
M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 298 – 311, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using the Web as a Reuse Repository

Oliver Hummel and Colin Atkinson

University of Mannheim, Chair of Software Technology
68159 Mannheim, Germany

{hummel, atkinson}@informatik.uni-mannheim.de
http://swt.informatik.uni-mannheim.de

Abstract. Software reuse is widely recognized as an effective way of increasing
the quality of software systems whilst lowering the effort and time involved in
their development. Although most of the basic techniques for software retrieval
have been around for a while, third party reuse is still largely a “hit and miss”
affair and the promise of large case component marketplaces has so far failed to
materialize. One of the key obstacles to systematic reuse has traditionally been
the set up and maintenance of up-to-date software repositories. However, the
rise of the World Wide Web as a general information repository holds the po-
tential to solve this problem and give rise to a truly ubiquitous library of (open
source) software components. This paper surveys reuse repositories on the Web
and estimates the amount of software currently available in them. We also
briefly discuss how this software can be harvested by means of general purpose
web search engines and demonstrate the effectiveness of our implementation of
this approach by applying it to reuse examples presented in earlier literature.

1 Introduction

It has long been recognized that reuse is the key to making software development a
fully fledged engineering discipline [19] in which quality systems are built at low cost
in a dependable and predictable manner. In principle, almost all assets that are pro-
duced during a software development process such as domain knowledge, require-
ments, design and source code are potentially reusable. Traditionally, however, reuse
initiatives have focused on the reuse of software in binary or source-code form [1].
Even reuse in this sense is an umbrella term for many different concepts that can
range from ad-hoc copying of a few lines of code to the architecture-centric usage of
large parts of a software product line [12]. In this paper our focus is on software com-
ponents, but not in the sense of Szyperski [13] which emphasizes binary software
units, rather as source code units that can be used independently. This can range, in
the simplest case, from a class that contains a stateless method, to a variety of classes
that depend on some shared libraries. Unfortunately, these more complex forms of
components are difficult to retrieve since common programming language do not
make their required interfaces explicit.

There has been an ongoing discussion in the literature (see e.g. [3], [6]) over
whether a component repository is a necessary condition for a successful reuse pro-
gram or not. Failure mode analyses have established that to be reused a component

 Using the Web as a Reuse Repository 299

must at the very minimum be available and findable, and component repositories are
certainly one way of achieving this [24]. It has often been argued that typical reuse
collections are small and hence do not need library support, however, intuition sug-
gests that the bigger the component collection the higher the probability it contains a
matching artifact [30]. Given this observation it makes sense to study the ability of
repository organization and retrieval techniques to handle large component collec-
tions. To date Mili et. al.’s well known survey [17] gives the best overview of this
topic. After their study Mili et. al, like Seacord [6], were rather pessimistic that there
will be a solution to the so-called “repository problem” in the foreseeable future. They
argue that currently “(...) no solution offers the right combination of efficiency, accu-
racy, user-friendliness and generality to afford us a breakthrough in the practice of
software reuse”.

In addition to these academic studies of software reuse, there have been numerous
attempts to establish commercial component “marketplaces” in recent years. How-
ever, these have also had limited success. Two of the most well known, Component-
Source.com and Flashline.com, have had to merge recently. Moreover, the Universal
UDDI Business Registry (UBR), the high profile industry repository for web services,
rarely contained useful material (as we will show later) and was finally shut down in
January 20061. Likewise, most other initiatives have had very limited impact. These
stated approaches have essentially all been based on a standard “e-retail” model in
which components are offered in an informal catalogue-like style as if they were
mainstream consumer products. Trying to discover a component at ComponentSource
is therefore still much like browsing for a book on Amazon. It is a very informal,
unpredictable process with a highly uncertain outcome. Of course, searching tools
are provided, but these are very simple, typically text-based technologies which
essentially look for keywords in a component’s documentation.

