
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3249563

Code Conjurer: Pulling Reusable Software out of Thin Air

Article in IEEE Software · October 2008

DOI: 10.1109/MS.2008.110 · Source: IEEE Xplore

CITATIONS

157
READS

970

3 authors:

Some of the authors of this publication are also working on these related projects:

Multi-Level Modeling Research View project

Oliver Hummel

Karlsruhe Institute of Technology

56 PUBLICATIONS 704 CITATIONS

SEE PROFILE

Werner Janjic

Asseco Solutions AG

17 PUBLICATIONS 302 CITATIONS

SEE PROFILE

Colin Atkinson

Universität Mannheim

212 PUBLICATIONS 5,724 CITATIONS

SEE PROFILE

All content following this page was uploaded by Werner Janjic on 19 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/3249563_Code_Conjurer_Pulling_Reusable_Software_out_of_Thin_Air?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3249563_Code_Conjurer_Pulling_Reusable_Software_out_of_Thin_Air?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multi-Level-Modeling-Research?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Karlsruhe-Institute-of-Technology?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Werner-Janjic?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Werner-Janjic?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Werner-Janjic?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet-Mannheim?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Werner-Janjic?enrichId=rgreq-5131c63b6d2bdffe45b33d4a488f4fc2-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk1NjM7QVM6MjY0MTMxNTk3MDQxNjY0QDE0Mzk5ODUyODgyMDQ%3D&el=1_x_10&_esc=publicationCoverPdf

0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 September/October 2008 I E E E S o f t w a r e � 45

focuss o f t war e deve l opm en t t o o l s

Code Conjurer:
Pulling Reusable Software out of Thin Air

Oliver Hummel, Perot Systems Germany

Werner Janjic and Colin Atkinson, University of Mannheim

A tool that
automatically
finds and presents
suitable reusable
software components
to developers can
help speed the
development process.

F
or many years, the IT industry has sought to accelerate the software develop-
ment process by assembling new applications from existing software assets.
However, true component-based reuse of the form Douglas McIlroy1 envisaged
in the 1960s is still the exception rather than the rule, and most of the systematic

software reuse practiced today uses heavyweight approaches such as product-line engineer-
ing or domain-specific frameworks. By component, we mean any cohesive and compact
unit of software functionality with a well-defined interface—from simple programming

language classes to more complex artifacts such as
Web services and Enterprise JavaBeans.

Historically, three main reasons explain why
component-oriented reuse has failed to take off:

Not enough good components were around to
make it worthwhile. Indeed, during the golden
years of software reuse research in the 1980s
and 1990s, researchers considered themselves
fortunate to have a repository with even a few
hundred components.
The retrieval technologies used to find suit-
able components matching a user’s query were
crude and often returned a high proportion of
unsuitable components or missed many rel-
evant ones.2
The overhead involved in using the retrieval
technology to find suitable components and
evaluate their fitness for purpose was too high.

As a result, the balance of effort and risk involved
in software reuse always compared unfavorably to
building components from scratch.

Recent developments have improved the situ-
ation. The rise of the open source movement and
cheap, high-bandwidth Internet connectivity have

■

■

■

given software developers access to vast swathes
of free software, so the number of available com-
ponents is no longer a significant problem. Also, in
the last two years, high-performance code-search
engines (such as Koders, Google Code Search, and
Merobase) have emerged that provide better ways
of retrieving assets from this code base, going be-
yond simple keyword matching. The third prob-
lem regarding retrieval overhead has changed little,
however, and is now the main barrier to the routine
reuse of software components and the emergence of
software component marketplaces.

This is where tools such as Code Conjurer, de-
veloped at the University of Mannheim, aim to
make a difference (see the “Repository-Driven Re-
use Assistance Tools” sidebar for a description of
similar tools). As its name implies, from a develop-
er’s viewpoint, Code Conjurer effectively “conjures
up” software components out of thin air and makes
them available with almost no effort on the user’s
part. It does this by tapping into the vast resource
of components offered by a modern code-search
engine to deliver high-relevance software reuse rec-
ommendations with minimal, if any, disturbance
to a developer’s normal practices. Moreover, it dra-
matically reduces the risk and effort involved in

46	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

exploring reuse opportunities by using standard
unit tests created during the normal development
process to perform a semantic assessment of the
reuse candidates. We first demonstrated the feasi-
bility of test-driven search in 2004.3 We recently
released a beta version of Code Conjurer as a freely
available plug-in that seamlessly integrates code
search and reuse functionality into the Eclipse Java
development environment (see http://codeconjurer.
sourceforge.net).

