
Facilitating the Comparison of Software Retrieval Systems
through a Reference Reuse Collection

Oliver Hummel
Software Engineering Group

University of Mannheim
68131 Mannheim, Germany

Phone: +49 6 21 / 1 81 - 39 29

hummel@informatik.uni-mannheim.de

ABSTRACT

Although the idea of component-based software reuse has been
around for more than four decades the technology for retrieving
reusable software artefacts has grown out of its infancy only
recently. After about 30 years of basic research in which scientists
struggled to get their hands on meaningful numbers of reusable
artifacts to evaluate their prototypes, the “open source revolution”
has made software reuse a serious practical possibility. Millions of
reusable files have become freely available and more sophisticated
retrieval tools have emerged providing better ways of searching
among them. However, while the development of such systems
has made considerable progress, their evaluation is still largely
driven by proprietary approaches which are all too often neither
comprehensive nor comparable to one another. Hence, in this
position paper, we propose the compilation of a reference
collection of reusable artifacts in order to facilitate the future
evaluation and comparison of software retrieval tools.

Categories and Subject Descriptors: H.3.7
[Information Storage and Retrieval]: Digital Libraries –
standards.

General Terms: Measurement, Standardization.

Keywords: Component-based software development,
information retrieval, reference reuse collection.

1. INTRODUCTION
Mainly triggered by the “open source revolution”, the research
effort spent on the retrieval of reusable software artifacts has
experienced a tremendous boost in recent years. Although
software reuse was identified as a promising approach to
overcome the “software crisis” over four decades ago [1], and a
number of seminal publications (such as [10] or [7]) delivered
important groundwork for current software retrieval systems,
reuse research struggled to produce practically usable results, as
e.g. effective repository systems and integrated CASE tools to use

them. Previous research identified a lack of reusable artifacts as
one of the main reasons for this dilemma and proposed to
overcome this by crawling the WWW and the repositories of open
source hosting sites for reusable software assets [16]. This idea of
internet-scale software search engines clearly spread not only in
the research community that developed search engines such as
Spars-J [4], Merobase [8], or Sourcerer [11], but in industry as
well (see e.g. the code search engines of Google, Koders or
Krugle). Today, there are at least a dozen software search engines
available on the web. They mostly allow users to search for
reusable source files based upon retrieval algorithms of different
sophistication (see e.g. [8] for a more comprehensive overview).
But not only the back-end search functionality improved
considerably in recent years, but also the user front ends. While a
web-based “google-style” search interface is perhaps sufficient for
occasional users, Ye [14] was amongst the first researchers that
realized it would be more effective if software developers had
proactive tool support directly in the IDEs they are using for their
development work. His so-called CodeBroker was the pioneering
tool that monitored the activities of a developer and automatically
proposed reuse candidates that it considered appropriate.
However, CodeBroker was only based on a rather small reuse
collection. Only Hummel et al.’s Code Conjurer tool [8] recently
integrated powerful retrieval algorithms, a large component
collection and a proactive recommendation engine into the
widespread Eclipse IDE. Other noteworthy progress includes the
work of Inoue et al. [4] that adapted Google’s webpage-based
Pagerank algorithm to software retrieval by prioritizing search
results according to the frequency they are used by other artifacts.
However, although all these approaches are certainly a step in the
right direction and brought new and interesting ideas into the
community they all share one significant problem. To date,
evaluations of these tools are largely based on proprietary data
and thus there is currently no way to compare their results,
making it hard for researchers to give clear recommendations to
practitioners that might contemplate the use of such a tool. As for
example stressed by Basili [2]: “Proposing a model or building a
tool is not enough. There must be some way of validating that the
model or tool is an advance over current models or tools“.
Interestingly, this is a problem that is or has been shared by other
communities as well. First and foremost, it is clearly the
information retrieval community [12], which is obviously closely
related with component retrieval anyway, that was experiencing
similar problems. In the early years of this community there were
also a lot of new and exiting ideas as well as prototypes around,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SUITE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

17

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1809175.1809180&domain=pdf&date_stamp=2010-05-01

but the proprietary (and often expensive) evaluations performed
on them were usually not very helpful and especially not
comparable with each other. However, this community was able
to overcome this challenge by defining so-called reference
collections basically comprising a large collection of documents, a
number of challenges for retrieval systems and the expected
solutions for them (e.g. [15]). The second community that is
struggling with the comparability of its tools is the rather young
community trying to retrieve and orchestrate (semantic) web
services. It has been trying to compare the systems of their
contributors by organizing challenges (e.g. http://sws-
challenge.org) where the tools are supposed to solve a given
exercise by orchestrating a number of services into a new service.
This is another interesting idea that we shall pick-up again later in
this paper.