1.1 The Opportunity

Naturally the rise of the Internet as a public library for almost everything has raised
the reuse community’s interest in utilizing it for their purposes (see e.g. [17], [6] &
[9]). In recent years there have been a growing number of research projects that have
made initial steps towards this goal. The earliest known approach that utilized the
Web together with a general purpose search engine was Agora [6]. Other researchers
and commercial websites have crawled publicly available CVS repositories to build
their own source code search engines (SPARS-J [25], Koders.com, Codase.com) or
for other research purposes (for instance [15]). Others have recently experimented
with the use of general search engines (such as Google and Yahoo) to search for com-
ponents. However, [25] did this only in a rudimentary way by augmenting queries
with the terms “java” and “source” while [29] questioned the feasibility of doing this.
Despite this pessimism, we have succeeded in developing a reuse approach called
Extreme Harvesting that we first introduced in [2] that can successfully retrieve com-
ponents from the Web. The basic idea is to use the whole Web itself as the underlying
repository, and to utilize standard search engines as the means of discovering appro-
priate software assets. Since the Web, by its very nature, is a very unstructured and

1 The official rationale is that the UBR has been successful as a proof of concept, though.

300 O. Hummel and C. Atkinson

unruly place that was not designed to store software source code this is not always
easy. However, we have shown it is indeed possible to automatically harvest all kinds
of valuable components by means of general search engines.

As the main purpose of this paper is to assess the size and quality of the Web as a
software repository we give only a brief overview of our Extreme Harvesting ap-
proach in the next section. Section 3 surveys specialized service and software search
engines on the web and evaluates their efficiency. In section 4 we compare these
results with the outcome of our Extreme Harvesting experiments and give our as-
sessment of the Web’s potential to serve as a ubiquitous software repository. Finally,
in section 5 we conclude and discuss potential future directions of the work.

2 Component Retrieval Basics

For the reader to understand why it makes sense to search the Web for usable soft-
ware components despite the problems described in [29] and above we briefly intro-
duce our Extreme Harvesting approach. Based on the lessons learned from Mili et
al.’s survey [17] and our own experiments we created this new hybrid semantics-
driven retrieval engine by integrating some of the techniques outlined there. As stated
in the survey, a retrieval process typically has to cover two criteria because a candi-
date component can fulfill the matching condition of one specific retrieval technique
but may not necessarily match a user’s relevance criterion. Consider the above men-
tioned keyword-based search technique, for instance. Such a search engine might
retrieve a number of components that contain the word Stack somewhere (maybe they
use a Stack), but only very few of them implement the appropriate data structure.
In other words, a single matching criterion is too weak to guarantee satisfactory
precision.

Applying more than one matching criterion essentially represents a filtering proc-
ess that iteratively shrinks the number of acceptable components in a repository
search until only acceptable components are left. In our current tool we apply three
filtering stages, namely linguistic, syntactic and semantic filtering. The linguistic
filtering is basically a keyword search as described above. After that a signature
matching step is applied [22]. Then, thirdly, we check the semantic compliance of
components by sampling their behavior [7]. As we have focused our current research
on Java we chose quasi standard JUnit [23] test cases to represent this information.
Unfortunately, behavior sampling of this from is only a limited substitute for com-
plete semantic checking, but it is the only practical way at present, because to find out
whether a code unit complies to a given formal description is equivalent to solving the
halting problem [28].

The cost of applying these filtering steps grows in the order they are introduced.
For this reason the combination of the three steps is the only practical way to retrieve
components with reasonable precision from very large repositories like the web. In
other words, it would never be computationally possible to apply a semantic relevance
check to millions of components. Figure 1 below provides a schematic summary of
the main steps involved in the practical implementation of our approach as originally
introduced in [2]:

 Using the Web as a Reuse Repository 301

a) define syntactic signature of desired component
b) define semantics of desired component in terms of test cases
c) search for candidate components using the APIs of standard web search

engines with a search term derived from (a)
d) find source units which have the exact signature defined in (a) or try to create

appropriate adapters
e) filter out components which are not valid (i.e. not compilable) source units, if

necessary find any other units upon which the matching component relies for
execution

f) establish which components are semantically acceptable (or closest to the
requirements) by applying the tests defined in (b)

c) Search the Web

a) Describe Syntax

d) Match Signatures

e) Compile

b) Describe Semantics

f) Test

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

Stack

+push(o:Object):void
+pop():Object

Stack

+push(o:Object):void
+pop():Object

Fig. 1. Schematic process overview

We currently have a Java-based prototype which implements the above approach and
is able to harvest Java components and web services from the web. Extending the tool
to handle other programming languages is a straightforward matter. Since our three
step filtering process has proven to be very effective in our experiments and our tool
has the capability to adapt search results into the form required in (a) automatically, a
developer can integrate any accepted search result right away in his/her development
project.

