
More Archetypal Usage Scenarios
for Software Search Engines

Werner Janjic, Oliver Hummel and Colin Atkinson
Software Engineering Group

University of Mannheim
68131 Mannheim, Germany

{werner|hummel|atkinson}@informatik.uni-mannheim.de

ABSTRACT
The increasing availability of software in all kinds of reposi-
tories has renewed interest in software retrieval and software
reuse. Not only has there been significant progress in devel-
oping various types of tools for searching for reusable arti-
facts, but also the integration of these tools into development
environments has matured considerably. Yet, relatively lit-
tle is known on why and how developers use these features
and whether there are applications of the technology that
go beyond classic reuse. Since we believe it is important
for our fledgling community to understand how developers
can benefit from software search systems, we present an ini-
tial collection of archetypal usage scenarios for them. These
are derived from a survey of existing literature along with
novel ideas from ongoing experiments with a state of the art
software search engine.

Categories and Subject Descriptors
D.2.13 [Software]: Reusable Software—Reuse Models

General Terms
Software Search Engines, Life Cycle, Reuse, Testing

Keywords
Software, Search Engines, Test-Driven Reuse, Discrepancy-
Driven Testing

1. INTRODUCTION
As software becomes a ubiquitous element of our environ-

ment and daily lives, the quantity of available source code
and components continues to grow steadily. Supported by
the ”open-source revolution” millions of software artifacts
have become publicly available. This recently triggered the
development of numerous internet-scale code and compo-
nent search engines (see e.g. [6] for an overview). However,
most of these search engines follow the ”Google paradigm”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

and merely offer a simple keyword-based search interface
of the form found in general web search engines. Although
these efforts are clearly a step in the right direction, in order
to better leverage the steadily increasing amount of software,
it is obvious that software search engines need to offer more
than plain text search. During the 1980s and 1990s, basic re-
search on software retrieval made use of the specific features
of software (such as operation signatures) and the survey
of Mili et al. [9] provides a comprehensive overview of the
state of the field about twelve years ago. Since then the ever
growing amount of software artifacts available in company
repositories and over the internet has triggered the devel-
opment of more sophisticated retrieval approaches such as
Component Rank [7] or test-driven reuse [3].

In spite of the progress mentioned above, little effort has
been invested in investigating potential usage scenarios for
software search engines that go beyond mere reuse in the
coding phase of software development. In addition to our
own fledgling thoughts in this area [3] we are only aware
of two publications by Sim et al. and Umarji et al. [10, 11]
that describe surveys amongst developers and maintainers
published in 1998 respectively 2008. Although they provide
valuable insights on the current usage of source code search
engines, they did not elaborate on the further potential of
software search engines in general. Nevertheless, our own
preliminary experience suggests that software search engines
have a tremendous potential to improve almost all phases of
software development (i.e. analysis, design, coding, test-
ing, deployment, and maintenance). Thus, we believe it is
very important for our community to identify further usage
scenarios that pave the way for innovative applications of
software search and retrieval solutions in the future. Conse-
quently, not only our community can benefit from a detailed
investigation of the motivation, goals and problems in these
usage scenarios, but eventually the productivity of software
development and maintenance in general may increase.

In the remainder of this paper, we give an overview of
currently recognized archetypal usage scenarios for source
code search engines in section 2, describe innovative usage
scenarios we identified from ongoing research, from experi-
ence in the development of the internet-scale software search
engine Merobase and summarize them in section 3. We then
conclude our contribution in section 4.

2. RELATED WORK
To date, research on, and development of, software search

engines has been mainly driven by the goal formulated by
Douglas McIlroy [8] – namely, to avoid re-inventing the wheel

21

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1809175.1809181&domain=pdf&date_stamp=2010-05-01

over and over again but to rather reuse existing artifacts.
This general impression is clearly backed-up by the recent
online survey conducted by Umarji et al. [11] who identi-
fied nine archetypal groups of source code searches amongst
58 anecdotes of how developers typically use source code
search engines. Eight of these nine archetypes deal with
reuse and the authors were able to distinguish four sub-
groups of searches for reusable code from four subgroups
with searches for reference examples that are supposed to
deliver some inspiration for how to implement some given
programming task. Both groups can be further divided by
the size of the artifacts ranging from small code snippets over
object-sized units and libraries to complete standalone sys-
tems. One prominent exception is the inspiration that can
be drawn from libraries, as developers are typically more
interested in how to use existing libraries than in creating
new ones. Consequently, this is an area that has attracted
more research effort such as e.g. by Holmes and Murphy
[2]. The ninth motivation in the named survey for why de-
velopers use source code search engines is to find a solution
or a workaround for known defects e.g. patches in open
source systems. However, experience tells us that general
web search engines, indexing mailing list archives and fo-
rums, might be better suited for this job.