Code-search engines
Code-search engines provide the backbone for
the new generation of reuse support tools—for
example, CodeGenie relies on Sourcerer4 while
ParseWeb uses Google Code Search. Code Con-
jurer is driven by the Merobase component search
engine, which uses Lucene, Apache’s open source

information-retrieval library, to index program-
ming language units from various open source
code repositories (such as Sourceforge, Google
Code, or the Apache projects) as well as the open
Web. When crawling for code, Merobase’s analy-
sis software identifies the basic abstraction imple-
mented by a module and stores it in a language-
agnostic description format. The description’s most
important element is the abstraction’s name, but
other key features are also stored, such as method
names and parameter signatures.

Table 1 summarizes the code-search engines we
were aware of in summer 2007, when we last per-
formed a systematic comparison. We focused on
Java components because Code Conjurer currently
focuses on the Java language. As the table shows,
Merobase currently indexes more than 10 million
code modules, giving Code Conjurer access to a re-

The idea of accelerating software development by tapping
into the knowledge wrapped up in existing components isn’t
new.1 Yunwen Ye’s CodeBroker was one of the first tools to
explore this idea in the form of a proactive invocation service
tightly integrated into the well-known Emacs editor.2 While
developers worked on their source code, CodeBroker offered
coding suggestions on the basis of information garnered from
similar components in the repository. Ye identified two fun-
damentally distinct ways of getting this information from the
repository:

the classic pull or reactive approach, in which a user
actively browses or searches for information, and
the push or proactive approach, in which a tool monitors
the user’s activities and offers information it considers
useful in a specific context.

However, CodeBroker required users to annotate their compo-
nents with active comments, significantly increasing the effort
involved in developing them, and its repository never grew
beyond a few hundred components.

More recent tools have built on CodeBroker’s idea of pro-
active recommendation. For example, Rascal recommends
how and when to call the methods of objects from common
libraries such as Java Swing, based on an analysis of existing
classes.3 It uses collaborative filtering, similar to that used in
online shopping sites, to recommend products on the basis of
those similar customers bought.

Tools such as Prospector,4 ParseWeb,5 and Strathcona6 fol-
low a similar path but aren’t proactive. They focus on helping
developers navigate through the API jungle created by today’s
standard libraries and frameworks. Because such libraries
contain far more assets than even the most sophisticated reuse
libraries and tools of a decade ago (for example, Sun’s JDK

■

■

6 contains more than 3,500 classes in more than 200 pack
ages), such navigation help is urgently required.

Prospector and ParseWeb support developers by recom-
mending method invocation sequences that yield a required
destination data type from given input parameter types.
Strathcona provides source code examples and structural con-
text for the code fragment under development.

CodeGenie7 is another recently released Eclipse plug-in
that explores the notion of test-driven reuse.8 However, it isn’t
proactive and requires developers to manually test all reuse
candidates locally in their development environments.

References
	 1.	 D. McIlroy, “Mass-Produced Software Components,” Software Engineer-

ing: Report of a Conference Sponsored by the NATO Science Committee,
NATO Scientific Affairs Division, 1969, pp. 138–155.

	 2.	 Y. Ye, “Supporting Component-Based Software Development with Active
Component Repository Systems,” PhD dissertation, Faculty of the Graduate
School, Univ. of Colorado, 2001.

	 3.	 F. McCarey, M. Ó Cinnéide, and N. Kushmerick, “Rascal: A Recommender
Agent for Agile Reuse,” Artificial Intelligence Rev., vol. 24, nos. 3–4, 2005,
pp. 253–276.

	 4.	 D. Mandelin et al., “Jungloid Mining: Helping to Navigate the API Jungle,”
Proc. Conf. Programming Language Design and Implementation, ACM
Press, 2005, pp. 48–61.

	 5.	 S. Thummalapenta and T. Xie, “ParseWeb: A Programmer Assistant for
Reusing Open Source Code on the Web,” Proc. Int’l Conf. Automated
Software Eng., ACM Press, 2007, pp. 204–213.

	 6.	 R. Holmes, R.J. Walker, and G.C. Murphy, “Approximate Structural Context
Matching: An Approach for Recommending Relevant Examples,” IEEE
Trans. Software Eng., vol. 32, no. 12, 2006, pp. 952–970.

