2.1. An ordered pair (H0, H1) of subsets H0, H1 ⊆ B3 is
called a dichotomic partition of B3 if H0∩H1 =∅, H0 ∪H1 = B3 and
|H0|= |H1 |.

In other words, the set of 64 codons is divided into two disjoint
subsets of equal size as shown in Fig. 1(b). The next definition shows
the algorithmic way to obtain dichotomic partitions as discussed in
Fimmel et al. (2013).

Definition 2.2. Let (H0, H1) be a dichotomic partition of B3. We
call an algorithm A a binary dichotomic algorithm (BDA) with
dichotomic partition (H0, H1) if it follows the following scheme:

A chooses two indices i1, i2 ∈ {1, 2, 3} with i1 /= i2, an ordered
pair of different nucleotide bases Q1 = (B1, B2) and a subset Q2 ⊂ B
with |Q2|= 2. Now A classifies c = (b1, b2, b3) ∈ B3 as follows:
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(A) if bi1 ∈ {B1, B2}, then

(c ∈ H0 if bi1 = B1, ) and (c ∈ H1 if bi1 = B2, )

(B) if bi1 /∈ {B1, B2}, then

(c ∈ H0 if bi2 ∈ Q2, ) and (c ∈ H1 if bi2 /∈ Q2.)

We will call Q1 and Q2 the questions of A, i1, i2 ∈ {1, 2, 3} the
indices of A, and the pair (H0, H1) a dichotomic partition of B3

generated by the binary dichotomic algorithm A.
The dichotomic classes Rumer, Parity and Complementary can

be obtained by choosing the questions and the positions shown in
Fig. 1(c). We will see in the next section that a BDA uniquely defines
a dichotomic partition.

2.2. Characteristics of BDA

In this section we are interested in elementary properties of
generalized BDAs. We first remark that a given BDA can also be
understood as a functionA : B3 → {0, 1} just by assigning to a given
codon c ∈ B3 the number 0 if it is classified for the class H0 by the
BDA and the number 1 otherwise.

A(c) =
{

0 , c ∈ H0

1 , c ∈ H1

Obviously, the definition of a dichotomic partition shows some
symmetry since partitions (H0, H1) and (H1, H0) are formally dif-
ferent but essentially give the same information. We therefore
introduce the notion of a complementary BDA.

Definition 2.3. LetA be a given BDA. We will call a BDA Ā the com-
plementary BDA of A if the following property holds for all codons
c:

Ā(c) = 1− A(c)

The next proposition shows how to determine the complemen-
tary BDA of a given BDA.

Proposition 1. LetA be a BDA with questions Q1 = (B1, B2) (B1 /= B2)
and Q2 = {B3, B4} with B3 /= B4. Then Q̄1 = (B2, B1) and Q̄2 = B\Q2
create the complementary BDA Ā of A.

Proof. The reverse order of Q̄1 = (B2, B1) implies that the parti-
tions are swapped when question 1 is used. If question 2 is used, the
complementary set of Q2 is taken to reverse the partitions according
to the definition. �

Clearly, being interested in the number of different sets of
dichotomic classes one can omit the complementary BDA once we
have the BDA. The following observation will be helpful. Let A be
a BDA with questions Q1 = (B1, B2) (B1 /= B2) and Q2 = {B3, B4} with
B3 /= B4, then the class H0 contains exactly 16 codons with B1 at
position i1 and exactly 8 codons with B3 and 8 codons with B4 at
position i2, respectively, but not B1 at position i1. We conclude the
following

Proposition 2. There are 432 different BDAs which generate 432
different dichotomic partitions and 216 different sets of dichotomic
classes.

Proof. Question 1 requires two different nucleotides where the
order is important. Hence, there are 4 ·3 =12 possibilities. Question
2 requires two different nucleotides where the order is not impor-
tant as they form a set. There are (4 ·3)/2 =6 possibilities. Q1 and
Q2 are using two different nucleotide positions i1 and i2 (i1 /= i2).

So there are 3 ·2 =6 possibilities. Thus we have 12 ·6 ·6 = 432 BDAs.
However, a BDA and its complementary BDA generate the same
classes, so the number of sets of dichotomic classes is only half of
the size. In total we have 432/2 =216 combinations.