Further archetypal usage scenarios for source code search
are known from an older survey by Sim et al. targeting on
searches within a developer’s immediate environment [10].
This also identified impact analysis for intended changes
and program understanding as important motivations in this
context. Although these two archetypes have not made their
way into the more recent survey from above (perhaps be-
cause the required information is typically not available on
an inter-project level), we nevertheless believe they will gain
importance even for internet-scale repositories in the future.

3. MORE USAGE SCENARIOS
In this section we go beyond the aforementioned archety-

pal usage scenarios and identify additional ones. These en-
hance the existing scenarios or complement them with new
and innovative ideas. The main driver behind our consider-
ations was the motivation to better justify the large effort
required for the development and set-up of software search
solutions by extending the scope of their application. As
indicated in the introduction, it seems likely that software
search engines will not only be able to support coding, but
other software development phases as well. In our opinion,
distinguishing only reuse and inspiration as the main drivers
for the use of software searching in a strict binary fashion
does not fully justice this view. Thus we propose instead to
imagine this as a spectrum ranging from rather speculative
searches towards fully specified definitive searches such as
described by Hummel [3]. Our understanding is that from a
reuse point of view searches are rather speculative early in
the software development process (i.e. late in the analysis or
early in the design phase), since developers are then using
software search engines to get an idea of what potentially
reusable material is available or to get some inspiration on
how to solve a given task. Later in the process (i.e. late
in the design phase or during coding) searches can become
much more definitive as typically a concrete specification of
a required component is available. And in the sense of the
KobrA component model [1] (which uses components on all
levels of granularity and follows the premise that ”one man’s

system can be another man’s component”) we prefer to avoid
a distinction between the sizes of reusable artifacts.

Thus, we subdiveded this section into two reuse related
subsections and a third subsection that contains the usage
scenarios that are ”maintenance-driven”. We finally round
off our observations in Subsection 3.4 with a visual summary
of all identified usage scenarios assigned to those phases in
the software development process where they are particu-
larly useful.

3.1 Speculative Searches
The obvious and certainly still dominant usage scenarios

for software search engines are those which come under the
notion of speculative searches. In this context the search en-
gine is used to get an impression of what is available in a
repository and to provide a first idea of what might be a
good design for a component the developer intends to write.
At this point of time neither a detailed syntactical descrip-
tion nor a clear description of the semantics is likely to be
available for the component under discussion. The developer
makes use of the search engine to support the design process
of the component being developed and to get support in the
early implementation phase. Speculative searches subsume
methods like the design prompter (see below), or drawing in-
spiration from open source and library searches as described
in [11]. Searches for reusable code snippets also identified
in the cited source are the only small exception in this con-
text as they typically only appear while developers are al-
ready coding. All these searches are typically keyword-based
searches, making little or no use of additional characteris-
tics of code, such as interface descriptions or functionality
specifications, and tend to occur during the design phase of
a software project.

As mentioned in [5] the keyword-based searches typically
used at this stage tend to be rather imprecise, but since
the developer himself has no clear picture of the component
which has to be written, this is not a crucial problem but
rather a logical consequence.

3.1.1 Design Prompter
Given the progress that was achieved in data mining and

related areas in recent years, it certainly makes sense to
contemplate the automated creation of design hints based on
existing software collections. Like the shop systems of large
online retailers a proactive design prompter system might for
example suggest to a developer that ”other developers that
have created a stack component also assigned a push and a
pop method to it” [3]. Such a system needs to monitor the
developer while he is designing or coding a system and then
can make its recommendations based on the ”mean value” of
artifacts that other developers created in similar situations.
This idea is not necessarily limited to the class level, it also
seems feasible to extract helpful design or even architectural
patterns from the contents of a software repository.

3.2 Definitive Searches
As soon as a software systems’s design has become con-

crete enough that the ”contours”of its components are clear,
the requirements for a search engine change significantly as
it can now utilize the additional features that the system
and component specifications provide. In the following sub-
sections we discuss the potential usage scenarios that arise
from this group of definitive searches.