	 7.	 O.A.L. Lemos, S. Bajracharya, and J. Ossher, “CodeGenie: A Tool for
Test-Driven Source Code Search,” Proc. Int’l Conf. Object-Oriented Pro-
gramming, Systems, Lanugages and Applications, ACM Press, 2007, pp.
917–918.

	 8.	 O. Hummel and C. Atkinson, “Extreme Harvesting: Test Driven Discovery
and Reuse of Software Components,” Proc. IEEE Int’l Conf. Information
Reuse and Integration, IEEE Press, 2004, pp. 66–72.

Repository-Driven Reuse Assistance Tools

	 September/October 2008 I E E E S o f t w a r e � 47

pository several orders of magnitude greater than
that of most first-generation reuse recommendation
tools (see the “Repository-Driven Reuse Assistance
Tools” sidebar).

Traditional component-retrieval techniques are
often criticized for being too imprecise or compli-
cated to use. Most of the numbers backing these
criticisms, however, are based on experiments with
only small collections. To gain a better understand-
ing of these techniques’ effectiveness, we imple-
mented several well-known and new retrieval al-
gorithms in Merobase and performed some basic
experiments on the large collections it supports.5
These experiments confirmed that older retrieval
approaches, such as keyword or signature match-
ing, are indeed imprecise, as is the name-based
matching approach that many search engines still
use today. To address this problem, we developed
a small query language that lets users define search
requests in the style of programming language in-
terface descriptions. For example, to search for

components representing object-oriented abstrac-
tions, the user simply provides the abstraction’s
name followed by a list of UML-like function spec-
ifications enclosed in brackets. So, the query

Customer (
 getAddress():String;
 setAddress(String):void;
)

will search for components named Customer that of-
fer an operation (a method or function) named se­
tAddress with an In parameter of type String and an
operation getAddress with an Out parameter or return
value of type String.

Our investigations show that this interface
style of query definition delivers a precision of 30
to 50 percent depending on the interface complex-
ity. Nevertheless, traditional text-based search
techniques alone clearly can’t provide the preci-
sion needed to make component reuse a viable

Table 1
Overview of specialized code and component search engines

Search engine No. of indexed files No. of Java files Retrieval algorithms

Codase (www.codase.com) < 1 million 300,000 Keyword matching of hosted open source codes

Codefetch (www.codefetch.com) < 100,000 < 100,000 Keyword matching of source code in programming books

Component Source (www.
componentsource.com)

> 1,000 > 100 Keyword matching of component descriptions in a marketplace

CsourceSearch (www.
csourcesearch.net)

1 million 0 Keyword and name matching on popular C/C++ open source
packages

Google Code Search (www.google.
com/codesearch)

> 10 million 2.5 million Keyword matching of open source code with regex support

Koders (www.koders.com) > 1 million 600,000 Keyword and name matching of codes from large open source
hosters

Krugle (www.krugle.com) > 10 million 3.5 million Keyword and name matching in open source code and search
for technical Web pages

O’Reilly Code Search Beta (labs.
oreilly.com/code/)

100,000 15,000 Keyword matching and fielded searches on code in O’Reilly
programming books

Merobase (www.merobase.com) > 10 million 8 million Keyword and name matching, signature matching, and
interface-based and test-driven retrieval on open source code,
binary components, and Web services

Planet Source Code (www.
planetsourcecode.com)

< 100,000 < 50,000 Keyword matching on source code and programming tutorials

Sourcerer (sourcerer.ics.uci.edu/
sourcerer/search/index.jsp)

250,000 250,000 Keyword and topological matching on indexed open source
code ranked by CodeRank

Spars-J (demo.spars.info) > 300,000 300,000 Keyword and name matching on open source XML, Java, and
JSPs based on component rank and keyword rank algorithms

Ucodit (www.ucodit.com) > 100,000 > 100,000 Name matching on classes and methods on Java and C open
source code

48	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

proposition, so we also need an additional, fun-
damentally different approach to enhance search
result quality.

Test-driven search
Obviously, the usefulness of the reuse recommenda-
tions provided by a tool such as Code Conjurer de-
pends on the recommendations’ quality. Users must
still examine the components to decide whether or
not to reuse them. And users will only deem this ef-
fort worthwhile if there’s a sufficiently high chance
that the proposed components will do what they
want. A tool that gets a reputation for making poor
recommendations will quickly fall out of use.

