
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4264591

A Practical Approach to Web Service Discovery and Retrieval

Conference Paper · August 2007

DOI: 10.1109/ICWS.2007.12 · Source: IEEE Xplore

CITATIONS

86
READS

310

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Multi-Level Modeling Research View project

Colin Atkinson

Universität Mannheim

212 PUBLICATIONS 5,724 CITATIONS

SEE PROFILE

Oliver Hummel

Karlsruhe Institute of Technology

56 PUBLICATIONS 704 CITATIONS

SEE PROFILE

All content following this page was uploaded by Oliver Hummel on 23 January 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4264591_A_Practical_Approach_to_Web_Service_Discovery_and_Retrieval?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4264591_A_Practical_Approach_to_Web_Service_Discovery_and_Retrieval?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multi-Level-Modeling-Research?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet-Mannheim?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Karlsruhe-Institute-of-Technology?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-a6e46f8bfbaea53abc29fea226bdcba2-XXX&enrichSource=Y292ZXJQYWdlOzQyNjQ1OTE7QVM6MTAyNzU3ODY4NTA3MTQxQDE0MDE1MTA3OTMyMjM%3D&el=1_x_10&_esc=publicationCoverPdf

A Practical Approach to Web Service Discovery and Retrieval

Colin Atkinson, Philipp Bostan, Oliver Hummel and Dietmar Stoll

Institute of Computer Science, University of Mannheim, 68131 Mannheim, Germany,
{atkinson|bostan|hummel|stoll}@informatik.uni-mannheim.de

Abstract

One of the fundamental pillars of the web service vision is
a brokerage system that enables services to be published
to a searchable repository and later retrieved by potential
users. This is the basic motivation for the UDDI standard,
one of the three standards underpinning current web
service technology. However, this aspect of the
technology has been the least successful, and the few web
sites that today attempt to provide a web service
brokerage facility do so using a simple cataloguing
approach rather than UDDI. In this paper we analyze
why the brokerage aspect of the web service vision has
proven so difficult to realize in practice and outline the
technical difficulties involved in setting up and
maintaining useful repositories of web services. We then
describe a pragmatic approach to web service brokerage
based on automated indexing and discuss the required
technological foundations. We also suggest some ideas
for improving the existing standards to better support this
approach and web service searching in general.

1. Introduction

Although web services have received a great deal of

attention over the last few years, and many companies
have experimented with their use, the expected use of
web services as a medium for B2C and B2B interaction
has failed to take off to the extent expected. Web services
were also touted as a way of boosting software reuse by
encouraging developers to assemble new applications
from reusable parts rather than by writing everything
from scratch. However, examples of serious enterprise
applications that use third party web services to realize
their functionality are few and far between. The vast
majority of web service applications today are within,
rather than between, enterprise boundaries and most web
services are custom built for the purpose in hand. In
effect, therefore, web services are primarily used today as
a convenient middleware and wrapping technology rather
than as the basis for component-based development and
software reuse.

The basic problem is the failure of current
technologies to successfully support the “publish and
find” element of the core web service vision. As

illustrated in Figure 1, which is a standard picture in most
web service literature, the idea of bringing together web
service providers and users via some form of brokerage
service has been a core part of the web service vision
right from the start. After describing the interface to their
web service using WSDL, the idea is that service
providers publish their services in a UDDI [11] repository
by providing appropriate “meta data” such as provider
identity (white pages), a categorization of the provider’s
industry (yellow pages) and technical information
necessary to invoke the service (green pages). Developers
interested in using web services are then meant to be able
to find components suitable for their needs by browsing
the registry or using the keyword-based UDDI search
facilities.