It remains to show that two different BDAs generate two dif-
ferent dichotomic partitions or equivalently, that a dichotomic
partition can only be uniquely generated by a BDA. Thus, assume
that (H0, H1) is a dichotomic partition generated by some BDA A.
Then for some position i1 and some bases B1, B2 the set H0 contains
all possible 16 codons with B1 at position i1 but no codon with B2 at
position i1. Clearly, this means that A has to have (B1, B2) as ques-
tion 1 at position i1. The remaining 16 codons of H0 that do not have
B1 at position i1 must then have one of the remaining bases from
B\{B1, B2} at position i1. Now there must be a unique position i2 and
bases B3, B4 such that among these 16 codons there are exactly 8
with B3 at position i2 and 8 with bases B4 at position i2. This implies
that A must have {B3, B4} as question 2 at position i2. �

In the sequel we will denote the set of all BDAs byD and the set of
all “different” BDAs, i. e. equivalence classes consisting of two BDAs
(which are complementary to each other) generating the same set
of dichotomic classes, by D∗.
Remark 3. Obviously, the number of all possibilities to divide the
set of codons into ordered pairs of disjoint subsets of the same

size (dichotomic classes) is

(
64
32

)
≈5 ·1017. In particular, the num-

ber of dichotomic partitions generated by BDAs (432) is extremely
smaller than the number of dichotomic partitions in general.

2.3. BDA-generated models of the genetic code

In this section we will introduce a model of the genetic code that
is generated by a sequence of BDAs. Such a model is defined in the
following:

Definition 2.4. Let k ∈ N. We will call a mapping

M : B3 → {0, 1}k

a BDA-generated model of the genetic code of grade k if there exist
k different BDAs A1, . . .,Ak such that for all c ∈ B3 the following
equation holds:

M(c) = (A1(c),A2(c), . . .,Ak(c))

Each BDA-generated model of grade k assigns to a codon c ∈ B3

a binary string of length k such that the j-th coordinate is 1 if c is
classified by Aj for the dichotomic class H1 and 0 if c is classified
by Aj for the dichotomic class H0. The idea behind such models is
to apply successively several BDAs to the set of codons and hence
partition it into a disjoint union of subsets. For instance, Fig. 1(b)
shows the model generated by the three BDAs for Rumer, Parity and
Complementary. In particular, only for k≥6 it is possible (but not
guaranteed) that a mapping representing a BDA-generated model
is bijective, hence classifies the codons uniquely, or for k = 5 is the
minimum number of BDAs required to create 20 or 21 classes for an
amino acid mapping. We will show in the sequel that indeed there
are plenty of combinations of six BDAs such that a codon can be
uniquely identified just by telling to which dichotomic classes gen-
erated by the six BDAs it belongs and we will also show a mapping
for amino acids.

Remark 4. It is easy to see that for a given k ∈ N there are c(k) =(
432

k

)
different BDA-generated models of grade k. For instance,

c(2) = 93096, c(3) = 13343760 and c(6)
9 ·1013.
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Fig. 2. Example of a tree T with a maximum BDA-set size of kd = 4. Path D217 con-
sisting of the nodes (BDAs) 1, 2 may have an invalid model. Thus, the subtree (red,
dashed line) can be truncated.

We now define an equivalence relation on the set of BDA-
generated models of the genetic code since obviously permuting
the order of the BDAs A1, . . .,Ak that generate a model formally
gives a new model but essentially contains the same information
about the codons.

Let us consider the symmetric group (Sk, ◦) where

Sk := {� : {1, . . ., k} → {1, . . ., k} : � is bijective}
and ◦ denotes the composition of mappings.

Lemma 2.5. Let M : B3 → {0, 1}k be a BDA-generated model of the
genetic code of grade k, generated by the BDAs A1, . . .,Ak , and let
� ∈ Sk. Then the mapping M� : B3 → {0, 1}k with

M�(c) = (A�(1)(c),A�(2)(c), . . .,A�(k)(c))

is also a BDA-generated model of the genetic code of the same grade k.

Proof. Let M be generated by the BDAs Aj, j ∈ {1, ..., k}. Then M�

is generated by the BDAs A�(j), j ∈ {1, ..., k}. �

By the above Lemma 2.5 the symmetric group defines an equiv-
alence relation on the set of BDA-generated models by saying that
two BDA-generated models M and N of the same grade k are equiv-
alent if there exists a permutation � ∈ Sk such that M = N� . For our
purposes, it will be mostly enough to restrict ourselves to equiv-
alence classes of BDA-generated models and all the algorithms
developed are designed under this assumption. We are now inter-
ested in the redundancy of BDA-generated models or equivalently,
in the number of classes (subsets) into which they partition the set
of codons.