22

3.2.1 Interface-based Searches
Experiments published previously [5] have shown that or-

dinary keyword-based (even pure signature-based) searches
(see Mili et al. [9] for detailed explanations) in internet-scale
repositories do not deliver reusable material with a satis-
factory level of precision. The main reason for this is the
large number of candidates that can be returned for a re-
quest with a general keyword or signature. The quest for
a more effective method consequently leads to the combi-
nation of signature and keyword matching, yielding the full
consideration of all interface elements (i.e. typically its op-
eration signatures) for a component search. In other words,
interface-based searches utilize the syntactic features of soft-
ware components for a search. They can be applied with
operation (or service) signatures on the lower end of the size
spectrum as well as with objects or full-grown components
at the upper end. Although the experiments cited above
reveal that the precision of these interface-based searches
is already better, it is still rather imprecise as it offers no
means to verify the semantics of components. This makes
it practically impossible to discover a reuse candidate with
different identifiers in its interface even though it might offer
the required functionality.

3.2.2 Test-Driven Reuse
The identified lack of precision in simpler retrieval tech-

niques was the main driver for the development of test-
driven reuse [3] which exploited the fact that code docu-
ments differ from ordinary text documents by being exe-
cutable and thus behaviourally observable. Though this ap-
proach is not as perfect as a specification in a formal lan-
guage, test cases have been identified as a means to de-
scribe functionality with a common development artifact
that needs to be created in the course of a development
process anyway. In the case of so-called test-driven develop-
ment, often used in agile development approaches, test cases
are even used to drive component design and are thus cre-
ated in an early development phase. The usage of such test
cases in test-driven reuse effectively adds another filtering
step on top of an underlying retrieval technique which can
be chosen according to the size of the used repository, for
example, increasing the precision of the whole retrieval pro-
cess. If a large collection of components is available – and
thus the probability for finding a matching reuse candidate
is high – it makes sense to employ rather strict pre-filtering
(such as an interface-based search), while a small collection
on the other hand might benefit more from pre-filtering with
signature matching in order to also test those candidates
that might be adaptable by more sophisticated tools [3].

3.2.3 Discrepancy-Driven Testing
Another approach for utilizing software search engines

based on a definitive description of the expected results can
be applied during software testing. Often such things as
licensing issues or company regulations (or simply the infa-
mous ”not invented here syndrome”) prohibit the integration
of reusable components into a system. However, it would be
a pity not to utilize the knowledge bound up in such com-
ponents. An elegant approach to still take advantage of
discovered software is to use retrieved components (e.g. by
a test-driven reuse tool) as test oracles. As soon as com-
ponents that are functionally equivalent to the one under
development have been discovered, they can be executed

alongside the component under test with a large amount
of randomly created input values and the delivered output
values of all components can be compared with each other
[4]. As soon as a disagreement occurs between them it is
clear that an interesting test case has been discovered that
is worth being investigated manually as obviously at least
one developer has already made a mistake in this context
before. This testing approach is (with a set of manually cre-
ated components) known as back-to-back testing [12]. The
aim of discrepancy-driven testing is to avoid the expensive
manual creation of test cases and thus to allow discovering
more defects in a shorter period of time as is possible with
traditional testing approaches.

3.2.4 Test Case Discovery
As software search engines clearly not only contain com-

ponents, but often also the test cases intended to test them
(e.g. about 100.000 JUnit test cases are reported by the Mer-
obase search engine), expanding on the idea of discrepancy-
driven testing one step ahead is certainly interesting. In
other words, even if we do not want to apply the approach
to a component, we can still extract the knowledge that is
stored within the numerous test cases available for similar
components. If we assume that test cases contain the knowl-
edge of domain experts (which it is very likely to happen in
company repositories), this usage scenario is not only ap-
pealing in order to achieve better software testing with less
effort, it might also be interesting to use the data contained
in the test cases in order to improve software specifications.
The combination of this approach with discrepancy-driven
testing is still immature, but nevertheless seems promising
and thus is under active research within our group.

3.2.5 Library Searches
During the development of software systems, developers

often need to incorporate additional external libraries into
their projects. Software search engines can be used in a
variety of ways to increase the productivity of developers in
this context. First, when the documentation is not sufficient
to efficiently use a library, tools such as Strathcona [2] can
be used to discover code examples of how other developers
have used the given library. Second, a developer may be
forced to look for the source code of a designated class from
a specific open source system to better comprehend the way
it works (or perhaps even to verify a bug). A search en-
gine which is able to deliver the required source quickly is
likely to save a lot of effort that otherwise would have to be
invested into locating and downloading the appropriate file
in some open source hosting system on the Web. A third
way of using search in the context of software libraries is the
possibility to use it for finding a library containing a spe-
cific class. Such a search often becomes necessary e.g. due
to Java’s well-known ClassNotFoundExceptions, produced
when the classpath is not set correctly during compilation or
deployment. Due to the numerous frameworks and compo-
nents available today, identifying, finding and retrieving the
correct library can become a tedious process that is likely to
become more efficient with the dedicated support of a search
engine.