Service
Provider

Service
Broker

(Repository)

Service
Requestor

publish bind

find

(SOAP)(UDDI,
WSDL)

(UDDI,
WSDL)

Figure 1. Standard Web Service Brokerage Model

Attempts to provide public repositories based on this

vision have not been very successful, however. The most
well known attempt was the so called UDDI Business
Registry (UBR) supported by IBM, Microsoft and SAP,
which after several years of service was quietly closed
down early in 2006 because it contained only a few
hundred reachable web services, and the ratio of actual
web services to “junk” was very low [5]. Moreover, the
few web sites that specialized in providing a repository
for web services, such as xmethods.net or
bindingpoint.com do not use UDDI anymore or have also
recently been shut down. Instead, those remaining
typically organize links to web services in a
hierarchically-organized taxonomy designed for manual
browsing. However, we believe the reasons for the failure
of UDDI-based public repositories do not lie in the nature
of the standard per se, but in the philosophy that lies
behind it – namely the brokerage philosophy that relies on

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

human maintenance of the repository and the search
approach based on browsing the repository for
appropriate services.

Our argument in this paper is that concepts from
component-based development and component markets
have been too naively transferred to web services, with
the result that many of the related problems have been
inherited as well. We investigate how recently emerging
“code search” technologies can be adapted to provide a
foundation for solving the problematic “brokerage”
aspect of the web service vision. In section 2, we briefly
review the history of component repository research and
explain what the new generation of code search
technologies add to the picture. In section 3 we then
discuss the issues involved in populating a web service
repository with working artifacts, and how this can be
kept up to date to keep the ratio of working services to
retired services reasonably high. Section 4 describes an
important problem related to the different perspectives
that service providers and service consumers often have
of a given web service, and presents some ideas for
relating these in a systematic way. Finally, in section 5
we present some suggestions for enhancing web service
standards and usage conventions in order to better support
effective web service brokerage mechanisms. Section 6
then concludes with some final remarks.

2. Background

The idea of software reuse based on component
markets has been around for almost forty years [8], and
all the evidence to date suggests that repositories whose
contents are managed by humans are doomed to failure
[3], [4], [10]. Typically, one of two things happens.
Either,

• the quality of their contents quickly degrades

and becomes unusable, or
• the overhead associated with managing and

maintaining the quality of the repository
becomes so large that it far outweighs the
benefits.

However, as Poulin predicted in 1995 [12], the

ultimate result is always the same. Once the size of a
repository managed by humans goes above a certain
threshold (estimated to be about 200 entries) it quickly
becomes unusable in practice. Indeed, the few successful
reuse approaches described in the literature (such as [6])
were based on component libraries with roughly this
number of assets.

Since web services are just another form of component
from a repository point of view, the overall vision of web
services as a vehicle for software reuse and pan-enterprise
application integration has no chance of being realized
without some kind of mechanism for connecting web

service developers to web service consumers. Until an
effective brokerage approach is developed, therefore, web
services will remain little more than a convenient
middleware and wrapping technology. Fortunately, there
is hope for an alternative way of brokering contacts
between service providers and users. Recent advances in
search engine technology coupled with the vast growth of
open source software on the Internet have triggered a lot
of interest in so called “code search engines” that allow
users to search for freely downloadable source code. The
most well known is Google Code Search, made public in
July 2006, but at the time of writing there are well over a
dozen code search engines available on the web.

These “engines” essentially side-step the classic
“component repository problem” [16] because they do not
rely on the human maintenance of content in the way
described above. Instead their ability to deliver useful
search results relies on the sheer volume of code available
on the Internet and the ability of clever algorithms to filter
out “good components” that match a user’s needs.
Although this is a very young technology, and the jury is
still out on which of the currently available search
engines provide a genuinely useful service, it seems likely
that this technology will play an important part in
software engineering in the future. And it also offers a
potential way of side stepping the repository problems
that stand in the way of effective web service brokerage.
However, because web services do not have searchable
code in the traditional sense, using this technology to
provide a search engine for web services presents some
new challenges not faced before.