Although Merobase finds matching compo-
nents on the basis of their identifiers and signa-
tures reasonably well, the proportion of unsuitable
components in the result set is usually rather high.
Fortunately, software is unique among the textual
documents indexed by search engines in having ex-
ecutable and observable dynamic behavior.2 Code
Conjurer and Merobase therefore exploit the in-
creasing popularity of agile development methods,
which emphasize test-driven development, to dra-
matically improve the delivered recommendations’
quality. They do this by testing the components
discovered by the underlying search algorithm and
filtering out those that fail. So, Code Conjurer’s rec-
ommendations are guaranteed to match the user’s
needs because they’ve passed the user-defined tests.

Suppose a software engineer is developing a loan
calculator component as part of a financial soft-
ware suite. If the engineer is using an agile develop-
ment approach such as Extreme Programming, he

or she will likely write a test case before developing
the production code. The JUnit test shown in the
Java editor of the Eclipse screenshot in Figure 1 il-
lustrates this type of reuse.

Normally, the developer sees only the Code Con-
jurer status view (lower left-hand side). The Reuse
Recommendations window on the bottom right only
appears when the user requests the positively tested
components. Code Conjurer becomes active as soon
as the observed test case is (partially) finished, typi-
cally when the developer triggers the first “make sure
the test case fails” execution. At this point, the tool
can send a test-driven search request to the Mero-
base server, which searches for candidates based on
the interface of the class extracted from the test case.
Merobase immediately returns information about
the number of candidates found to Code Conjurer,
which nonintrusively displays this information in
the status view. In the meantime, Merobase auto-
matically tests these candidates in a secured virtual
machine to filter out those that don’t pass the test.

The status view shows the developer immedi-
ately whether Code Conjurer has found a match-
ing component suitable for reuse by displaying the
number of successfully tested candidates. This fea-
ture is especially valuable in an agile context, where
test cases are typically developed incrementally. Be-
cause Code Conjurer can usually indicate within
seconds whether any suitable components are avail-
able, a developer can immediately add the next test
until no more reusable candidates are available or
all required tests have been specified. (We discuss
this incremental approach to test-driven reuse in
more detail elsewhere.6)

Figure 1. Test-driven
reuse recommendation
and status view.
The developer will
typically see only the
Code Conjurer status
view (lower left-hand
corner). The Reuse
Recommendations
window (bottom
right) appears when
the user asks to see
the positively tested
components.

	 September/October 2008 I E E E S o f t w a r e � 49

At any time, developers can inspect the candi-
date list, and if they decide to use a component,
Code Conjurer can weave it directly into the project
by automatically resolving its dependencies. Table
2 lists the interfaces of some example components
found using Code Conjurer. It shows the number of
positively tested matches, the total number of can-
didates, and the total time required to perform the
search. For example, for the first component, Code

Conjurer found and tested four candidates within
19 seconds but only one of them successfully passed
all the test cases. Columns 2 through 4 list results
for interface-based matching—that is, where we
tested only candidates with the names and signa-
tures defined in the test case. However, as the last
three results in the table demonstrate, it’s some-
times difficult to anticipate the interface of complex
components, so this technique returns few if any

Table 2
Reusable components found with standard JUnit test cases

Desired component

Interface-based matching Automated adaptation engine

Candidates Matches Time Candidates Matches Time

Calculator(
	 sub(int,int):int
	 add(int,int):int
	 mult(int,int):int
	 div(int,int):int
)

4 1 19
sec.

23,759 22 20 hrs.,
24 min.

Stack(
	 push(Object):void
	 pop():Object
)

692 150 26
min.

35,634 611 18 hrs.,
23 min.

Matrix (
	 Matrix(int, int)
	 get(int,int):double
	 set(int,int, double):void
	 multiply(Matrix): Matrix
)

10 2 23
sec.

137 26 5 min.,
25 sec.

ShoppingCart(
	 getItemCount():int
	 getBalance():double
	 addItem(Product):void
	 empty():void
	 removeItem(Product):void
)

4 4 26
sec.

12 4 47
sec.

Spreadsheet (
	 put(String,String):void
	 get(String):String
)

0 0 3
sec.

22,705 4 15 hrs.,
13 min.