Definition 2.6. Let M : B3 → {0, 1}k be a BDA-generated model
of the genetic code of grade k. We will say that two codons c1
and c2 belong to the same class if their images under M are equal,
i. e.M(c1) = M(c2). The class of a codon c, i. e. the set of all codons that
belong to the same class as c, is denoted by class(c). Moreover, by
|M|we will denote the number of classes of M, i. e.|M |=| {class(c) :
c ∈ B3} |.

3. Scan algorithm as implemented in Beady-A

A purely mathematical analysis of the BDA-generated models
appears to be too difficult by the large variety of such models.
Instead, we have developed the software Beady-A for the analysis.

3.1. Description of the algorithm

Our software is implemented in Scala Odersky et al. (2010) and
uses the BioJava framework Holland et al. (2008), e. g. for the genetic
code tables integration. The overall idea of this so-called scan algo-
rithm is to iterate over all possible BDA-sets S = D1, D2, . . ., (Di ⊆ D)
where the size ki = |Di| of any BDA-set must not exceed an intended

maximal size kd. For each BDA-set Di its model Mi is computed. Any
interesting model out of the S is called a solution which is reported.
What is considered to be a solution can be defined. For example, a
solution could be a model that maps the 64 codons to the 20 amino
acids or to 64 dichotomic partitions. Let P = {1, 2, . . ., 216} where
each number represents a BDA Ai and where complementary BDAs
are left out. All possible models of grade k≤ kd can be written as
S = {℘ (P) : |℘ (P)|� kd}with ℘ as the power set. Thus, our algorithm
computes the power set of all subsets of maximal size kd.

Algorithm 1. Scan algorithm.

function create(D, h, w)
�Arguments: D: A set of BDAs, h: begin of BDA-range, w: scan parameter

if |D|< kd then �Max. scan depth reached?
for i← h. . .|D∗|do �Ignore already computed BDAs
A← D∗i �A (new) candidate
if A /∈ D then

�Check if it is not already in the bda set.
�Might happen as we can pass in fixed BDAs.

D′ ← D ∪A
(valid, wn)← createModel(D′ , w)
if valid then create(D′ , i + 1, wn)
end if �Configuration valid: search is continued

end if
end for

end if
end function

S is created by calling recursively the create-function as shown
in listing 1 (see also listings 2 and 3 in appendix). The first call of
create is either initialized with an empty BDA-set or with a list of
fixed BDAs. Fixed BDAs are BDAs that should always be included in
the model because they are supposed to be of interest. With each
recursion a new BDA A is added to D. Each BDA is numbered from
1 to 216 and is represented as an array index (details see listing
2 in appendix). On recursion level 1, the BDA-numbers run from
i = 1, 2, . . ., 216, on level 2 from i = 2, 3, . . ., 216, etc. in order to
get a set and thus to avoid a redundant assignment of BDAs. While
creating S within the function create, it is checked that any fixed
BDA is skipped and not included twice in S. The recursion always
terminates if the maximum BDA-set size kd has been reached. The
construction of S can be considered as a tree T where each node
represents a BDA and each path from the root element to an inner
node or leaf is a BDA-set D. The root node represents an empty
BDA-set. The height of T is kd + 1. An example is shown in Fig. 2.

As seen in Remark 4, the number of models generated by a BDA-
set of size k is extremely huge.

Lemma 5. The scan algorithm has a run-time complexity of O(k32
d

).

Proof. The run-time depends exclusively on the maximum size
of the BDA-set (kd). Each node can be considered as a path rep-
resenting a BDA-set D and the root note represents an empty set.
T includes all lists of size 0, 1, 2, . . . kd. In total we have N(kd) =∑kd

k=0c(k) nodes (see Remark 4). A simple calculation shows that
N(kd) ≤ 216 · k32

d
holds for all 1≤ kd ≤216. �

The algorithm has a polynomial run-time complexity but this
search problem is in real life hard to tackle because of the huge
exponent. Luckily, in practice the run-time can be improved: A cur-
rent BDA-set D of size k < kd may lead to an invalid model, i. e. the
model may violate an intended structure. If so, D can be dropped
and more recursive calls are not necessary. Note that the function
createModel in listing 3 in the appendix returns true or false to indi-
cate whether a D is a valid configuration or not. The computation
of the subtree in T starting with the path D can be skipped. Thus,
the list of all possible BDAs S can be shortened when these ‘ille-
gal’ combinations are not considered while creating all the valid
combinations.
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3.2. Types of scan algorithms

Depending on the addressed question and the solution in mind,
the behavior of the scan may differ. From now on, cd denotes the
intended number of classes for a solution (i. e. 2≤ cd ≤64). A so-
called scan parameter w is passed in into every recursive create
function. It can be used to decide whether a configuration is valid or
not. Function createModel can be parametrized with the functions
isValidConfig and isSolution. isValidConfig(M, w) indicates whether
the model M is a valid configuration. If not, the recursive scan is ter-
minated and the current BDA of the BDA-set is skipped. Parameter
w can be used to decide if the configuration is valid. isSolution(M)
indicates whether the model M is a solution or not.

