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A B S T R A C T

The revelation of compositional principles of the organization of long DNA sequences is one of the crucial tasks
in the study of biosystems. This paper is devoted to the analysis of compositional differences between real DNA
sequences and Markov-like randomly generated similar sequences. We formulate, among other things, a gen-
eralization of Chargaff's second rule and verify it empirically on DNA sequences of five model organisms taken
from Genbank. Moreover, we apply the same frequency analysis to simulated sequences. When comparing the
afore mentioned – real and random – sequences, significant similarities, on the one hand, as well as essential
differences between them, on the other hand, are revealed and described. The significance and possible origin of
these differences, including those from the viewpoint of maximum informativeness of genetic texts, is discussed.
Besides, the paper discusses the question of what is a “long” DNA sequence and quantifies the choice of length.
More precisely, the standard deviations of relative frequencies of bases stabilize from the length of approxi-
mately 100 000 bases, whereas the deviations are about three times as large at the length of approximately 25
000 bases.

1. Introduction

It is the harmony of the diverse parts, their symmetry, their happy
balance; in a word it is all that introduces order, all that gives unity,
that permits us to see clearly and to comprehend at once both the
ensemble and the details. Henri Poincaré

In the last few years, huge amounts of genetic data from different
organisms have become available. In view of this, the importance to
reveal hidden construction principles and symmetries in long DNA se-
quences (for comparison, the DNA text of the human genome consists of
approximately 3 billions of nucleotide bases) is increasing permanently.
The following quotation, although quite old, describes the current si-
tuation to the point (Fickett and Burks, 1989): “What will we have
when these genomic sequences are determined? … We are in the po-
sition of Johann Kepler when he first began looking for patterns in the
volumes of data that Tycho Brahe had spent his life accumulating. We
have the program that runs the cellular machinery, but we know very
little about how to read it.”

Since the middle of last century, the so-called Chargaff's rules have
been known (Chargaff et al., 1952; Chargaff, 1971). The first rule holds

that a double-stranded DNA molecule globally contains equally pyr-
imidine and purine bases and, more specifically, that the amount of
guanine (purine) should be equal to cytosine (pyrimidine) and the
amount of adenine (purine) should be equal to thymine (pyrimidine).
This rule was theoretically confirmed by the double-helix model of the
DNA by Watson and Crick (1953). The second rule states that the same
parity is approximately valid for each of the two long DNA strands
alone. According to Albrecht-Buehler (2006), this rule applies to the
eukaryotic chromosomes, the bacterial chromosomes, the double
stranded DNA viral genomes, and the archaeal chromosomes provided
they are long enough. However, within the scientific community there
is no generally accepted explanation for this rule yet (compare Shporer
et al. (2016) and Rapoport and Trifonov (2012)). Perez extended in
Perez (2010) Chargaff's second rule to codons: more precisely, for the
sequences divided into triplets (codons) the parity of complementary
bases takes place in each of these three positions. Petoukhov suggested
in Petoukhov (2017) a generalization of Chargaff's second rule and an
extension to the approach of Perez for all sizes n of n-plets at each of the
n positions (see definition in Section 2.1). This was empirically proven
for n ≤ 5. Shporer et al. (2016) investigated, in following Prabhu's ideas
(Prabhu, 1993), the parity of k-nucleotides and their inverted
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complementary k-nucleotides in long DNA-sequences: “Inversion Sym-
metry (IS): the counts of a k-mer of nucleotides on a chromosomal
strand are almost equal to those of its inverse (reverse-complement)
string”. For k = 1 it is equivalent to the validity of Chargaff's second
rule. Yamagishi (2017) investigated the inversion symmetry very
deeply and some explanative hypotheses for it are formulated.