2.1. The Internet as a Component Repository

The idea of using open source software from the
Internet as a reuse repository is not new. Booch and
Brown [2] already proposed this idea back in 2002, for
example. The idea is superficially very appealing because
the Internet can be viewed as a self regulating repository
that requires no explicit maintenance effort. However,
turning the amorphous mass of information on the
Internet into a practical vehicle for software reuse
depends on three fundamental building blocks –

1. the number of downloadable software assets

being above a “critical mass” needed to offer
a reasonable chance of finding the required
functionality,

2. indexing algorithms and tools that enable a
map of all the available software assets to be
efficiently generated and stored,

3. search algorithms that can effectively filter
out unsuitable components and identify assets
that match a user’s need.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

It has only been within the last two years or so that the
right building blocks have fallen into place and the
development of useful code search engines has become
possible. With the rise of Linux, Mozilla and other
popular open source software millions of source code
files have been made available over the Internet, and
popular open source hosters such as SourceForge store
well over 100,000 projects on their servers. However,
none of these provides sophisticated search functionality
to make this vast amount of code reusable. It is possible
to search for code using clever queries to mainstream
search engines such as Google and Yahoo [5], but since
none of the major engines officially supports the required
filetype filters and only make their programming interface
available in a very limited way, this is not a viable way of
supporting a serious code search facility.

The emergence of the highly efficient, open source
indexing engine, Lucene [7] together with its
accompanying suite of applications such as the Nutch
web crawler, provided a solution to the second
requirement identified above by making available the
tools capable of indexing vast quantities of components.
Many of the recent generation of code search engines use
Lucene as their underlying indexing mechanisms. The
largest four in the order of their appearance on the market
are Koders.com, Krugle.com, merobase.com1 and
Google.com/codesearch (GCS). These engines
demonstrate the feasibility of setting-up and maintaining
indices of millions of software components as shown in
the following table and offer a solution for the first two of
our requirements specified above.

Table 1. Overview of component search engines

 Koders Krugle merobase GCS
number of
comp.

~2.5 M ~6 M ~10 M ~6 M

number of
languages

37 32 48 46

The size estimates shown in the table were obtained by

sampling the code engines with special queries that
essentially ask for “all components in a specific
language”.

2.2. Searching Components and Services

Achieving the third of the above three requirements
(i.e. the query algorithms) is less straightforward
however, and this is one of the main areas of competition
between the search engines. The simplest and most direct
way of searching for particular software components in
Lucene indices (or some other similar technology) is to

1 Merobase is our own code and service search engine.

look for a particular string in the source code as Mili and
Mili [9] pointed out in their survey almost ten years ago,
and all of the engines identified above support this form
of search.

However, the results obtained by such a naive
matching approach are often not very satisfactory because
they fail to take the “meaning” or “role” of different
source elements into account. Thus, a simple string-based
search on the string “stack” will fail to distinguish
between source code modules that are supposed to “be” a
stack and those that simply “use” a stack. Any module
that contains the string stack in its source code will be
returned in the result set regardless of its role.

UDDI repositories [11] also share this philosophy of
keyword-based searching supported by a hierarchical
categorization. However, there are several fundamental
weaknesses with this approach:

• as the number of indexed services grows, the
categories become more generic and less useful in
pin-pointing specific services,

• different users (i.e. publishers and/or consumers)
often adopt different naming conventions and
interpretations of concepts,

• for web service consumers, browsing through lots
of categories and analyzing the capabilities (e.g.
interfaces) of a service manually is a very time
consuming activity,

• for web service publishers, allocating web
services to appropriate categories and advertising
services in an effective way poses a difficult
challenge.

These problems have to a certain extent been

alleviated by the introduction of new concepts in Web 2.0
like tagging which are supposed to make the assignment
of categories to a web service or components a much
more straightforward and light-weight activity. In
particular, the ability to assign multiple tags to web
services is expected to increase the probability that users
can find a suitable web services. Nevertheless, publishing
web services or components based on the manual
assignment of tags remains a hit and miss affair as recent
experiments described in [17] underpin.