3 Internet-Based Repositories

This section briefly reviews the component and service search engines available on
the Internet or reported in the literature. Since one of the reasons for the recent

302 O. Hummel and C. Atkinson

excitement around web service technology is that its search technology UDDI [16] is
supposed to bring together service providers and service requestors we start our over-
view with web services that are available for third-party (re-)use. UDDI is advertised
as a flexible brokering technology that allows component developers to “publish”
their software as services, and potential component users to find suitable services
automatically through formalized syntactic descriptions of their requirements (in the
form of WSDL documents). Even semantic composition capabilities for web services
are becoming available (e.g. with the help of OWL [8]). Since so much industry in-
vestment has been pumped into the Universal UDDI Business Registry (UBR) one
would expect a sizeable index of services to now be available. However, as table 1
demonstrates, the UBR (and other service repositories) failed to reach a critical mass
of entries and a large proportion of the entries contained in the repository were out of
date. Many entries did not even point to valid WSDL descriptions and of those that
did, only a small proportion were actually working. The UBR’s shutdown in early
2006 was a logical consequence.

Table 1. Number of WSDL files within reach at various websites (July 2005)

Search Method API Claimed number of
links to WSDL files

No of actual links
to valid WSDL files

UDDI Business Registry2 yes 770 (790 [11]) 400 (430 [11])

BindingPoint.com no 3900 1270 (validated)

Webservicelist.com no 250 unknown

XMethods.com yes 440 unknown

Salcentral.com2, 3 yes ~800 all (validated)

We can only speculate about the reasons for the disappointing performance of such
repositories. However, the main problem with this concept in our opinion is not a
technical one, it is the overhead involved in the manual creation and maintenance of
the repository. The effort involved in entering a complete service profile into the UBR
should not be underestimated. In addition, there is the effort of updating or removing
the (possible many) entries when a server is moved or closed down. Interestingly, the
UBR followed exactly the three-phase reuse progression (empty, filled with garbage
or too general) that Poulin reported in [30] from his practical experience at IBM over
ten years ago (although we would argue that the UBR actually never reached the third
phase).

Since the Web in its current form is still relatively new there have been few at-
tempts to date to utilize it as a source of components for mainstream software engi-
neering. The most well known attempt is Agora search engine [6] mentioned above.
Agora was developed at the Software Engineering Institute (SEI) as a special purpose
search engine with its own index of Java applets and ActiveX components which has

2 As of March 2006 this website is no longer available.
3 Salcentral copied the entries of UDDI and XMethods, the values were estimated from active

UDDI and XMethods entries.

 Using the Web as a Reuse Repository 303

been filled using a general purpose search engine. However, this project was discon-
tinued probably due to the high effort involved in setting up the index. In addition to
this approach, focused on black-box components, the recent advent of open source
software has also made it possible to look – at least manually – for white-box compo-
nents – that is, publicly available source code on the Web [26].

Another idea, utilized by a number of papers in the 2004 and 2005 ICSE work-
shops on mining software repositories, is to crawl the CVS servers of Sourceforge.net
or similar sites (see e.g. [15]) and analyze the content in some way. However we are
not aware of an approach that explicitly aims to reuse this material. As Sourceforge
does not offer search capabilities for the code it stores, the approach of Koders.com, a
fairly new commercial site, makes a lot of sense. They download and index source
codes from publicly available CVS repositories and then support text based searches
on these assets through a Google style search interface. Codase.com has built a simi-
lar index that offers limited support for syntactic searches constrained to method
names or parameter types. Krugle.com is a similar site that is scheduled to come on
line early in 2006. The following table provides an overview of the sites known to us
at the time of writing. We did not consider software retailers like Component-
Source.com or Jars.com in this overview as they typically offer very large packages or
complete applications which are beyond the scope of our approach and do not offer
access to source code.