ComplexNumber (
	 ComplexNumber(double,double)
	 add(ComplexNumber):ComplexNumber
	 getRealPart():double
	 getImagineryPart():double
)

1 0 3
sec.

89 32 1 min.,
19 sec.

MortgageCalculator(
	 setRate(double):void
	 setPrincipal(double):void
	 setYears(int):void
	 getMonthlyPayment():double
)

0 0 4
sec.

4,265 15 3 hrs.,
19 min.

50	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

candidates. To address this limitation, we devel-
oped some heuristics (for example, ignoring object
and method names) that can increase the set of test-
ing candidates. In addition, with the aid of an au-
tomated adaptation engine, which basically works
through all feasible method-mapping permutations,
Code Conjurer can recommend components with
different interfaces from those required as long as
they provide the required functionality. The table
also presents the results of these experiments (col-
umns 5 through 7).

As the table shows, increasing the number of
components to test can significantly increase the
testing effort. Nevertheless, the results show that
the test-driven-reuse approach can deliver useful re-
sults (such as the fully functional spreadsheet com-
ponent shown in the table) and that it makes sense
to seamlessly embed the technology into develop-
ment environments and make it accessible from as
many parts of the development process as possible.

Proactive reuse recommendations
Backed up by access to large repositories and better
retrieval mechanisms, tools such as Code Conjurer
are on the threshold of offering significant support
to mainstream software development projects. Be-
yond the proactive support for test-driven reuse in
lightweight development approaches (described in
the “Repository-Driven Reuse Assistance Tools”
sidebar), Code Conjurer supports design and de-
sign-based retrieval in traditional heavyweight pro-
cesses. Consider a typical development scenario

such as the one Figure 2 illustrates, in which de-
velopers define the desired component API at the
design stage. Code Conjurer can deliver implemen-
tation recommendations directly from the compo-
nent’s UML representation and, when set to proac-
tive mode, can issue new search requests each time
the developer adds, removes, or changes an inter-
face-defining part of the component. Code Con-
jurer then presents these components in the lower
left Recommendation box. The user can explore
any recommendation further by expanding its im-
plementation in the lower right box.

Even if the developer doesn’t wish to use one of
the components as is, the information embedded in
the recommended components can often be useful
in improving the design. Code Conjurer not only
returns a list of matching components but also an-
alyzes them using various clustering techniques to
create a characteristic group picture. Using this in-
formation, Code Conjurer can suggest the typical
set of methods offered by components matching the
partial interface defined by the user. For example,
given the stack in Figure 2, Code Conjurer can indi-
cate that the typical set of methods offered by such
an abstraction is as follows:

public class Stack{
 boolean isEmpty() {}
 Object pop() {}
 void push(Object arg1) {}
 Object top() {}
}

Figure 2. Design-based
reuse recommendation
example. In the image,
a developer has
identified a desired
API component. If in
proactive mode, Code
Conjurer issues a
search request for that
component and displays
the results in the Reuse
Recommendations box.

	 September/October 2008 I E E E S o f t w a r e � 51

The developer can then easily insert the appropriate
operation signatures into the class he or she is work-
ing on and, subsequently, obtain reuse recommen-
dations likely to offer the required functionality.

To illustrate Code Conjurer’s automated depen-
dency resolution feature, we present an example
in a traditional development context requiring an
FTPServer component. Because such a component
will likely depend on other classes, Code Conjurer’s
autoresolve feature can automatically incorporate
the required classes into the developer’s project,
starting from the initially retrieved class. Figure 3a
shows the Eclipse Package Explorer with the stub of
an FTPServer class that the developer has defined.
Figure 3b shows the package structure after the de-
veloper has chosen an appropriate reuse candidate
and Code Conjurer has automatically fetched the
missing code on which it depends.

The dependency resolver searches the FTPServer
class’s immediate context (that is, the same pack-
age) for the required dependencies. Obviously, this
process can be complex if it can’t find the required
components at the anticipated places and it must
try to recursively find potential matches from other
sources.

Open issues
The main advantage of our test-driven approach is
the reuse recommendations’ high quality. In fact,
the recommended components are certain to meet
users’ needs as defined by their test cases. However,
the approach also has some disadvantages.

First, the speed at which it can generate recom-
mendations depends on the number of potential test
candidates. We’re currently optimizing the selec-
tion of candidates that don’t fully match the query

syntactically to speed up recommendation delivery.
Obviously, we can further improve performance
by distributing the testing process over a cluster of
machines.