A comprehensive overview of component retrieval
techniques is given by [9]. Other approaches that have
been tried in the past include signature matching [13] or
behavior sampling [18] and would in principle be
applicable to web services, too, but they have either been
too inaccurate or too time consuming to be acceptable for
practical use. Furthermore, modern component-based
development approaches such as KobrA [19] recommend
that components be selected based on their specification,
i.e. their interface and corresponding operation
specifications. Our merobase search engine offers two
algorithms that at least support the first part of this

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

postulation when searching for components – i.e., name
based searches, which explicitly match the query string to
the name of indexed components, and full abstraction-
based searches which allow components to be found
based on the elements and names in their interfaces. Our
recent experiments described in more detail in [14] show
that these name and interface-driven forms of search
provide significantly better precision than simple text-
based approaches. For example, the following table
shows a comparison of the various component retrieval
techniques. We performed twelve queries for functional
abstractions such as –

 isLeapYear(int):boolean

on the merobase repository (with almost 4 million Java
source components available) and investigated the top 25
results using the four different retrieval techniques for
their relevance (i.e. whether they delivered the expected
functionality):

Table 2. Comparison of retrieval techniques on a

large component repository

Retrieval
Technique

 Si
gn

at
ur

e
M

at
ch

in
g

K
ey

w
or

d
Se

ar
ch

in
g

N
am

e
M

at
ch

in
g

A
bs

tr
ac

tio
n

M
at

ch
in

g

Average
Precision 1,1% 9,4% 14,9% 39,4%

Standard
Deviation 2% 12% 15% 21%

These results indicate that abstraction matching is in

fact the most precise query technique and hence more
useful than the others for large repositories with millions
of components. In fact these more sophisticated forms of
abstraction search are essential in order to effectively find
web service descriptions using Lucene-like indexing
technology, since by definition web services are
characterized (i.e. described) entirely by their interfaces
and do not contain source code in the traditional sense.
Finally, the algorithms can be fine tuned by giving
additional weight to certain elements extracted from the
query. For example, we are currently experimenting with
improving keyword-based searching by taking elements
such as the component’s URL into account as Google
does for regular web pages.

3. Web Service Indices
Another essential prerequisite for a usable web service

search engine is an index of the currently available web
services on the Internet (based for example on Lucene or
some other similar indexing engine). Although the
creation of source code and web service indices might at
first sight seem rather similar, since they are both
essentially textual descriptions of software components,
in practice they present rather different challenges. This is
because code search engines do not have to rely on
crawling the open web to populate the index. Most of the
software accessible over the Internet is contained in well
known version management repositories (e.g. CVS or
subversion) or is packaged in archive files such as tar, jar
or zip files. It is thus possible to obtain a very sizeable
source code index without doing any actual “crawling” in
the traditional sense, and many of the main code search
engines rely solely on these sources of software for their
content.

Such sources are not available for web services,
however, and hence, finding and validating suitable
content is one of the biggest challenges involved in
generating a web service repository. In the next
subsection we discuss these challenges in more depth and
describe how they can be addressed.

3.1. Index Creation

There are two basic ways in which a web service
brokerage engine can populate its index of web services.
One way is through the explicit publication efforts of web
service developers and the other is by means of some kind
of “crawling” activity which is focused on finding and
analyzing web services. Virtually all attempts to set up
web service search engines to date have been based on
the first approach. As mentioned in the previous section,
most of the public web service brokering services offer
keyword-based search technology in which services are
indexed by category. Crawling for web services presents
some special challenges. Since WSDL files do not
contain the additional metadata specified by UDDI,
browsing by category will not be possible at all and hence
such an index has to focus on the advanced retrieval
techniques described above. Another challenge that is
faced by all web crawling engines is the fact that there is
a certain number of artifacts that can not be reached
directly because they are not referenced in a publicly
visible part of the web. In general, the only practical
solution to this “hidden web” problem is to allow users to
draw a search engine’s attention to hidden “places” by
inputting suitable links. This falls short of full scale web
service publication in the UDDI sense, but is a useful
complement to it.