1.1 Overview
Given the open issues discussed above, the central theme of this
position paper is to propose the establishment of a reference reuse
collection that is intended to offer researchers a standard to
evaluate their retrieval systems. In our view this will bring two
significant advantages - first it will simplify the evaluation of new
tools for individual researchers since it will no longer be
necessary for them to gather up an own collection and, second, it
of course facilitates the direct comparison of approaches and
tools. The remainder of this paper is structured as follows: First
we very briefly introduce some foundations from information
retrieval that explain how retrieval systems are usually evaluated
there before we take a look on the current state of the art in the
evaluation of software retrieval systems and the gaps that we have
identified. After that we propose to create a reuse reference
collection in order to facilitate the evaluation of software retrieval
solutions and briefly discuss some research challenges associated
with this idea. Finally, we conclude our paper with a brief
summary of our contribution.

2. FOUNDATIONS
Since software (component) retrieval is based on ideas from
general information retrieval (IR) to a large extent, it makes sense
to shed some light on the foundations coming from this area. In
IR, so-called recall and precision are accepted as the standard
measures for determining the efficiency of retrieval systems.
Recall is defined as the proportion of all relevant documents that
have been retrieved from a document collection for a given query
and precision is the proportion of the retrieved documents that are
relevant to the query. A more formal description of these concepts
is provided by [12], for example. However, this definition makes
one important assumption, namely, that the proportion of relevant
documents in the collection is known a priori, a prerequisite
which is unfortunately not valid for queries in internet-scale web
search engines, for instance. In this context, [12] presents two
common criticisms that used to plague information retrieval (IR)
research, namely the lack of a solid formal framework and the lack
of consistent testbeds and evaluation frameworks. Interestingly,
software engineering in general, and software retrieval in
particular, are obviously subject to the same criticisms (see e.g.
the works of Basili [2] resp. Mili et al. [3]).
Due to the inherent psychological subjectiveness associated with
information understanding by humans, the IR community has only
acted upon the second problem so far: retrieval approaches (i.e.

algorithms and tools) for textual information retrieval are typically
compared via so-called reference collections where queries are
applied to a well-known collection of documents and the expected
results are determined by experts. However, until the so-called
TREC (for Text REtrieval Conference) collection [15] with more
than one million documents was established in the early 1990s,
experimentation in information retrieval was also dominated by
small and proprietary “proof-of-concept” test collections (often
involving expensive experiments with humans) for nearly thirty
years. As mentioned before, for collections of a significant size it
becomes a challenge to identify all relevant documents for a
query. This, however, is necessary to determine the quality of the
systems under evaluation with the help of recall and precision.
Thus, a trick had to be applied for creating the TREC collection
since its document base is simply too large to be completely
overseen by humans: only the queries for evaluating the systems
were thought out by experts, the list of relevant documents was
created by selecting only those documents that were actually
regarded as being relevant by experts out of the results delivered
from various IR systems. With this information (which is clearly
not perfect, though) it has become much more effective to
compare various information retrieval approaches with one
another and to derive recall and precision for them in a
comparable way. In turn, this has facilitated the improvement of
the IR systems themselves as e.g. reported in [15].