3.3 Maintenance Driven Uses
The year 2000 problem demonstrated impressively that

software systems operate for a long time and thus mainte-

23

��������																			
�����													�������������													�������															
���������											�����������

����	����������

�����	��������

�������	�����

���������	�����

�������	�����

�����������������	�������

����	����	�����

�������	��������������

 ���	������	���!��

�����	�����������

�����	��������

�������	�������������

�������								"���																										�������

#$%&'(

#$(

#)%&'(

#$%&'(

#&'(

#*(

#$(

#$(

#&'(

#)(

#)(

$+&

$+&+&

$+&

,%	$+,+&%	$+,+,

$+,+-

$+,+$

$+,+*

$+,+-

$+,+-

,

$+$

,

����.���	����	��������/������

Figure 1: Usage scenarios for software search engines against the software development lifecycle

nance is a crucial activity in all software systems’ life cycles.
Consequently, developers identified already in the late 1990s
that analyzing the impacts of a change to a system is an im-
portant application that needs to be supported by software
search [10]. Today this can be done with common IDEs such
as Eclipse, but it also seems feasible to extend the range of
such a functionality to an internet-scale code base.

3.4 Summary
In this paper we have added a number of new usage sce-

narios beyond the classic archetypes known from the litera-
ture, most of which are currently under intensive research.
Therefore it is still hard to give concrete recommendations
about when the use of these approaches makes the most
sense within the software development process. Neverthe-
less, we try to summarize our findings in Figure 1 which
contains an overview of the usage archetypes we have iden-
tified in the first column on the left-hand side. The first row
on top of the figure lists the software development phases
and the lines in the central area of the figure indicate when a
usage scenario is potentially useful in a given phase. Further-
more, the figure distinguishes between speculative searches
(dashed lines) and definitive searches (solid lines).

4. CONCLUSION
In this paper we have identified a lack of a systematic in-

vestigation of potential usage scenarios for software search
engines. Although the literature provides two surveys where
developers have been asked how they are currently utilizing
these search engines, we believe the recent advances in soft-
ware retrieval technology opens much more potential for fur-
ther interesting applications of this technology, which ”nor-
mal” developers are not yet able to imagine.

Thus, after briefly surveying the existing literature on us-
age scenarios for software search we complemented the re-
sulting list with further scenarios we discovered during our
(partially ongoing) research on software retrieval. The re-
sulting collection is intended as a starting point to develop
new and innovative applications for software search engines
and thus to better justify the large costs involved in setting-
up and operating such systems.

5. REFERENCES
[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties,

O. Laitenberger, R. Laqua, D. Muthig, B. Paech,
J. Wüst, and J. Zettel. Component-Based Product
Line Engineering with UML. Addison Wesley, 2001.

[2] R. Holmes, R. J. Walker, and G. C. Murphy.
Strathcona example recommendation tool. In Proc. of
the 10th Europ. SE conf., 2005.

[3] O. Hummel. Semantic Component Retrieval in
Software Engineering. PhD thesis, University of
Mannheim, 2008.

[4] O. Hummel, C. Atkinson, D. Brenner, and S. Keklik.
Improving Testing Efficiency through Component
Harvesting. In Proc. Brazilian Workshop on
Component Based Development, 2006.

[5] O. Hummel, W. Janjic, and C. Atkinson. Evaluating
the efficiency of retrieval methods for component
repositories. In Proc. of the 19th Intl. Conf. on
Software Engineering & Knowledge Engineering.

[6] O. Hummel, W. Janjic, and C. Atkinson. Code
conjurer: Pulling reusable software out of thin air.
IEEE Software, 25(5), 2008.

[7] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita,
and S. Kusumoto. Ranking significance of software
components based on use relations. IEEE
Transactions on Software Engineering, 31(3), 2005.

[8] M. McIlroy. Mass Produced Software Components.
Software Engineering. In Report on a conf. sponsored
by the NATO Science Committee, 1968.

[9] A. Mili, R. Mili, and R. Mittermeir. A survey of
software reuse libraries. Annals of SE, 5, 1998.

[10] S. Sim, C. Clarke, and R. Holt. Archetypal source
code searches: A survey of software developers and
maintainers. Intl Conf. on Prog. Compr., 1998.

[11] M. Umarji, S. Sim, and C. Lopes. Archetypal
internet-scale source code searching. Proc. of IFIP
World Comp. Congr. on Open Source Software, 2008.

[12] M. Vouk. On back-to-back testing. Intl. Conf. on
Computer Assurance, 1988.

24