Table 2. Overview of specialized source code search engines (January 2006)

URL No. of Lan-
guages
supported

API Supported
Search
Methods

Indexed
Lines of
Code

No. of
Java
classes

Koders.com 30 RSS Linguistic 225,816,744 330,000

demo.spars.info [25] 1 no Linguistic &
Syntactic

n.a. 180,000

Kickjava.com 1 no Linguistic 20,041,731 105,000

Codase.com 3 no Linguistic &
Syntactic

250,000,000 95,000

Csourcesearch.net 2 no Linguistic &
Syntactic

283,119,081 n.a.

Sourcebank.com 8 no Linguistic n.a. > 500

Planetsourcecode.com 11 no Linguistic 11,276,847 230

In contrast to general web search engines the listed sites are specialized for source
code searches. Hence, they all offer the opportunity to limit searches to a specific
language, but only Koders.com fulfills another important requirement for being ac-
cessible with our tool, namely an API for programmatic access. Their API is based on
Amazon’s Opensearch format which in turn is based on RSS. As illustrated by the
table above, none of the listed sites provides a form of semantic evaluation for the

304 O. Hummel and C. Atkinson

searches and only a few support the constraining of queries to given syntactic ele-
ments (such as method names or parameter types). The estimates we provide for the
size of the repositories are the number of indexed lines of code (where this is speci-
fied on the site) and the number of Java classes available (by searching for the term
“class” in Java files).

4 The Web as a Component Repository

In section 2 we described how a suitable combination of well known techniques and
heuristics can effectively harvest components from the web when the desired kind of
component is present. However, as with any component repository, it cannot deliver
components if there are no suitable ones in the repository. As discussed in section 3,
this has been highlighted by web services, the most recent attempt to make third party
software components discoverable and accessible via the Internet. As shown in table 1
the Universal UDDI Business Repository has fallen far short of the original predica-
tions. Other specialized source code search engines are better, but still only deliver a
small part of the Web’s potential as we will demonstrate below.

The effectiveness of the retrieval mechanism is only one prerequisite for a practi-
cally useful reuse technology. The other is the availability of a repository with a rich
and extensive collection of components which covers a large proportion of the kinds
of components that users are likely to require [6]. In this section we discuss and
evaluate the extent to which the web is able to fulfill this need. As briefly mentioned
above, search engines are appropriate for integration in an automated approach like
ours if two prerequisites are satisfied. First, a search engine must have an API that
allows computational access to its index and second – and this is very important for
general search engines as Google and Yahoo – there must be a way to (pre-) filter
searches according to a given programming language. To date we have found these
features in three engines, namely the two market leaders for general web searches
Google and Yahoo where we are able to exploit an undocumented feature of their
“filetype” filter, and the specialized engine from Koders.

4.1 Repository Volume

To illustrate the magnitude of the accessible code resources on the web the following
table shows the numbers of Java files that could be retrieved using Google, Koders
and Yahoo search engines during our experiments in 2004 and 2005. Two sets of
values are shown for the Google entries – the first giving the number obtained using
the regular human HTML interface and the second (bracketed) giving the number
obtained using the Web-API for automated access. Unfortunately, the latter delivers
only a fifth of the results available using the former.

The italicized value in the last row stems from the query “filetype:java” class OR
–class. One should assume that a search with “filetype:java” -class only delivers Java
interfaces and no classes but actually this is not the case. Manual inspections revealed
a high percentage of class files. One explanation for this strange result may be that
Google does not completely index some files. The numbers in the table represent the
mean value of several samples per month whereas individual values can vary even

 Using the Web as a Reuse Repository 305

Table 3. Number of Java files indexed by search engines on the Web

Month Google (Web API) Koders Yahoo

08/2004 300,000 - -

01/2005 640,000 - -

06/2005 950,000 (220,000) 310,000 280,000

08/2005 970,000 (220,000)
1,510,000 (367,000)

330,000 2,200,000

11/2005 2,212,000 (190,000)
4,540,000 (410,000)

330,000 2,200,000

from one request to the next within just a few minutes (for Google and Yahoo). How-
ever, the growth trend illustrated by the numbers is unmistakable. In August 2005 a
similar request for various C-style languages (filetypes: c, cpp and cs) revealed a total
of about 1.6 million source files in Google’s index, 2.7 million from Yahoo and
500,000 from Koders.