3.2.1. IncreaseScan
IncreaseScan is the most generic scan type. However, even in

the generic case, subtrees of T can be pruned. A configuration D
can always be left out if the number of classes c has not increased
relative to its previous BDA-set D*. The scan parameter w is the
number of classes c. The scanning is continued when the following
condition is true:

isValidConfig(M, w) := |M|> w

An intended solution could be a model with a specific number
of classes cd:

isSolution(M) := (|M| = cd)

3.2.2. Power2Scan
Power2Scan can be used when the number of classes |M| should

be a power-of-2-number depending on the size kd. A solution is:

isSolution(M) := (|M| = 2kd )

For instance, kd = 6 can be used when 64 classes should be gen-
erated. The scanning is continued when the following condition is
true:

isValidConfig(M, w) := (|M| = 2k)

Thus, with every step (or for each k = 1, 2, . . ., kd) the number
of classes must be doubled. Note that the number of codons of a
class is not considered here. Also, the scan parameter w is not used.
Clearly, Power2Scan truncates invalid subtrees very efficiently.

3.2.3. AminoCompatibilityScan (error measurement)
AminoCompatibilityScan scans for solutions where the classes

are to some extent compatible with amino acids. I. e. a perfect solu-
tion contains 21 classes and all codons of the same class refer to the
same amino acid or the stop signal.

In Section 4.2 we will show (compare Proposition 7) that it is
impossible to find a BDA-generated model which maps all amino
acids exactly. For this reason we will define an error E that indicates
how good the codon’s classes of a BDA-generated model match the
20 amino acid classes

Let C⊆ {0, 1}k be a subset of all BDA-classes of length k and
˛ : A→C be a mapping of amino acids to the BDA-classes generated
by a BDA-set of size k. Example: ˛(Pro) = {11, 10} and ˛(Phe) = {10}
for A1 = Rumer, A2 = Parity. Here a Proline (Pro) is mapped to two
classes whereas Phenylalanine (Phe) is only mapped to one class.
Clearly, a BDA-set can be ignored if an amino acid is coded in more
than one class, i. e. ∃a : |˛(a)|> 1. Two distinct BDA-classes can never
be merged when applying more BDAs. Hence, the amino acid a (like
Proline in the example above) will always be coded by two differ-
ent classes which is a contradiction to the intended genetic code
table. We like to tolerate some errors with the compatibility and
introduce an error E (0≤E < 1) which indicates how compatible a

code table is compared to the amino acid mappings. E = 0 means no
error and thus full compatibility.

Given a model M, we list for every amino acid a the list Ca of
codons associated with it. The length of Ca, written as |Ca|, is the
degeneracy of a. Note that, if the model M would map the corre-
spondence between the codons and their amino acids exactly, Ca

would only contain elements of the same class. However, because
of the impossibility to construct such a model (compare Proposition
7 again), Ca may contain elements of different classes. We will con-
sider in each case all classes which contain the elements of Ca,
identify the class with the biggest group of the elements of Ca and
label this class as the correct one for the given amino acid a. Let ua

be the number of elements of Ca in the correct class for the amino
acid a. We define the error for the amino acid a in the model M as

Ea = |Ca| − ua

64

and the overall error for all codons in the model M as

E =
∑

a

Ea.

Let Ed (0≤Ed) be the maximal tolerated compatibility error. A
model is called Ed-compatible or short compatible if E≤Ed. For
instance, if we set Ed : =0 it means that only solutions which are
perfectly compatible are searched.

The scan algorithm can be constrained like this. A solution is:

isSolution(M) := (Miscompatible ∧ |M| = cd)

The scanning is continued when the following condition is true:

isValidConfig(M, w) := (Miscompatible ∧ w < |M| ≤ cd)

Thus, as long as any “interim” model (|M|< ck) is compatible, the
search is continued.

3.2.4. Search space
The search space for BDA-generated models is extremely large.

We have limited the bit-length in our analysis mostly to values
k≤10. Yet, the number of interesting models which were detected
is still quite high. Scan methods based on the power-2-approach
have a good run-time performance (in the scale of seconds to
minutes on a regular work station) whereas others are very time
consuming (days to weeks). We have also implemented a concur-
rent version of the scan-algorithm which is not described in detail
in this paper. Depending on the scan-type, the search can be accel-
erated linearly by the number of processors or cores available.