A useful review of publications from different authors on Chargaff's
second parity rule (CSPR) and its possible origin is given by Rosandic
et al. (2016). In particular, the work of Rapoport and Trifonov (2012)
emphasizes that this rule may be maintained in nature by alternating
sequence segments with different signs of deviation from parity. Al-
ternatively, it was suggested that CSPR would probably exist from the
very beginning of genome evolution. Concerning the fundamental
question on evolution of genomes and possible “grammar” rules in
them, one should note the following. “Genomes are not static collec-
tions of DNA materials. Various biochemical and cellular processes –
including point mutation, recombination, gene conversion, replication
slippage, DNA repair, translocation, imprinting, and horizontal transfer
– constantly act on genomes and drive the genomes to evolve dyna-
mically. … Present genomes can be viewed as a snapshot of an ongoing
genome evolution process ….” (Zhou and Mishra, 2004). Assuming
symmetries arising from primitive genomes could shed light on the
origin of genomes, and even on the origin of life (Zhou and Mishra,
2004; Zhang and Huang, 2010; Sobottka and Hart, 2011).

Different chromosomes of a biological species can greatly differ in
their length, characteristics and quantities of genes within them, the
cytogenetic bands (which show the biochemical specificity of the dif-
ferent parts of chromosomes), etc. However, Chargaff's second rule and
its generalizations are performed almost identically for different chro-
mosomes (see for example Okamura et al. (2007)). It was noted that the
CSPR can reveal general properties common to all species and have
remarkable implications of some unknown mechanism that seems to be
present (Albrecht-Buehler, 2006; Rapoport and Trifonov, 2012). The
work by Rosandic et al. (2016) proposes that DNA growth might be
viewed as being programmed from start by non-local natural symmetry
laws of DNA creation; it considers “interplay of DNA language and
symmetry forcing – as a possible simple but magnificent aspect for the
code of life”.

Mascher et al. (2013) revalidated Chargaff's second rule using the
genomes of 16 different organisms including mammals, plants and in-
vertebrates. A so-called skew-measure (relative difference of base's
frequencies) was proposed in order to quantify the accuracy of this rule.
In this paper, we generalize this skew-measure by considering it for
subsequences of a sequence of nucleotide bases which are uniformly
distributed, i.e. have fixed distances n = 1, 2, 3, … between their bases
within the entire sequence. This generalization of Chargaff's second rule
is empirically validated for up to about n = 50 following the approach
from Petoukhov (2017). Then the results are compared with randomly
generated chromosomes similar to those of the analyzed organisms in
order to understand the construction principles of long DNA sequences.
Moreover, the question is addressed whether long DNA sequences are
able to convey maximal information due to minimal correlations
amongst parts. As known, the base composition in various parts of DNA-
sequences is very different, in particular in regions with genes and here
in introns and exons. The findings by Nikolaou and Almirantis (2006)
indicate that the replication process plays a major role in the shaping of
the genome structure. The useful method of the skew as introduced by
Mascher et al. (2013) reveals variations of frequencies of DNA nu-
cleotides in different parts of long DNA-sequences. This enables a
comparison of the validity of Chargaff's second rule in each of these
parts. This is also consistent with the results of the work of Arqués and
Michel (1990a,b) and Michel (1986). This method will be applied in the
following for a new analytical approach to study long DNA-sequences.

The n-plet skew analysis is performed by means of the R package
abcd (Analysis of Base Composition of long DNA sequences). This
package is part of the software suite Genetic Analysis Toolkit (GCAT)

(Fimmel et al., 2018; Kraljic et al., 2018) and will be available as open
source on Github at https://github.com/informatik-mannheim/abcd-R-
package.

2. Methods

2.1. Notations and definitions

Let us denote the nucleotide bases alphabet by

B = A C G T U: { , , , ( )}

whose letters A, C, G and T(U) stand for Adenine, Cytosine, Guanine and
Thymine (Uracil), respectively. Thus the alphabet consists of four let-
ters and its powers = N N N{ : }i

2
1 2 and = N N N N{ : }i

3
1 2 3

contain all dinucleotides and all trinucleotides, the latter being the co-
dons. For an arbitrary n we will call elements of

= …N N N N{ : }n
n i1 2 n-nucleotides or, equivalently, n-plets.