The overlap between Google and Yahoo seems to be rather low - it is typically be-
low 20% (5 out of 24) for our isLeapYear example (see table 6) and for the first
250 results of each engine for our Matrix example from table 7, 47 out of 500 over-
lap. This observation tallies with other reports for general HTML searches [14]. Un-
fortunately, it is not possible to estimate a URL-based overlap between Koders and
Google/Yahoo because Koders stores the contents with proprietary URLs. With the
numbers presented above, we estimate that our system currently has access to about 3
million Java files. This is – to our knowledge – the most comprehensive source-code
collection reported in the literature so far. Inoue et. al. [25] has access to roughly
180,000 classes and Agora to around 10,000 (black-box) applets [6].

Similar to Agora, Yahoo allows a search to be limited to pages that contain Java
applets (feature:applet), delivering the impressive number of 95,000,000 results, or to
ActiveX components (feature:activex), resulting in an astonishing 750,000,000 pages.
Although our tool focuses on white-box components at present, it should be possible
to use mechanisms like Java’s reflection capability to utilize this large number of
black-box components as well. Initial experiments in this direction have already dem-
onstrated promising results: we were able to populate a database with more than 4500
JAR files containing almost 500,000 classes.

Google and Yahoo could also be helpful for the web service community since they
are also able to retrieve WSDL files. As the next table illustrates, they are actually
better at discovering WSDL files than the web service repositories from table 1.

Table 4. Number of WSDL files delivered from search engines

Search Engine API Claimed no. of
links to WSDL files

No. of actual links to
valid WSDL files

Google yes 9000 (1700) 794 out of first 1000

Yahoo yes 13400 (1900) 425 out of first 1000

306 O. Hummel and C. Atkinson

The values in brackets show the number of results returned through the APIs. This
indicates that the search results could be better were not it for the artificial limitation
imposed on automated queries. Both search engine APIs allow access to only the first
1000 results returned in response to a query. This is not usually a problem when
searching for a specific functional component since the number of retrieved candi-
dates rarely exceeds a few hundred. To conclude this subsection, we summarize the
results of our investigations in the following table. This reinforces our belief that the
Web has a high, but so far neglected potential as a software repository.

Table 5. Summary of investigated component types that are accessible via an API

Type Estimated number Applicable search engines

.java 3,000,000 Google, Yahoo, Koders

.c, .cpp, .cs 4,000,000 Google, Yahoo, Koders

.wsdl 10,000 Google, Yahoo, UDDI, Bind-
ingPoint, XMethods

.jar 600,000 Yahoo

Applets 95,000,000 Yahoo

ActiveX 750,000,000 Yahoo

4.2 Repository Scope

Beyond the shear number of components the functional scope of the components in a
repository is another interesting characteristic which is a widely unexplored issue in
the reuse literature. Most reuse approaches published to date provide some kind of
estimate of their tool’s power. Typically, however, the underlying repositories used in
such evaluations only contained up to a few thousand classes with very limited scope.
Furthermore, their comparability is very low since most evaluations were based on
proprietary repositories supporting some special features tailored to the employed
retrieval technique. Moreover, in order to get any results from these experiments
researchers had to give tasks to their subjects that were indeed solvable with the re-
positories contents. As one possible solution for this issue we propose the definition
of reference collections of the kind commonly used in information retrieval research
to evaluate “standard” retrieval systems. However, due to the high complexity of, and
large variations in, software solutions it is clear that this will not be easy.