4. Results and discussion

4.1. Possible number of classes |M|

As a first analysis we are interested in the power of BDA-sets.
In particular, it was analyzed if it is possible to create models with
any number of classes ranging from 2 to 64. For instance, the model
shown in Fig. 1(b), which uses the Rumer, Parity and Complemen-
tary BDAs, divides the 64 codons into 8 classes. IncreaseScan was
modified in the following way: The algorithm maintains a set R of
numbers that was initialized with R = {2, 3, . . ., 64}. If a model has
a number of classes |M| ∈R a solution is found and |M| is removed
from R.

A scan with a maximum BDA-set-size of kd = 6 revealed that all
class-numbers |M| are possible except for |M| ∈ {3, 51, 53, 54, 55, 57,
58, 59, 61, 62, 63}. When allowing an additional BDA, i. e. setting
kd = 7, all class numbers except for |M| ∈ {3, 63} could be generated.
This led to the question whether 3 and 63 are special class-numbers
which can never be achieved. Indeed, we now show that
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Proposition 6. It is not possible to create 3 or 63 classes with BDAs.

The proof is available in the appendix. An important outcome
of this analysis is that it is possible to divide the set of codons into
|M|= 21, |M|= 20, |M|= 24 or |M|= 64 classes. 21 classes could be used
to classify the 20 amino acids and the stop signal. If we assume that
the class of a stop codon does not matter as the tRNA is missing, 20
classes could also be considered. As we will see, 24 classes are also
of interest as the model by Gonzalez (2008) also uses 24 classes for
the amino acids. Here, amino acids of degeneracy 6 are split into
two classes of size 4 and 2. Finally, a bijective mapping between
64 codons and their 64 classes is also relevant since this gives an
algorithmic way to determine a codon uniquely by using BDAs. We
will discuss later whether a BDA mechanism can actually be per-
formed by the ribosome. Moreover, an exact matching of codons
and classes of the model will provide new mathematical models
that allow applying results and techniques from coding theory, for
instance.

4.2. Mapping 64 codons to 20 amino acids and one stop signal
with k≥5 BDAs

AminoCompatibilityScan was used to look for models that map
the codons to 20 amino acids and the stop signal. The number of
BDAs has to be k≥5 in order to get 21 or more generally 20 to 24
classes. Interestingly, our search never came across a solution for a
class number of |M|= 21 that only used kd = 5 BDAs. Instead, k = 6 is
the minimum number of BDAs required. Our analysis shows that no
solutions could be found for a compatibility error Ed = 0 and a class
number |M|= 21, no matter what genetic code table was used. A
further analysis revealed that the nature of a BDA does not allow us
to correctly create classes that respect the amino acid distribution
of the last quartet row (codons of the type Gxx) in the code table.
Indeed, the following proposition shows that

Proposition 7. There is no BDA-generated model such that codons of
each class map a unique amino acid and codons from different classes
different amino acids.

Proof. Let us assume that there is a BDA-generated model such
that codons of each class correspond to the same amino acid and
codons from different classes correspond to different amino acids.
We consider all codons of the form GXY with X, Y ∈ B. For a given
X /= A, the four codons of the form GXY with Y ∈ B code the same
amino acid (Val, Ala and Gly). Thus, there must exist one BDA A
from the model producing a dichotomic partition (H0, H1) such that
A classifies the codons corresponding to the amino acids Val, Ala
and Gly to one of the classes H0 or H1, respectively but distributes
the codons of the form GAY equally into both classes. Now assume
that i1 = 1 for A. Then question Q1 can not contain G since then all
codons of the form GAY would be classified to the same class – a
contradiction. However, in the other case question Q2 then either
classifies all codons of the form GAY to the same class (if i2 = 2) or
does not classify the codons corresponding to the amino acids Val,
Ala and Gly to the same class, respectively (if i2 = 3) - a contradiction.
Now, let us assume that i1 = 2. Then question Q1 can not contain A
since otherwise the four codons of the form GAY would be classified
to the same class - a contradiction. If A is not in Q1, then similar
arguments as above lead to a contradiction. Finally, if i1 = 3, then
question Q1 already divides the codons corresponding to the amino
acids Val, Ala and Gly to two classes – a contradiction. �

When the maximal compatibility error Ed was set to a value
greater than 0 and the number of classes were allowed to be in
a range from 20 to 24, we obtained BDA generated models that
are almost able to partition the amino acids correctly. For a class
number of |M|= 24 the minimum error is E = 0.171875 = 11/64, indi-
cating that 11 codons do not correctly match their amino acids or

Table 1
24 classes generated by seven BDAs including Rumer with E = 11/64.

stop signal. Here several different models exist and Table 1 depicts
an example of such a model that has 24 classes generated by 7 BDAs.
Note that this partition includes the Rumer dichotomy.