Crawling the visible web for WSDL descriptions of
web services presents two basic challenges –

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

• recognition of valid WSDL files and dependencies
• detection of properly working web services

Firstly, the recognition of WSDL files when crawling

is hampered by the different file endings used for WSDL
files. By convention, different web service environments
typically use different file endings. While it is easy to
recognize .NET and Java web services, crawling for
WSDL files that end with the file extension “.xml”
presents some difficulties. Since there is a vast number of
XML files on the web, identifying those that are WSDL
files requires significant effort. Basically, all XML files
have to be processed and analyzed even though the
proportion of XML files containing valid WSDL syntax
is very low. The web service standards allow WSDL to be
stored in any arbitrary XML document file, but for
effective crawling this is a real obstacle that can only be
overcome using large-scale crawling infrastructures that
are able to process huge amounts of files. The actual
parsing of WSDL syntax and the resolution of
dependencies in WSDL files can be performed using
open source web service frameworks like Apache Axis
[15] that automatically download embedded WSDL
fragments from external files.

 Secondly, the current ratio of working web services to
published WSDL files on the Internet is very low. To
avoid the indexing of unavailable web service
components it is necessary to check the on-line
availability of the service. Therefore, it makes sense to
test the availability of a potential web service by invoking
one of its methods using randomly generated test data.
This can be stored in a database and used for later
periodic re-evaluation of the web service’s availability.
The receipt of any valid SOAP response can be
interpreted as an indication that the service is at least
responding and can be regarded as being “live”.

3.2. Index Maintenance

Since web services are remotely executed components
that are under the full control of the service provider, they
can be removed from the web at any time, either on a
temporary or on a permanent basis. Index maintenance is
therefore very important to the perceived quality of a web
service repository. Conventional search engines like
Google and Yahoo keep their content up to date by
recrawling the web on a periodic basis. However, for
search engines that index web services this is not possible
because the availability of a WSDL description does not
necessary imply that the web service is on-line and
working. Similarly, the disappearance of a WSDL
description does not imply the disappearance of the web
service itself since WSDL files can be distributed
independently of the hosting web service environment.
Most of the previous attempts to set up web service
repositories did not check the validity of their contents at

all and thus over time they contained more and more
retired services that had been shut down. Without
appropriate automated checking mechanisms, the only
way to remove or mark retired services is to check them
manually. However, this is impractically once the
repository expands beyond a certain size. Therefore, the
collection of web service status information - such as
whether they are working properly, are under revision or
have been retired – needs to be automated.

The only way for a search engine to deal with these
issues is to periodically test the availability of the web
services in its index, or to test their availability before
delivering a search result and filter out those that have
been retired. However, the latter approach can
significantly lengthen the time required for result sets to
be generated. Generally speaking, there are two basic
ways of determining the state of an indexed web service.
One way is using information supplied by users when
they try to test a service through the included execution
engine. The other way is to implement some kind of
background “liveness” testing.

The merobase repository has a built-in execution
engine which can detect the unavailability of a service. It
is also able to collect data that was provided by users
when using the execution engine to test a service. These
user-provided data sets can be retrieved randomly from
our database and used to support background liveness
testing in a relatively straightforward way. When a
service is identified as unavailable through a user-driven
execution attempt or a background liveness check the
service’s index entry has to indicate that it is currently
unavailable. At the same time, the periodic time interval
for background availability testing has to be decreased to
a shorter time interval. Using randomly generated test
data the service can be placed under “observation” for a
certain time until it is designated as a “retired-service-
candidate”. Once a further number of tests have failed the
web service can then be finally removed from the index.
Automatically keeping the index up-to-date in this way
greatly reduces the number of “false results” that are
returned to users and thus increases their perception of the
search engine’s performance.

4. Additional Challenges

As explained in section 2.2, simply searching for
keywords leads to imprecise search results in large
repositories. This is especially true for web services, as
there is no source code available against which the
keywords from the query could be matched. For web
services it is therefore only practical to use the name-
based or abstraction-based queries. And as outlined
before, of these two the abstraction-based queries which
find services based on their interfaces are the most
precise. However, the definition of what the interface of a
service is from the point of view of a service requestor

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

(i.e. the user of a search engine) and a service provider
may not always be the same.