Definition 1. Let N M n, , and X * a sequence of
nucleotide bases. We will denote as

1 Xn the sequence X divided into n-plets, |Xn| the number of n-plets in
Xn;

2

F X N( ; )

the absolute frequency (the number of occurrences) of the nucleo-
tide base N in X,

F X N k( ; , )n

the absolute frequency of the nucleotide base N in the k-th position
(1 ≤ k ≤ n) of each n-plet in Xn;

3

=P X N F X N
X

( ; ) ( ; )
| |

the relative frequency (probability) of the nucleotide base N in X,

=P X N k F X N k
X

( ; ; ) ( ; ; )
| |n

n

n

the relative frequency (probability) of the nucleotide base N in the k-
th position (1 ≤ k ≤ n) of each n-plet in Xn;

4

=
+

S X n k F X N k F X M k
F X N k F X M k

( , , ) ( ; ; ) ( ; ; )
( ; ; ) ( ; ; )N M

n n

n n

the mononucleotide skews (compare Mascher et al. (2013));
Remark 2. Obviously, we have for all X * and all N M,

1 X1 = X, F1(N, 1) = F(N), P1(N ; 1) = P(N)
2 For all n and 1 ≤ k ≤ n the following inequality takes place:

S n k1 ( , ) 1.N M

Moreover, the equality

=S n k( , ) 0N M

means that the frequencies of the nucleotide bases N and M in the k-
th positions of Xn are exactly equal, the equality

=S n k| ( , )| 1N M

means that one of the bases N or M lacks in the k-th positions of Xn.
3 SN∼M(1, 1) is the skew as defined in Mascher et al. (2013).

2.2. Sequences being analyzed

DNA sequences taken from Genbank were used for the empirical
analysis of the following model organisms (compare Mascher et al.
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(2013) and Petoukhov (2017)):

• Homo sapiens (human). All 22 autosomes and the two allosomes
were analyzed. The genome build is GRCh38.p7 Primary Assembly.
E.g. fasta data for chromosome 1 was downloaded form https://
www.ncbi.nlm.nih.gov/nuccore/NC_000001.11

• Caenorhabditis elegans (a transparent nematode). Chromosomes I to
V and X. E.g. chromosome I https://www.ncbi.nlm.nih.gov/
nuccore/BX284601.5

• Arabidopsis thaliana (thale cress). Chromosomes 1 to 5. E.g. chro-
mosome 1 https://www.ncbi.nlm.nih.gov/nuccore/NC_003070.9

• Oryza sativa Japonica (Japanese rice). Chromosomes 1 to 12. E.g.
chromosome https://www.ncbi.nlm.nih.gov/nuccore/AP008207.2

• Chlamydomonas reinhardtii (single cell green alga). Chromosomes 1
to 12. E.g. chromosome 1 https://www.ncbi.nlm.nih.gov/nuccore/
CM008962.1

2.3. Random generated sequences

We like to compare the n-plet analysis on biological sequences with
random sequences to verify the significance of our findings. On the one
hand, this comparison will help us to understand whether the real ge-
netic sequences behave the same way as random ones referring to the
distribution of single nucleotide bases. On the other hand, the com-
parison should help to assess the importance of the length of a sequence
examined.

As we have very long DNA sequences, local properties in the DNA
like CpG islands, genes or introns and exons cannot be considered. For
simplicity, a Markovian-like random model was used where only
transition probabilities P(N → M) are considered. Here, P(N → M) in-
dicates the probability for a base N to have the base M as a successor. As
an example, the transition probabilities were calculated for the first
chromosome of Homo sapiens and listed in Table 1). The stationary
distribution for this chromosome can be derived from the transition
probabilities. Let =p p p p p( , , , )A T C G

T(1) (1) (1) (1) (1) be a vector of probabilities
for the occurrence of the four bases A, T, C, G in the first position of the
sequence ( + + + =p p p p 1A T C G

(1) (1) (1) (1) ). The second base has then the
probabilities

=p p· ,(2) (1)

where T is the matrix with the transitional probabilities (see Table 1).
Using this Markov-like approach we get

= … =p p p· · ·( · )n n( ) (1) (1)

for n matrix multiplications. Table 2 shows the stationary results ap-
proximated by 100 iterations ( 100). These probabilities are identical to
the relative frequencies for each base counted in human chromosome 1.