All codons of the second and third column, e. g. those of type
xCx or xAx are correctly mapped to their amino acids. The code
table is incorrect for Glycine (Gly, codons GGx) as this 4-degeneracy
amino acid is split into two classes 0111111 and 0111110. This is an
example of Proposition 7. Although their classes are different, they
only differ in one digit. Also, the 6-degeneracy amino acids Leucine
(Leu) and Serine (Ser) are incorrectly assigned to two classes of size
2 and 4: Leucine is divided into the classes 1111010 and 0010000
and Serine is divided into the classes 0111101 and 1000111. The
6-degeneracy amino acid Arginine (Arg, codons CGx and AGx) is
even split into three classes 0111001, 0111000 and 1000110 each
of size 2. Finally, Methionine (Met) was assigned to the same class
as Isoleucine (Ile). These exceptions of having four more classes and
one merged lead to a class number of 24 instead of 21. The class for
the stop signal UGA is the same class as Tryptophan (Trp). However,
this incorrect classification could be ignored as there is no tRNA for
the stop signal codon UGA.

We have analyzed how likely such an optimal model is. As the
overall number of models is extremely huge, we have randomly
picked 5000 models out of the set of models that generate |M|= 24
classes and have k = 5 to 9 different BDAs. The distribution of the
E values is shown in Fig. 3 on the left. The likelihood P observed
for a model with E = 11/64 was P < 0.0005. However, when Rumer
is included as a fixed BDA and the size is set to k = 7 (as in Table 1),
optimal models are observed (cf. 3, right). Note that the mean E
value is shifted from 0.5312 towards 0.3281 when Rumer is applied.
This again indicates that Rumer might play a special role.

The dichotomic partition Parity was never selected by our scan
algorithm while looking for solutions with Ed = 0.2. That is because
Parity partitions the codons in a way that is not suitable for the
amino acid assignment. As seen in Fig. 1(b), Parity splits the quar-
tets of codons that have the same first and second base into two
classes of size 3 and 1. However, the standard genetic code mostly
maps those codons to the same amino acid or to two species
but only one time to 3 and 1 (Isoleucine and Methionine). Thus,
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Fig. 3. Distributions of the compatibility error E for 5000 random models that have |M|= 24 classes. The bin size is 1/64. Left: k = 5, 6, 7, 8 or 9 randomly chosen BDAs are
used. Right: Rumer-BDA is always included in a model plus 6 randomly chosen BDAs. The dashed line shows the value for the optimal model E = 11/64 = 0.171875.

Table 2
|M|= 64 classes generated by six BDAs including Rumer.

Parity leads to an increase of the compatibility error E. Our scan also
never reported a solution where Rumer-BDA and Complementary-
BDA were included as fixed BDAs and the compatibility error was
E≤11/64.

4.3. Mapping 64 codons to 64 classes with k≥6 BDAs

As seen in Section 4.1, it is possible to create 64 classes, i. e. each
codon can match a class uniquely. The analysis can be done quite
quickly with Power2Scan. The scan showed that there are 53856
solutions for a BDA-set of size k = 6. An example that includes the
Rumer-BDA is shown in Table 2.

As the BDAs Rumer, Parity and Complementary play a special
role in the mathematical modeling of the genetic code, it was
analyzed how many solutions exist that contain one of the three
specific BDAs or even combinations of them. There exist no solu-
tions for any combinations of two or more specific BDAs when the
BDA-set size is restricted to kd = 6. Interestingly, there are always
only 36 BDAs used (out of |D∗| = 216 possible) when one of the
special BDAs is included. The BDA approach seems to generate
symmetrical solutions.

It is not possible to create 64 classes that include Rumer, Par-
ity and Complementary with kd = 6 BDAs. However, it is possible

Table 3
64 classes generated by 7 BDAs that include Rumer, Parity and Complementary.

with kd = 7 as shown in Table 3. It remains to be shown why adding
redundancy enables the integration of more fixed BDA.

4.4. Reading head compatible BDAs

Another approach to screen for interesting BDAs is to consider
functional aspects of the decoding process occurring in the decod-
ing center of the ribosome.