Another issue arises with the assessment of uncontrolled repositories like the Web.
It is very likely – as confirmed by our experiments – that large numbers of compo-
nents with common functionality appear on the Web. This is of course ideal for reuse.
However, it compounds the problems involved in comparing retrieval techniques and
estimating the scope of a software repository. Our solution for this problem was to
take examples from comparable reuse experiments to (a) get an impression of the
quality of our combination of retrieval techniques and (b) to estimate the scope of the
Web as a repository. Another insight into the demand for component searches was

 Using the Web as a Reuse Repository 307

provided by the Koders’ search statistics4. The table below gives an impression of the
capability of our tool and shows that it compares favorably to other approaches. The
table presents various stateless components that offer typically used algorithms. The
first column presents the method names that we used for the search, the second col-
umn shows the signature that we entered into our system. Columns three, four and
five show how many results passed the filtering process and the last column shows
the source which provided the inspiration for the example. Due to space restrictions
we cannot show the test cases for the semantic checking here. It should be enough to
know that we used about three to five test cases per example as they are typically
applied for unit testing in non-reuse processes.

Table 6. Query results from June and July 2005

Names Signature

K
od

er
s

Y
ah

oo

G
oo

gl
e

Source

getRandomNumber int x int: int 3 6 2 [5], [25]

sort int[]: void 1 12 15 Koders

reverseArray int[]: void 0 10 6 -

copyFile String: void 2 1 0 Koders

isPrime int: Boolean 1 8 14 [18]

sqrt double: double 2 9 5 [7]

isLeapYear int: Boolean 1 29 24 [5]

replace String x String: String 14 10 22 Koders

gcd5 int x int: int 3 68 10 [10]

md5 String: String 3 1 0 Koders

lcs6 String x String: String 0 0 2 [10]

quicksort String[]: void 4 3 2 [25]

Due to the heuristics implemented in our prototype, results with slightly different
names were adapted to the original signature and also accepted, like getRando-
mInt instead of getRandomNumber and so on. Furthermore, the autoboxing capa-
bilities of Java 1.5 came handy for the BinaryTree example from the table below
which illustrates more complex and typically stateful components. Interestingly, we
were not able to retrieve a single functioning web service for any of the examples
from table 6 above, and we were only able to find the CreditCardValidator
from table 7 with more complex classes below. We describe the interfaces of these
examples in the form of UML class diagrams:

4 http://koders.com/info.aspx?page=LanguageReport
5 Greatest common divisor.
6 Longest common substring.

308 O. Hummel and C. Atkinson

Table 7. Exemplary stateful components

Component’s UML diagram

 K
od

er
s

re
su

lt
s

Y
ah

oo

re
su

lt
s

G
oo

gl
e

re
su

lt
s

So
ur

ce

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

0 4 7 [17]

Stack

+push(o:Object):void
+pop():Object

6 13 33 [25] &
similar to
[22]

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

1 1 3 [21]

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

1 1 1 [20]

Deck

+shuffle():void
+deal():Card

Deck

+shuffle():void
+deal():Card

Card

+toString():String

Card

+toString():String

- 20 17 [5]

4.3 Component Quality

The most pressing question still to be answered is of course the quality of components
downloaded from the Web. So far we found that most components that passed our
tests were of reasonable quality, and some minor problems (e.g. with the isLeapYear
example or the size of harvested Stack classes) could have been avoided with better
test cases. This directly leads to the realm of reliability measurement and the evalua-
tion of components to certain levels of confidence. Even when a component passes all
tests defined by a developer it is not certain that it will perform with 100% reliability
since unit tests are incomplete in most practical situations. As this is also the case for
non-reuse components, further acceptance tests would certainly follow in either case.

However, as harvesting typically delivers multiple results for a search request the
idea of back-to-back testing [27] (i.e., comparing the results of functionally identical
components for the same random input) is a good starting point to estimate the reli-
ability of retrieved components. This naturally leads to another area of enhancement
which relates to the issue of ranking components. At present the result of our selection
process is a list of components which have passed all the filtering steps and thus qual-
ify as “working” components. However, this set is not ordered in any way. The next
logical extension of the approach is to present the components in a ranked list similar
to that of Google and Spars-J [25]. There are many possible ways of doing this like

 Using the Web as a Reuse Repository 309

depending on non-functional attributes of a component such as its estimated reliability
or code metrics to mention just a few.