2.1 Application to Component Retrieval
Clearly, it is not a new idea to apply recall and precision to
software retrieval systems, this has already been done a long time
ago. For example, Mili et al. tried to estimate these values for the
various retrieval methods they identified in their well-known
survey on the topic [3]. However, as stated by the authors, a
software retrieval process typically involves two criteria because a
candidate artifact can indeed fulfil the matching condition of one
specific retrieval technique, but may not necessarily match a
user’s relevance criterion. For example, a simple keyword-based
search technique might retrieve 20 source files matching the term
“customer” but only 2 of them might actually fulfil the user’s
requirements for a customer component (perhaps the other 18
only have a reference to a customer object etc.) and thereby fulfil
his relevance criterion. Obviously, finding a good relevance
criterion is another challenge for the evaluation of software
retrieval systems. This becomes even clearer when one becomes
aware that there are at least five basic software retrieval
techniques (and thus different matching conditions) that were
identified by Mili et al. From today’s point of view we prefer to
consider their sixth (so-called topological) retrieval method as an
approach for ranking results according to their closeness of match
to a given query.

3. PROBLEM STATEMENT
Mature research in software reuse, however, is many years
younger than in information retrieval. Thus, it is important to
mention again that the notion of relevance is clearly different
compared to textual retrieval systems. While the latter focuses on
“merely” finding meaningful documents in natural language, the
basis for software retrieval are programming languages and their
more formalized constructs (such as objects or components).
Thus, it is possible to define a much tighter definition of relevance
in the context of software reuse. In the optimal case, a component

18

can be considered relevant if it matches all required syntactical
(i.e. the signature) as well as the semantic (i.e. the functionality)
properties to 100%. However, while syntactic matching is
essentially a question of pattern matching, it is not guaranteed that
a syntactic match also delivers relevant results in terms of
functionality. In contrast, relevance in textual information
retrieval does not require an exact syntactic match as there exist
various ways to express the same information in natural language.
Actually, this is true for software as well, but ultimately, a
reusable piece of software will only be relevant to a developer if it
fully complies with his initial specification.
In other words, the ultimate relevance criterion for a retrieved
software artifact is that it can be deployed and re-used “as is” in a
given context without any manual modification or adaptation.
Thus, potential adapter creation must rather be part of the retrieval
system than another burden for the developer. Unfortunately, the
few practical evaluation attempts known from literature so far
often did not find a practical means to unambiguously specify
when an artifact is relevant and thus confined themselves to check
the matching condition of the underlying retrieval algorithm
instead of the relevance criterion. Clearly, this also makes it hard
if not impossible to replicate the evaluations and thus to compare
different retrieval algorithms with each other. Even in the high-
profile publication of Inoue et al. [4] the matching condition used
is not made explicit, but it seems likely that it was merely the
appearance of a specific term in the source code. Admittedly, the
clear specification of software systems and components is a
challenge that has been plaguing software engineering for many
decades and only recently the test-driven development community
[5] has found a simple and practically usable solution to overcome
it. Their idea of using test cases as a specification for components
has been picked up and applied by a number of researchers in a
reuse context, recently [6], [9], [11]. This so-called test-driven
reuse approach seems to be promising for setting up a reference
reuse collection as we will discuss in the next section.
The second central problem that has been bothering researchers in
the component retrieval community for a long time was getting a
large enough software collection in their hands. Thus, early
research in the 1990s was based on small and proprietary
collections with merely a few hundred components (see e.g. [7],
[14]). Even worse, due to the small number of components
indexed in these prototypes, the experimental tasks used for the
respective evaluations look very much as if they were (clearly out
of necessity) optimized for the contents of the repository. Thus, it
is very difficult to judge whether these tools would have received
the same impressive appraisals in scaled-up environments
containing millions of artifacts. Only very recently, the growing
amount of open-source software available on the Internet allowed
carrying out experiments with larger collections. For instance,
Inoue et al. [4] have experimented on about 150.000 files
collected in SparsJ, the Sourcerer search engine used by Lemos et
al. e.g. in [11] has collected about 560.000 files and Hummel [8]
and Reiss [9] experimented with the help of the search engines
Merobase resp. Google Codesearch that each contain millions of
indexed artifacts.