A correct Watson-Crick base-pairing between the codon and
the tRNA anticodon in the first two bases of the codon are essen-
tial for the decoding process (Schmeing and Ramakrishnan, 2009).
Functional and structural evidences indicate that in these two pos-
itions the interactions made by universally conserved bases of the
16S ribosomal RNA closely monitor base-pairing geometry dur-
ing decoding (Ogle et al., 2001). In particular, A1492 and A1493
form a reading-head structure able to monitor the correct base-
pairing of the first two bases of the codon, through readout of the
minor-groove of the codon-anticodon mini-helix, forming locally a
triple-helix. These interactions appear to govern domain closure of
the 30S subunit (Ogle et al., 2002), accelerating the forwards steps
in decoding (Gromadski and Rodnina, 2004).
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The evidence of minor-groove inspection of the codon-
anticodon mini-helix by the A1492-A1493 reading head bears
interesting implications: because of nucleoside biochemistry, only
two possible hydrogen-bonding profiles are formed in the minor
groove out of the four different possible base pairs for each position.
In particular, weak base-pairs (either A-U or U-A) are indistin-
guishable one from another in the minor groove. Strong base-pairs
(either C-G or G-C) are also indistinguishable one from another in
the minor groove, but display a different profile of hydrogen bonds
compared to weak base pairs (Masliah et al., 2013).

From a theoretical point of view, the reading head formed by
A1492-A1493 could dichotomically discriminate between weak (A,
U) and strong (C,G) base-pairs both in the first and in the sec-
ond position of codon-anticodon mini-helix. Thus, we can consider
BDAs that inquire about the weak or strong nature of the codon in
position 1 and/or 2 as being biologically meaningful in decoding.

The flexibility of spatial organization in the third position of
the codon constitutes another key ingredient in decoding, deter-
mining acceptance of degeneracy and wobble-pairing (Demeshkina
et al., 2012, 2013). Chemical modifications of the anticodon stem
loop and in the wobble position consistently affect maintenance
of the translational reading frame (Atkins and Björk, 2009), as
well as codon selection (Agris et al., 2007). Isoaccepting tRNAs
that are able to decode different codons, regardless of standard
Watson-Crick base-pairing rules, are an illuminating example to
date (Voorhees et al., 2013). This indicates that the decoding pro-
cess is influenced by conformational read-out of the third codon
base, rather than depending on a strict complementarity of the
codon-anticodon pairing. In fact, all amino acids with degener-
acy two are discriminated based on purine or pyrimidine in the
third codon position. Purines (A, G) and pyrimidines (U, C) can
neither be reciprocally distinguished from the energy of hydro-
gen bonding with the complementary base (weak/strong), nor from
the hydrogen bond acceptor/donor properties (keto/amino). Thus,
together with the BDAs mimicking the reading-head properties of
the A-triple minihelix described before, we can regard BDAs that
ask for the conformation of the nucleoside (purine/pyrimidine R/Y)
in the third position of the codon as functionally purposeful and

Table 4
64 classes generated by 7 reading-head-compatible BDAs.

ribosome-compatible. We will refer jointly to the latter as reading-
head BDAs.

Interestingly, we were able to map all codons of the genetic code
to 64 classes using only reading-head BDAs (see Table 4), suggesting
that the algorithm may be useful to faithfully reproduce and further
explore the logic behind the decoding process.

5. Conclusions

In this work a new approach for a mathematical description of
the structure of the genetic code is presented, based on the concept
of binary dichotomic algorithms (BDAs) as introduced in Fimmel
et al. (2013). The analysis shows that through BDAs it is possible
to divide 64 codons into different classes by binary decisions. This
is not naturally a result you may expect as BDAs are only able to
partition the 64 codons in a very limited way compared to the over-
all possible dichotomic partitions (see Remark 3). A binary yes-no
decision is the most parsimonious classification nature can apply. In
this respect a BDA-set represents a very concise and efficient way
for classification: in fact, an overlapping of binary decisions can
create 21 (or with tolerated errors: 24) classes. Moreover, although
there exists no BDA-generated model that exactly classifies codons
according to their amino acids, BDAs are able to create an informa-
tional structure which is relatively close to the universal genetic
code table.

It is remarkable how universal and flexible BDA-generated mod-
els are. These models may help to understand the structure of the
genetic code and its singular degeneracy. For instance, Shaul and
co-workers (Shaul et al., 2010) have analyzed, by means of classi-
fication and regression trees (CART), the acceptor stems of tRNAs
and their role in classifying the amino acid. A similar analysis could
be performed for the genetic code table to derive classifiers similar
to BDAs, or even BDA-compatible classifiers.