4.4 Extensibility

One way of estimating the size of the World Wide Web as a component repository is
to inject known components into and determine how easily they can be detected. One
way of doing this is to insert files into the CVS repository of a big open source site
like Sourceforge since these are almost immediately made available on the Web.
Another approach would be to simply store source files on a web server, link them via
a HTML file and submit everything to the crawlers of one of the big search engines.
We did exactly this in early 2006 with some Java projects. However, the results were
not encouraging. Google had not indexed any of them in our eight week observation
period and via Yahoo our index page was accessible for a few days but was then re-
moved again. A possible explanation might be that the big search engines focus on
human readable material and hence try to avoid including source code in their index.
Koders also appears not to have updated its index for many months. These observa-
tions make it clear that contributing to the ubiquitous repository World Wide Web in
a controlled fashion is not practical at present.

We have also investigated whether the common peer-to-peer (P2P) platform
Gnutella is useful for component distribution, as P2P systems are typically a place
where all kinds of files can be easily shared with almost no effort. However, the re-
sults are – at least currently – not encouraging. For instance, there are only about
2,500 Java source files available in the Gnutella network on average. And as P2P
systems simply search in the name and not in the content of files they offer only the
most simplistic search support and hence offer not much incentive for developers to
use P2P systems for this purpose. These investigations show that there is plenty of
room for a dedicated P2P or web search system that makes it easy contribute code,
perhaps in the same way that CVS plug-ins for common CASE tools function.

5 Conclusion and Future Work

There have been many notable attempts during the history of computer science to
make software reuse a more integral part of industrial software engineering, but to
date they have all foundered on the problem of creating and maintaining a sufficiently
rich and large repository of components. This includes the UDDI-based Universal
Business Registry which despite the relative newness of the technology was full of
unusable material before it has been closed down recently.

In contrast to this experience, the contribution of this paper is to show that (1) the
Web has become sufficiently large and stable to serve as a self-maintaining compo-
nent repository and (2) that it is possible to build an engine which can harvest compo-
nents from this repository in an efficient and dependable way. Since we are still in a
fundamental research stage there is a whole host of other issues to be addressed. The
security problem associated with executing unknown software from the Web is one
example, of course. Hence, we are working to extend the capabilities of our prototype
tool in this and several other directions. Support for some kind of ontology or

310 O. Hummel and C. Atkinson

thesaurus technology is one important idea. Another is the inclusion of proactive
recommendation technology in the spirit of CodeBroker [25]. Although our approach
originated from agile development approaches we also aim to provide tight integra-
tion into modern component development methodologies like KobrA [12]. Closely
related to this aspect is the problem that common programming languages do not
make components they rely on explicit- that is, their required interface is typically
hidden inside the source code. Although, we have made good progress in resolving
the required interfaces of components (i.e. the imports of Java files) there is still a
long way to go. Finally, there are lots of ethical and legal aspects related to the har-
vesting of software from the Web that could also influence the usability of a compo-
nent. However, as with most other Internet technologies including search engines and
peer-to-peer file sharing systems, the technology usually comes first and the legal
issues are sorted out afterwards. Therefore, we hope the work described in this paper
will provide a new impulse to software reuse and will help bring closer the day when
automated access to a rich library of software components is the rule rather than the
exception.

References

1. McIlroy, D.: Mass-Produced Software Components. Software Engineering: Report of a
Conference sponsored by the NATO Science Committee, Garmisch (1969)

2. Hummel, O., Atkinson, C.: Extreme Harvesting: Test Driven Discovery and Reuse of Soft-
ware Components, Proceedings of the International Conference on Information Reuse and
Integration (IEEE-IRI), Las Vegas (2004)

3. Frakes, W. B., Fox, C.J.: Sixteen Questions about Software Reuse. Communications of the
ACM, Vol 38 Issue 6 (1995)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (1999)
5. Ye, Y., Fischer, G., Reuse-Conducive Environments. Journal of Automated Software En-

gineering, Vol. 12, Iss. 2, Kluwer (2005)
6. Seacord, R.: Software Engineering Component Repositories, Proceedings of the Interna-

tional Conference of Software Engineering, Los Angeles (1999)
7. Podgurski, A., Pierce, L.: Retrieving Reusable Software by Sampling Behavior. ACM