For example, the user of a web service often does not
care about additional “management” parameters such as
session or user IDs which have to be provided in service
operation invocations but are not directly related to
providing the desired functionality. Session IDs are
particularly problematic because by definition most web
service clients are designed to hide session ID values
from the user. However, the whole point of client/server
technology is to provide the user with the illusion that
he/she is the sole user of a service whereas in fact there
are usually many concurrent users. The session ID is thus
a critical parameter of the operations in the server
interface, but is hidden from the human user of the
service. Nevertheless it is a common pattern to include
session ID parameters in method signatures. Thus, simply
matching an interface query as defined from the
perspective of the user to the actual interface supported
by the web service would not lead to the desired results.
Since WSDL only allows web service descriptions at a
low level of abstraction, we have introduced the notion of
the “pan-client” and “per-client” views of a service [1].
Another frequently used pattern we identified in this
context is the usage of authentication data parameters,
e.g. username and password or license keys, which either
have to be sent once or with every method call.

As an example, consider the following web service
which simulates the millionaire quiz. A user can start the
quiz by calling the startNewGame() method. He then
receives a session ID which has to be used to identify the
game in subsequent method calls. Additionally, the user
has the opportunity to start multiple games at any time by
acquiring multiple session IDs. From the startNewGame()
method call, he also receives the first question. The
question can be answered by the continueGame() method.
Two methods returning either a reduced set of remaining
answers or answer probabilities (simulating the “fifty-
fifty joker” and results from an audience survey) are also
available. These methods can only be used once per
session. Each method returns the session ID so that a
service client, which could run multiple quizzes at the
same time, can assign the return messages from the
provider to the corresponding quiz. The following figure
summarizes the service’s actual – i.e. the pan-client –
interface in a graphical form.

Pan-Client

QuizService

startNewGame() return sessionID, Question
continueGame(guessedAnswer, sessionID) return sessionID, Question
queryStatus(sessionID) return sessionID, Status
useFiftyFiftyJoker(sessionID) return sessionID, Answers
useAudienceJoker(sessionID) return sessionID, Answers

Pan-Client

QuizService

startNewGame() return sessionID, Question
continueGame(guessedAnswer, sessionID) return sessionID, Question
queryStatus(sessionID) return sessionID, Status
useFiftyFiftyJoker(sessionID) return sessionID, Answers
useAudienceJoker(sessionID) return sessionID, Answers

QuizService

startNewGame() return sessionID, Question
continueGame(guessedAnswer, sessionID) return sessionID, Question
queryStatus(sessionID) return sessionID, Status
useFiftyFiftyJoker(sessionID) return sessionID, Answers
useAudienceJoker(sessionID) return sessionID, Answers

Figure 2. Pan-client view of a quiz web service

Although it is necessary to provide the session ID
parameters when invoking these methods, it is unlikely
that a user of a search engine is either interested in
session IDs or even running multiple quizzes
simultaneously. From a client’s point of view, only
questions and answers are important in the QuizService
abstraction. Thus a search request for a QuizService is
more likely to utilize the per-client perspective as shown
in the following figure.

Per-Client

QuizService

startNewGame() return Question
continueGame(guessedAnswer) return Question
queryStatus() return Status
useFiftyFiftyJoker() return Answers
useAudienceJoker() return Answers

Per-Client

QuizService

startNewGame() return Question
continueGame(guessedAnswer) return Question
queryStatus() return Status
useFiftyFiftyJoker() return Answers
useAudienceJoker() return Answers

QuizService

startNewGame() return Question
continueGame(guessedAnswer) return Question
queryStatus() return Status
useFiftyFiftyJoker() return Answers
useAudienceJoker() return Answers

Figure 3. Per-client view of the quiz service

As figures 2 and 3 illustrate, the per-client view is
much simpler and more concise, so we believe that
searches should be done with the per-client specification
of the service. Even if the service does not always return
a session ID, the session ID always has to be transmitted
as an input parameter. A user not interested or aware of
sessions would query a component search engine without
the additional parameter (e.g. startNewGame(): Answers)
and not retrieve the desired result (QuizService). An
advanced user aware of session IDs could also fail to get
the desired results because the position and the type of the
session ID may vary. Although the merobase search
engine supports permutations of parameter orders, no
component search engine we know of directly supports
different parameter variants. This would indeed be
necessary since session IDs could be of various number
or string types.