4. SOLUTION OUTLINE
As comparability and reproducibility are the tenets of good
research [2], it is certainly important that our community joins
forces in order to define a reference collection for the evaluation

of software retrieval tools and algorithms. At first sight, it looks as
if we have all ingredients ready: millions of source files are freely
available from the Internet, new technologies are available to
better assess the relevance of reusable artifacts and we should be
able to use seminal ideas from the information retrieval and web
service communities as a basic blueprint for our efforts. Thus, our
initial proposal for a reuse reference collection includes indexing
a larger number of open source projects in order to establish the
base collection. Second, a survey of previous tool evaluations
should be carried out in order to identify usable and expressive
enough reference examples that can be used within the collection
and to create new ones if necessary. Last but not least, clear
criteria need to be established when a component can be
considered as relevant for a given query. Given the recent
experience with test-driven reuse, it seems promising to use test
cases as the final relevance criterion, as, to our knowledge, test-
driven reuse is the software retrieval technique which comes
closest to the demand of being a precise relevance criterion
(assuming of course that the test cases are “good enough”).
Furthermore, it is even usable with a reasonable amount of effort.
However, this clearly is an important decision as the relevance
criterion needs to be carefully chosen in order to allow it to be
used with any other retrieval approach as well. In [13] we were
able to show that it is indeed possible to derive queries for older
search techniques (such as keyword or signature matching [3])
from test cases with little effort. Based upon the existing
prototypes, it thus seems feasible to identify an initial set of
relevant components for each query in the reference collection
which could later be extended if better systems should find more
reusable candidates. Once this has been accomplished, organizing
challenges for retrieval systems similar to the web service
community is a logical consecutive step.

4.1 Open Challenges
Query definition, however, is not the only serious question that
needs to be addressed; there are a number of other factors that
make the creation of a reference collection in software retrieval
even more challenging than it was in information retrieval about
twenty-five years ago. One important difference between the two
areas is the fact that source files can not only be named in various
human languages, which is a similar challenge to that in
information retrieval, they can also we written in various
programming languages for various platforms. Thus, it is an open
question whether e.g. Java can be accepted as the “lingua franca”
of such a reference collection and the insights gained with it can
be easily transferred to other programming languages as well.
Even worse, software can appear in source or binary form,
whereas the latter is typically much less suited for component
retrieval since there is fewer metadata (such as source code or
comments) available to facilitate e.g. keyword-based searches. In
the extreme case, software might even be delivered as a service
where, by definition, no introspection is possible and thus no use
of any kind of additional “internal” information is possible.
A second very fundamental issue is the question of what kinds of
software should be supported by the reference collection. So far
we have implicitly talked about software artifacts that exhibit
functionality only via well-defined interfaces. This clearly
includes classes and operations in object-oriented languages and
(web) services, but it is not yet clear how to deal with and how to
specify class assemblies and larger components such as
subsystems, for example. Another issue that arises with software

19

is that it can have various dependencies on other artifacts, which
means that a component might consist of multiple sub-
components or classes and also might require additional
components (i.e. libraries) to function. A third significant
difference between documents and software is that the latter
typically keeps evolving even after a first version has been
published. Hence, if we assume that we will pursue the first naïve
approach of crawling various open source projects as the starting
point for a reference collection, it is an open question whether it
should remain static and thus may contain a snapshot with
unfinished and faulty files forever or whether it should be updated
on a regular basis. The second option will, however, most likely
alter the set of relevant components for the queries each time an
update is performed. Furthermore, if we allow adaptation of
retrieval results it must be asked how much adaptation should be
allowed resp. required. In other words, may an adapter simply be
a 1:1 wrapper or should it be possible that a façade-style adapter
can compose a number of pieces into a larger whole?
Finally, another research question arising is whether the proposed
reference collection should focus purely on the retrieval of
reusable material as discussed so far? Hummel [13] has identified
a basic set of further “usage modes” for software retrieval systems
that might be worth supporting, too. For instance, it seems
reasonable to use such a system in order to search for missing
libraries or to find the source code of a specific open source file
more quickly than by browsing the web and checking it out from
its version control system. However, to our knowledge there is
currently no comprehensive compilation of possible usage modes
for software retrieval systems beyond the preliminary overview
given by Janjic et al. [17] and consequently it is hard to tell which
of them should be supported in a reference collection.