A random chromosome has the same number of bases like the
biological one and starts with a random base. Then the missing bases
are added step by step according to the transition probabilities.

2.4. Sample-size normalized skews

It is likely that the deviation of the skew increases with the size n of
the n-plets. This is because for larger n the number of n-plets decreases
and accordingly the sample size. Here we elaborate how the skews for

different n-plet sizes can be compared amongst each other.
A sample-size normalized skew analysis is where the sample size is

the same for all n-plet sizes (n = 1, 2, …, n*) where n* is the largest n-
plet size. X| |n* is the minimal number of n-plets that every data series
has (compare Fig. 1 ). We will consider subsequences Y n n( , *) of succes-
sive bases of X with length:

= =Y l n n X n| | ( , *) | |·n n
n

( , *) *

The position p in X of the first nucleotide in Y n n( , *) starts at a mul-
tiple of n, i.e. p = (R · n) + 1 with 0 ≤ R < |Xn|. A preliminary version
of a sample-size normalized skew is then defined as:

S Y n k( , , )N M
n n( , *)

However, this definition has some drawbacks. Let us point out that l
(n, n*) is smaller than the entire sequence length for n < n* and, thus, a
sequence of such a length covers then only a fraction of the entire se-
quence. For instance, human chromosome 1 in the version used in this
paper has 248,956,422 bases and for n* = 50 the sample size is
|X50| = 4, 979, 128. The equivalent sequence length for n-plets of size
n = 2 is then |X50| · 2 =9, 958, 256 bases which is n/n* = 2/50 = 4% of
chromosome 1. To balance this situation, we consider several sub-
sequences Yi

n n( , *) with 1 ≤ i ≤ r that start at random positions in X but
whose start index is still a multiple of n. The number of subsequences r
is set to r =⌊10 · n*/n ⌋ in order to cover the entire sequence in average
10 times and to have a good chance to cover the entire sequence.

As we will see in the result Section 3.3 the skews will vary sig-
nificantly in different parts of a chromosome. For this reason, the skews
are averaged. This is defined as the sample-size normalized skew:

=
=

S X n k
r

S Y n k¯ ( , , ) 1 ( , , )N M
i

r

N M i
n n

1

( , *)

In particular, the standard deviation of all k positions (1 ≤ k ≤ n) of
S X n k¯ ( , , )N M is later applied in Section 3.1 and Fig. 3.

2.5. Splitting a sequence into equal-sized partitions

While our approach with the n-plets was splitting a sequence
bottom-up we will proceed contrary now: The sequence analyzed will
be cut into smaller equal-sized partitions and each partition will be
examined separately. The question we are trying to answer is whether
different regions of the DNA have the same characteristics, i.e. does the
first half of a sequence have the same structure as the second half and so
on. The entire sequence is split into P (P ≥ 1) subsequences (or
partitions) of equal length |X|/P. In this paper P is a power of two in
order to have always the same partition boundaries.

3. Results and discussion

3.1. Generalized Chargaff's second rule

The first question we will address is (compare also Petoukhov

Table 1
Transition probabilities as measured in human chromosome 1. N is a base and
M the next base in sequence.

P(N → M) A T C G

A 0.327 0.255 0.173 0.245
T 0.216 0.328 0.206 0.250
C 0.349 0.342 0.259 0.049
G 0.288 0.242 0.211 0.260

Table 2
Derived stationary distribution for the
random model based on transition prob-
abilities as defined in Table 1. Chargaff's
second parity rule is confirmed here as the
frequencies of Adenine (A) and Thymine (T)
are almost identical as well as the fre-
quencies for Cytosine (C) and Guanine (G).