Consequently, an ideal component search engine
should either map the per client view to a pan-client view,
or recognize the per-client view of a web service in the
first place. However, as there exists no widespread
standard for separating the per- and pan-client views, we
currently propose to use some heuristics during crawling.
A search algorithm could check if a return parameter of
one method appears as an input parameter for other
methods. Another clue could be the name of the method
as well as the name and type of the parameter.
Furthermore, methods for creating a session usually don’t
have any parameters besides authentication parameters (if
at all). However, further research is necessary to evaluate
the effectiveness of such methods.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

5. Suggested Improvements to Web Service
Standards
Using a combination of the crawling techniques

outlined in section 3 merobase has been able to assemble
a repository of about 3000 web services. Although this
demonstrates that it is feasible to realize an effective web
service repository, the task could be made easier by
defining some conventions in the way that web service
standards are applied and that web services are
implemented.

The first convention we propose is that every web
service should implement a standard “liveness” operation
which can be used to check that it is still on line and has
not been retired. This method would need no input
parameters and would return a single standardized output
parameter indicating its availability status. The uniform
availability of such a simple method would greatly reduce
the complexity involved in automating the creation of test
data for arbitrary methods and greatly increase the ability
of web service repositories to maintain the freshness of
their contents.

In order to tackle the problem of finding the
appropriate interface from a user's perspective, we
propose some simple conventions for WSDL
descriptions. In addition, to optimize the processing of
existing WSDL descriptions by search engines, we
advocate that they be automatically "marked" as WSDL
documents. The goal of this convention is to identify
parameters that are effectively hidden from end users and
are only used to provide management information. For
example, parameters used to identify individual users in a
multi-user context should be marked as session ID
parameters. Likewise, parameters needed for
authenticating service users should be marked in a similar
way. We propose to mark them by adding additional
attributes (such as "sessionID" or "authData") to the XML
schema data types definition in a WSDL document.

Since there will always be a large number of web
services which are not annotated in this way, at least for
some time to come, heuristics of the kind proposed in the
previous section have to be used for identifying these
management parameters and indexing them accordingly.
With marked WSDL interfaces, the pan- and per-client
interfaces could be explicitly distinguished and thus the
user could choose the appropriate views. In addition, for
annotated WSDL interfaces an unambiguous mapping
can be defined from the pan-client view to the per-client
view and vice versa.

6. Conclusion

If web services are to fulfill their true potential and
revolutionize the way in which enterprise software
applications are written and the way in which businesses
deliver software functionality to one another, a practical

and effective service brokerage solution needs to be
developed. If not, web services will remain little more
than a convenient middleware and wrapping technology,
and the envisaged market of services will remain an
elusive vision.

In this paper we have outlined the main issues that has
lead virtually all previous attempts to set up public web
service brokerage services to fail – the underlying
reliance on the human management of repository content.
We then outlined the ingredients of an alternative,
practical approach which adapts the technology used in
emerging “code search” engines to provide useful
searches over a repository of web services. Using a
combination of these techniques, our merobase search
engine has been able to assemble a repository of about
3000 existing web services. These are integrated into an
index of several million source code components and
around ten thousand binary components that are
searchable using name and interface-based queries as well
as simple text-based queries. Searches can also be
restricted to web services using the “type:service”
constraint.

Although 3000 may not at first sound like a large
number, it is 10 times greater than the number indexed by
the UBR at the time of its closure. In fact, to our
knowledge it is the largest searchable repository of web
service currently available on the Internet. This has been
assembled from web services that existed before the
deployment of the search engine. Once its availability
becomes more widely known we hope that the size of the
repository will be increased by the explicit publishing of
components.