The scans revealed that there are relevant models which have to
have more BDAs than necessary in order to divide the codons into
classes which represent amino acids or 64 classes. This leads us to
the question if such redundancy may be used within the genetic
code for some sort of error detection or even error correction. In
analogy, a similar use of the redundancy has been proposed for
circular codes, putative remnants of primeval comma-free codes
detected in coding sequences (Michel, 2012; Fimmel et al., 2013).
Similar considerations on the circularity of the rRNA nucleotide
sequences in the decoding center of the ribosome were recently
elaborated (Soufi and Michel, 2014). Although a perfect mapping
to amino acids is not possible we speculate that codons may be
grouped to amino acids such that codons of each group have a
smaller Hamming distance than codons between the groups. If we,
for example, assume a greater BDA-set of size, let us say, k = 12
for the classification of the 20 amino acids, it might happen that
the model clusters amino acids whose binary representations have
a considerably smaller Hamming distance within this group than
between different amino acids.

In conclusion, we have developed an algorithm that scans for
significant models of the genetic code generated by BDAs. The find-
ings show that there are models that describe the degeneracy of the
code with only little error. There are also models that map all 64
codons uniquely to 64 classes, including only BDAs that may reflect
biological processes taking place in the ribosome. This indicates
that BDAs could serve as a basis for further theoretical analyses or
implementations of coding theory to study of the genetic code.
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Appendix

Pseudo-Code: Listings 2 and 3 show additional pseudo code of
the scan-algorithm.

Algorithm 2. Declaration of all BDAs that are used.

nucs← Array(Adenine, Uracil, Cytosine, Guanine) �Four nucleotides

Q1Nucs← List((0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3))
� Index for array nucs. Just half of all combinations as the missing

nucleotide-tuples would lead to a complement partition.

Q2Nucs← List((0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3))
�Index for array nucs. Only have half of all elements as they define a set.

positions← List((0, 1), (0, 2), (1, 2), (1, 0), (2, 0), (2, 1))

�Positions of base within codon where Q1 and Q2 is asked

D∗ ← createAllBdas() �216 different BDAs

function createAllBdas
bdaList← empty list of BDAs
for all (i1, i2)←positions and Q1←Q1Nucs and Q2←Q2Nucs do

A← BDA with positions (i1, i2) and questions Q1 and Q2

Add A to bdaList
end for
return bdaList as array

end function

Algorithm 3. Creation of a model M. Details are omitted.

function createModel(D, w)
M← Create new model using the BDA set D
valid← isValidConfig(M, w) �Check if model is valid
if valid and isSolution(M) then

output(M) �Report this solution
end if
return (valid, scanParameter(M))

end function

Proof for Proposition 6

Proof. Assume that we have applied a list (A1, . . ., Ak) of k BDAs
to obtain the partition B3 =⋃n

i=1Xi which is different from the one
produced by the list (A1, . . ., Ak−1). Let us first deal with the case
of three classes, i. e.n = 3. W. l. o. g. the list (A1, . . ., Ak−1) produces
the partition B3 = Y1 ∪ Y2 and assume that the last BDA Ak has the
dichotomic partition (H0, H1). It follows that

B3 = X1 ∪ X2 ∪ X3 = (Y1 ∩H0) ∪ (Y1 ∩H1) ∪ (Y2 ∩H0) ∪ (Y2 ∩H1)

and hence we must have that one of the intersections (Yi ∩Hj) is the
empty set, say Y1∩H0 =∅. But then Y1⊆H1 and since both sets have
size 32 we conclude Y1 = H1 and consequently Y2 = H0 which means
that the list (A1, . . ., Ak) produces the partition Y1 ∪Y2 - a contra-
diction. Now assume that n = 63. Necessarily, the list (A1, . . ., Ak−1)

must then produce a partition B3 =
⋃32

i=1Yi of 32 disjoint subsets Yi

since each BDA can at most divide a set into two sets. Clearly, each
set Yi must then have 2 elements by cardinality reasons. Thus only
one of the sets Yi does not get split when applying the last BDA Ak,
say Y1. It follows that each set H0 ∩Yi and H1 ∩Yi for i = 2, . . ., 32
has exactly 1 element. W. l. o. g. assume that H0∩Y1 =∅ and hence
H1 ∩Y1 = Y1. But then H1 =

⋃32
i=2(H1 ∩ Yi) ∪ Y1 has 33 elements - a

contradiction! �
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