Base Probability

A 0.291
T 0.292
C 0.208
G 0.209
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(2017)): For all genetic sequences X which are long enough and all
n n k n, 50, 1 the following parity rules apply:

1 SA∼T(n, k) ≈ 0,
2 SG∼C(n, k) ≈ 0 .

This observation was confirmed in the analysis of all five organisms.
The complete data for all species is shown in the appendix. As an ex-
ample we will give the results for human chromosome 1 in Fig. 2 (a).
For every n-plet size there are n values for the position (positional
skews). The mean values for the positional skews are always close to 0
no matter what the n-plet size is. Next the same analysis was performed
on a random sequence for human chromosome 1 (see methods in Sec-
tion 2.3). The results are shown in Fig. 2 (b). Clearly, the box and
whisker plots look very similar. This is true for all organisms and their
chromosomes analyzed in the appendix.

However, the data also reveals that the distributions of the posi-
tional skews spread more for larger n-plet sizes. As mentioned in
Section 2.4 this could be explained with the less sample size in the skew
calculation. Fig. 3 shows the standard deviation of normalized skews for
the biological and a random sequence of human chromosome 1. Ap-
parently, the deviation of the skews still depends on the n-plet size
when normalized skews S X n k¯ ( , , )N M are considered. The same holds
for the random sequence of chromosome 1.

3.2. Long sequences

Another question is: What does it mean – “long DNA sequences”? In
the literature, we find similar but not exactly superposable views on this
matter:

• The article by Prabhu (1993) says “all sequences longer than 50,000
nucleotides”;

• The article by Albrecht-Buehler (2006) states: “… a sufficiently long
(> 100 kilobases) strand of genomic DNA that contains N copies of a

mono- or oligonucleotide, also contains N copies of its reverse
complementary mono- or oligonucleotide on the same strand”;

• The article by Rapoport and Trifonov (2012) says: “Although the
initial definition of this rule referred to mononucleotides, further
works (Albrecht-Buehler, 2006; Prabhu, 1993; Qi and Cuticchia,
2001) demonstrated that it can be formulated more generally: ’… a
sufficiently long (> 100 kilobases) strand of genomic DNA that
contains N copies of a mono- or oligonucleotide, also contains N
copies of its reverse complementary mono- or oligonucleotideon the
same strand” (Albrecht-Buehler (2006));

• A good review on Chargaff's second rule at the website http://www.
epigenetics.com.ua/?p=165 says in Russian1 : “the accuracy of the
equality holds on lengths of up to 70–100 thousand base pairs –
independently, coding regions there or not – and then begins to
subside”.

In this article, we quantify the choice of the minimal length of a
sequence using the standard deviations of their corresponding skews as
a measure. Fig. 4 shows the results for “shorter” sequences, i.e. se-
quences with a length of maximal 500,000 bases and Fig. 5 shows the
results for “longer” sequences up to 10 mio. bases. Again the biological
data in human chromosome 1 is compared with a random human
chromosome 1 sequence. A shortened sequence in the real chromosome
is a fragment that starts at a position equal to 5% of the total chro-
mosome length and has the intended length, e.g. 25,000 bases. The
offset of 5% ensures that bases classified as N (unknown) at the be-
ginning of the fasta file are ignored. Those unclassified bases are often
found at the beginning of a chromosome.

The findings in Figs. 4 and 5 reveal that the standard deviation of
the skews in the real and random human chromosome 1 do not differ
significantly. The n-plet size here was set to 20 but the effect is also
visible for other values of n. However, there are two sizes where the

Fig. 1. Example for the computation of sample-size normalized skews with n* = 3. This sequence has 12 bases (separated by minor ticks). (a) For an n-plet size of 3
we get four 3-plets (major ticks). The only subsequence Y(3,3) is the entire sequence. (b) For an n-plet size of 2 we get six 2-plets. Any subsequence Yi

(2,3) has the length
of eight bases. As these subsequences do not cover the entire sequence, many subsequences with a random start position are chosen. In this example two sub-
sequences (r = 2) are shown. (c) For an n-plet size of 1 we get 12 1-plets, i.e. the bases themselves. Any subsequence Yi

(1,3) has the length of four bases and also a
random start position.