Based on the insights gained during the development
of the merobase web service repository we have been able
to identify several ways in which the basic standards
underpinning web services could be improved to support
web service brokerage. Further research remains to be
done on how to create intelligent heuristics that allow the
per-client view of the user to be derived from traditional
WSDL documents, and how the availability state of web
services can be automatically and efficiently checked at
run-time.

7. References

[1] C. Atkinson, D. Stoll, H. Acker, P. Dadam, M. Lauer,
and M. Reichert: “Separating Per-client and Pan-client
Views in Service Specification”, Proc. of the Int'l
Workshop on Service Oriented Software Engineering
(IW-SOSE), Shanghai, China, May 2006.

[2] A.W. Brown, G. Booch: “Reusing Open-Source
Software and Practices: The Impact of Open-Source
Software on Commercial Vendors”, in C. Gacek (Editor):
LNCS 2319, Springer, 2002.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

[3] D. Fafchamps: “Organizational Factors and Reuse”,
IEEE Software Vol. 11, Iss. 5, 1994.

[4] W.B. Frakes, C.J. Fox: “Quality improvement using a
software reuse failure modes model”, IEEE Transactions
on Software Engineering, Vol. 22, Iss. 4, 1996.

[5] O. Hummel, C. Atkinson: “Using the Web as a Reuse
Repository”, Proceedings of the International Conference
on Software Reuse (ICSR), Torino, Italy 2006.

[6] M. Lenz, H. Schmid, P.W. Wolf: “Software reuse
through building blocks”, W. Tracz (editor): Software
Reuse: Emerging Technology, Computer Society Press
1987.

[7] The Apache Software Foundation: Apache Lucene,
http://lucene.apache.org, visited Apr 2007.

[8] D. McIlroy: “Mass-Produced Software Components”,
Proceedings of a conference sponsored by the NATO
Science Committee, Garmisch, Germany 1968.

[9] A. Mili, R. Mili, R. Mittermeir: “A Survey of
Software Reuse Libraries”, Annals of Software
Engineering 5 (1998).

[10] M. Morisio, M. Ezran C. Tully: “Success and failure
factors in software reuse”, IEEE Transactions on
Software Engineering, Vol. 28, Iss. 4, 2002.

[11] UDDI Specification v3.02, “Universal Description
Discovery and Integration”, http://www.oasis-
open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-
20041019.htm, visited Apr. 2007.

[12] J. Poulin: “Populating Software Repositories:
Incentives and Domain-Specific Software”, Journal of
Systems and Software 30 (1995) 3.

[13] A.M. Zaremski, J.M. Wing: “Signature Matching: A
Tool for Using Software Libraries”, ACM Transactions
on Software Engineering and Methodology 4 (1995) 2.

[14] O. Hummel, W. Janjic and C. Atkinson: “Evaluating
the Efficiency of Retrieval Methods for Component
Repositories”, to appear in Proceedings of the
International Conference on Software Engineering and
Knowledge Engineering (SEKE), Boston, 2007.

[15] The Apache Software Foundation: Axis,
http://ws.apache.org/axis, visited Apr 2007.

[16] R. Seacord: “Software Engineering Component
Repositories”, Proceedings of the International Workshop
on Component-Based Software Engineering, Los
Angeles, USA, 1999.

[17] T. Vanderlei, F. Durão, A. Martins, V. Garcia, E.
Almeida, S. Meira: “A Cooperative Classification
Mechanism for Search and Retrieval of Software
Components”, Proceedings of the ACM Symposium on
Applied Computing (SAC), Information Retrieval Track,
Seoul, Korea, 2007.

[18] A. Podgurski, L. Pierce: “Retrieving Reusable
Software by Sampling Behavior”, ACM Transactions on
Software Engineering and Methodology, Vol. 2, Iss. 3,
1993.

[19] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O.
Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, J.
Zettel: Component-based Product Line Engineering with
UML, Addison Wesley, 2002.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

View publication stats

https://www.researchgate.net/publication/4264591