Transactions on Software Engineering and Methodology, Vol. 2, Iss. 3 (1993)
8. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of web services using se-

mantic descriptions. In Web Services: Modeling, Architecture and Infrastructure workshop
in ICEIS 2003, Angers (2003)

9. Frakes, W.B., Kang, K.: Software Reuse Research: Status and Future. IEEE Transactions
on Software Eng., Vol. 31, No. 7 (2005)

10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd Edition.
MIT Press (2001)

11. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for Web Ser-
vices. Proceedings of the 30th VLDB Conference, Toronto (2004)

12. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst, J., Zettel, J.: Component-based Product Line Engineering with UML.
Addison Wesley (2002)

13. Szyperski, C.: Component Software, Addison-Wesley, 2nd Edition, 2002
14. Dogpile.com: Different Engines, Different Results, Technical Report, (2005): http:// com-

paresearchengines. dogpile.com/ OverlapAnalysis.pdf (accessed 09/08/05).

 Using the Web as a Reuse Repository 311

15. Amin, R., Ó Cinnéide, M. and Veale, T.: LASER: A Lexical Approach to Analogy in Soft-
ware Reuse, Proceedings of the International Workshop on Mining Software Repositories,
Edinburgh (2004)

16. Belwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y.,
Januszewski, K., Lee, S., McKee, B., Munter, J., von Riegen, C.: UDDI Version 3.0. Oa-
sis Committee Specification (2002)

17. Mili, A., Mili, R., Mittermeir, R: A Survey of Software Reuse Libraries. Annals of Soft-
ware Engineering 5 (1998)

18. Hall, R.J.: Generalized behavior-based retrieval. Proceedings of the International Confer-
ence on Software Engineering, Baltimore (1993)

19. Mili, A., Yacoub, S., Addy, E., Mili, H., Toward an engineering discipline of software re-
use. IEEE Software, Vol. 16, No. 5 (1999)

20. Vitharana, P., Zahedi, F., Jain, F.: Knowledge-Based Repository Scheme for Storing and
Retrieving Business Components. IEEE Transactions on Software Engineering, Vol. 29,
No. 7 (2003)

21. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-
tions. Addison Wesley (2000)

22. Zaremski, A.M. Wing, J.M.: Signature Matching: A Tool for Using Software Libraries.
ACM Transact. on Software Engineering and Methodology, Vol. 4, No. 2 (1995)

23. Beck, K., Gamma, E., JUnit: A Cook’s Tour. Java Report (August 1999)
24. Frakes, W.B., Fox, C.J.: Quality Improvement Using A Software Reuse Failure Modes

Model. IEEE Transactions on Software Eng., Vol. 22, No. 4 (1996)
25. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto, S.:

Ranking Significance of Software Components Based on Use Relations. IEEE Transac-
tions on Software Eng., Vol. 31, No. 3 (2005)

26. Brown, A.W., Booch, G.: Reusing Open-Source Software and Practices: The Impact of
Open-Source Software on Commercial Vendors. In C. Gacek (Ed.): LNCS 2319, Springer
(2002)

27. Vouk, M.A., Back-to-Back Testing. Information & Software Techn., Vol. 32, No. 1 (1990)
28. Edmonds, B., Bryson, J.: The Insufficiency of Formal Design Methods - the necessity of

an experimental approach for the understanding and control of complex MAS, Proc. of the
3rd Intern. Joint Conf. on Autonomous Agents & Multi Agent Systems, New York (2004)

29. Yao, H., Etzkorn, L.: "Towards a Semantic-based Approach for Software Reusable Com-
ponent Classification and Retrieval", Proceedings of the 42nd annual Southeast Regional
Conference, Huntsville (2004)

30. Poulin, J.: "Populating Software Repositories: Incentives and Domain-Specific Software",
Journal of Systems and Software, Vol. 30 (1995)