1 Translated by the authors.
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shape of the bar diagram changes: The standard deviation decreases
quickly until a size of about 100,000 bases is reached (cf Fig. 4). Then
the standard deviations remain quite stable and decreases slowly. In a
similar way the same happens at a size of about 2 mio. bases (cf Fig. 5).
Overall the gradient reminds on a negative exponential function (exp
(− x)). It is striking that the standard deviations of skews are dis-
tributed in a fractal-like manner.

The landmark of 100,000 bases confirms the statements listed
above, e.g. from Prabhu (“all sequences longer than 50,000 nucleo-
tides”) and Albrecht-Buehler “(> 100 kilobases)”. The possible 2 mio.
border and the exponential gradient, however, needs further in-
vestigation.

3.3. Partitions

This section shows the findings when a sequence is split into par-
titions as introduced in Section 2.5. As shown in Fig. 6 (a) the A∼T and
C∼G skews are not uniformly distributed over the chromosome (again
human chr. 1).

In contrast, the skews of the randomly generated DNA stayed very
constant at a value very close to the average, barely changing in any
part of the chromosome (cf Fig. 6(b)). The biological chromosomes,
however, had many regions with a larger absolute skew. While the
values for the A∼T skew in chromosome 1 are in the range from −0.08
to 0.08, the value in a randomly generated chromosome 1 are between
8 · 10−3 and 10 · 10−3. This shows that the natural chromosome does
not have a constant pattern, at least when using the genomic skew as a
measure. Another interesting observation is that the A∼T and C∼G

genomic skews do not change in the same pattern. The A∼T skew has a
higher variation than the C∼G skew (cf Fig. 6(a)).

4. Conclusions

In the present work, we are providing a statistical analysis of DNA-
sequences of five model organisms taken from GenBank in order to
better understand their construction principles and are comparing their
compliance with Chargaff's second rule with the behavior of randomly
generated sequences. Chargaff's second rule and questions about the
grammar of biology attract great attention of many authors in the field
of theoretical biology (compare, for instance, Albrecht-Buehler, 2006;
Nikolaou and Almirantis, 2006; Okamura et al., 2007; Patel, 2001;
Perez, 2010; Prabhu, 1993; Rapoport and Trifonov, 2012; Rosandic
et al., 2016; Shporer et al., 2016; Sobottka and Hart, 2011; Yamagishi,
2017; Zhang and Huang, 2010; Zhou and Mishra, 2004). As a con-
sequence of this rule, every long DNA sequence has a certain mathe-
matical characteristic, namely transition probabilities between its
bases. Such transition probabilities can be used to construct a great
number of appropriate random sequences, each of them can be inter-
preted as one of possible models of DNA-texts that also satisfies Char-
gaff's second rule. But it is obvious that real DNA sequences are not
random sequences at all since they, for instance, contain genes where
the order of bases A, C, T and G is very definite. The useful method of
the A∼T- and C∼G-skews (Mascher et al., 2013), which we developed
further in this paper, allows revealing significant similarities, on the
one hand, as well as differences, on the other hand, between a long DNA
sequence and its model random sequence.

Fig. 2. A∼T (left column) and C∼G (right column) skews of n-plets for (a) human chromosome 1 and (b) a random human chromosome 1. The skews look very
similar for the biological and random sequence. The gray diamond shows the mean value. The height of the boxes represents the interquartile range (IQR). The
whiskers are 1.5 · IQR.
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Fig. 3. Standard deviation of all k positions (1 ≤ k ≤ n) of the sample-size normalized skew S X n k¯ ( , , )N M for different n-plet sizes (compare Section 2.4). Left
column: A∼T skews and right column: C∼G skews. Top row (a): human chromosome 1 and bottom row (b): a random human chromosome 1.