5. CONCLUSION
In this position paper we have explained that the perceived
significant improvements made with the development and
implementation of component retrieval solutions in recent years,
have not yet been backed up by a similar improvement in terms of
their evaluation. We have identified two main obstacles that
hindered a systematic assessment of retrieval approaches in the
past, namely the limited availability of large enough software
collections and the difficulty in defining an expressive relevance
criterion for retrieved reuse candidates. These two points
obviously forced researchers in the past to come up with ad hoc
evaluation approaches that were all too often tailored to the
retrieval solution they were intended to test. Thereby, the
repeatability of evaluations was, and still is, widely limited
making the comparison of reuse approaches and recommendations
for their practical usage hard if not impossible. Thus, in this paper
we have proposed to develop a software retrieval reference
collection analogue to the collections built by the information
retrieval community when it was faced with similar challenges
some twenty years ago.
However, while the idea of setting up a reference collection of
reusable components, example queries and expected results is
straightforward, the road to its implementation is filled with
obstacles. Amongst others, we have especially identified the
challenges of finding and formulating meaningful reference
queries and relevance criteria as the most important tasks that
need to be tackled in order to create a useful reference collection.
Nevertheless, should our community be able to overcome these

challenges it could benefit considerably from this effort which
might help to pave the way towards robust internet-scale
component markets as envisaged by McIlroy over forty years ago.

6. REFERENCES
[1] McIlroy, D.: Mass-Produced Software Components,

Software Engineering: Report of a conference sponsored by
the NATO Science Committee, Garmisch, Germany, 1968.

[2] Basili, V.: The Experimental Paradigm in Software
Engineering, LNCS 706, Springer, 1993.

[3] Mili, A., R. Mili and R. Mittermeir: A Survey of Software
Reuse Libraries, Annals of Software Engineering 5, 1998.

[4] Inoue, K., R. Yokomori, H. Fujiwara, T. Yamamoto, M.
Matsushita, S. Kusumoto.: Ranking Significance of Software
Components Based on Use Relations, IEEE Transactions on
Software Eng., Vol. 31, No. 3, 2005.

[5] Beck, K. Test-Driven Development by Example, Addison
Wesley, 2003.

[6] Hummel, O. and C. Atkinson: Extreme Harvesting: Test
Driven Discovery and Reuse of Software Components,
Proceedings of the Intern. Conf. on Information Reuse and
Integration, 2004.

[7] Podgurski, A., Pierce, L. Retrieving reusable software by
sampling behavior. ACM Transactions on Software
Engineering and Methodology (Vol. 2, Iss. 3), 1993.

[8] Hummel, O., Janjic, W., Atkinson, C. Code Conjurer:
Pulling Reusable Software out of Thin Air, IEEE Software
(Vol. 25, Iss. 5), 2008

[9] Reiss, S.P. Semantics-based code search. Proc. of the Int.
Conference on Software Engineering, 2009.

[10] Zaremski, A.M., Wing, J.M. Specification Matching of
Software Components. ACM Transactions on Software
Engineering and Methodology (Vol. 6, Iss. 4), 1997.

[11] Lemos, O., Bajracharya, S., Ossher, J., Morla, R., Masiero,
P., Baldi, P., Lopes, C. CodeGenie using Test-cases to
Search and Reuse Source Code. Proc. of the Int. Conference
on Automated Software Engineering, 2007.

[12] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information
Retrieval. Addison Wesley, 1999.

[13] Hummel, O.: Semantic Component Retrieval in Software
Engineering. PhD dissertation, Univ. of Mannheim, 2009.

[14] Ye, Y.: Supporting Component-Based Software
Development with Active Component Repository Systems,
PhD dissertation, University of Colorado, 2001.

[15] Voorhees, E.M., Harman, D.K.: TREC: Experiment and
Evaluation in Information Retrieval. MIT Press, 2005.

[16] Hummel, O., Atkinson, C.: Using the Web as Reuse
Repository, Proc. of the Int. Conf. on Software Reuse, 2006.

[17] Janjic, W., Hummel, O., Atkinson, C.: More Archetypal
Usage Scenarios for Software Search Engines. Proc. of the
International Workshop on Search-driven Development:
Users, Infrastructure, Tools and Evaluation, 2010.

20