Fig. 4. Standard deviation of all 20 positions (1 ≤ k ≤ 20) of the skew SN∼M(X, n = 20, k) for subsequences X of different lengths in the range from 25,000 to
500,000 bases (step wide of 25,000 bases). Left column: A∼T skews and right column: C∼G skews. Top row (a) human chromosome and bottom row (b) random
human chromosome 1.
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Fig. 5. Standard deviation of all 20 positions (1 ≤ k ≤ 20) of the skew SN∼M(X, n = 20, k) for subsequences X of different lengths in the range from 500,000 to 107

bases (step wide of 500,000 bases). Left column: A∼T skews and right column: C∼G skews. Top row (a) human chromosome and bottom row (b) random human
chromosome 1.

Fig. 6. A∼T and C∼G skew in human chromosome 1 compared to the randomly generated DNA divided into 512 partitions. The empty space in the middle of the
chromosome 1 (a) is caused by bases classified as N (unknown) during the sequence assembly.
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The main findings of the study can be summarized in the following
way:

(1) In our work, we represent every DNA sequence as a sequence of n-
plets. We show that each of these sequences of n-plets (at least up to
n=50) satisfies not only Chargaff's second rule but also its gen-
eralization in the following form:
In long sequences of n-plets of single stranded DNA, probabilities of
the nucleotide N in their position k are approximately equal to the
probability of this nucleotide N and at the same time to the prob-
ability of its complementary nucleotide (A ↔ T and C ↔ G, corre-
spondingly) in the DNA sequence of monoplets regardless of values
n and k.
The generalized Chargaff's second rule could be empirically verified
for all subsequences which are uniformly distributed with the
firmly chosen distance n = 1, 2, …, 50 between their bases in the
sequences considered.

(2) In cases of DNA sequences of n-plets, one can also construct their
model random sequences using knowledge about transition prob-
abilities of arrangements of nucleotides A, T, C and G in each of
original long DNA sequences. We reveal that in such random se-
quences the mentioned generalization of the second Chargaff's rule
also holds true. And we can state:
The behavior of uniformly distributed subsequences of a long “real”
DNA-sequence does not show noticeable differences in comparison
with the randomly generated sequences of the same length (com-
pare Fig. 2). This interesting fact can be explained in the following
way: “When there are repetitive structures or correlations amongst
different sections of a message, that reduces its capacity to convey
new information – part of the variables are wasted in repeating
what is already conveyed. Claude Shannon showed that the in-
formation content of a fixed length message is maximized when all
the correlations are eliminated and each of the variables is made as
random as possible.” (Patel, 2001)

(3) Dividing long sequences in equal-sized parts and calculating re-
lative differences of the complementary nucleotide bases (skews)
for each of the parts, we have shown that the behavior of these
skews is significantly different when compared with the corre-
sponding values in randomly generated sequences in all organisms
considered. Moreover, the variation of the A∼T-skews is sig-
nificantly higher than that of the C∼G-skews (compare Fig. 6). An
explanation of this fact can be connected to the hypothesis that
various regions of long DNA sequences play different roles in the
whole genetic informatics and for this reason they possess different
distributions of nucleotides A, T, C and G.

(4) We quantified the notion of a “long DNA-sequence” using the ac-
curacy measure suggested in Mascher et al. (2013). More precisely,
we present how the standard deviations of relative differences
(skews) of the bases A and T and C and G, correspondingly, depend
on the length of the sequence chosen. To be precise, it has been
shown that standard deviations of skews of the complementary
bases stabilize and stay under the mark of about 0.02 if a sequence
contains more than 105 nucleotide bases while the standard de-
viations are about three times bigger when considering sequences
of length, for instance, about 25,000 bases.

With the present study, we hope to shed some light on the darkness
surrounding the construction principles of the DNA. In our opinion, the
findings of this work deserve comprehensive further investigation and
contribute to understanding the “program that runs the cellular ma-
chinery” (Fickett and Burks, 1989).
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Supplementary data associated with this article can be found, in the
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