In addition, the size of the component pool to
which we can apply this technique is reduced be-
cause Code Conjurer can’t automatically execute all
the components in the Merobase repository because
of unresolvable dependencies. Another problem is
that about 30 percent of all Java source files con-
tain GUI elements, so they will likely require user
interaction when executed. Nevertheless, with tech-
niques such as automated dependency resolution,
we’ve already been able to increase the proportion
of successfully compilable—and thus potentially
executable—components to well over 30 percent.

A third disadvantage is that although precise
reuse recommendation technology of the kind sup-
ported by Code Conjurer could accelerate software
development projects (saving companies a lot of
money), having open source code available at one’s
fingertips might encourage a copy-and-paste men-
tality among developers. The negative aspects of
such programming include a lack of information
about code origins and versions (such as bug fixes)
and reduced oversight of conformance to licens-
ing requirements.7 Nevertheless, copy and paste is
such a widely practiced reuse technique, even with-
out the availability of code-search engines, that it
makes much more sense to try to improve how it’s
done than to try to stamp it out.

Thus, Code Conjurer and Merobase can help in
three main ways. First, by making it easier to find
complete, encapsulated code that fulfills a given
need, Code Conjurer can encourage a more com-
ponent-oriented approach (based on complete,

(a) (b)

Automatic dependency
resolution

Figure 3. Eclipse
Package Explorer
(a) before and
(b) after dependency
resolution. Code
Conjurer’s autoresolve
feature automatically
incorporates the
required classes (in
this case, an FTPServer
component) into a
project, starting from
the initially retrieved
class.

52	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

packaged modules with well-defined APIs) rather
than snippet-oriented reuse, based on the scaveng-
ing of arbitrary blocks of implementation.

Second, by providing a single, globally accessible
index of code resources, Merobase provides a single
point of reference that developers can use to iden-
tify the origins of reused code (whether snippets or
components). Using various duplication-resolution
techniques, Merobase can identify different cop-
ies of the same code modules by their unique hash
value. Although copy-and-paste reusers won’t be
automatically informed (in a push sense) when de-
velopers have changed the source code, they can use
the Merobase search facilities to check for changes
(in a pull sense)—for example, when they’re about
to release a new version of their application.

Finally, by automatically identifying and ana-
lyzing the license information embedded within
code modules, search engines can reduce the risk
of license mismatches. For example, Merobase in-
cludes a license-recognition tool that lets users ex-
clude groups of licenses (such as those with a strong
copyleft) from search results. It also uses a license
ontology to detect potential incompatibilities be-
tween the conditions associated with reuse candi-
dates and a user’s existing code base.

O ur test-driven recommendation technology
effectively trades quantity for quality. It
returns fewer query results than previous

reuse recommendation tools, but the results are of
much higher quality—they do what the developer
expects them to do. We believe this is a price worth
paying for a tool running in proactive (that is, back-
ground) mode that doesn’t disturb users unless it
finds something that’s worthy of their attention. On
the other hand, there’s the danger that Code Con-
jurer delivers useful results so infrequently that users
will find the service of little value. We don’t yet have
enough empirical data on the tool’s usage to deter-
mine whether Code Conjurer has attained the opti-
mal balance. However, we’re refining the approach
for different kinds of users in different development
contexts, with a special focus on agile approaches
in which test cases for components are developed
incrementally. Even if pure test-driven reuse recom-
mendation doesn’t provide the optimal trade-off
between quantity and quality by itself, it’s just one
of the search techniques offered by Code Conjurer
and Merobase that can help leverage the large col-
lections of source code accumulated on the Internet
and by almost every development company.

Although tools like Code Conjurer are concep-
tually simple and, when working in fully proactive
mode, can be almost invisible to the user, they have
the capability to significantly accelerate software
engineering projects and to finally usher in a new
era in which component-style software reuse is the
rule rather than the exception.

References
	 1.	 D. McIlroy, “Mass-Produced Software Components,”

Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, NATO
Scientific Affairs Division, 1969, pp. 138–155.

	 2.	 A. Mili, R. Mili, and R. Mittermeir, “A Survey of Soft-
ware Reuse Libraries,” Annals of Software Eng., vol. 5,
1998, pp. 349–414.

	 3.	 O. Hummel and C. Atkinson, “Extreme Harvesting:
Test Driven Discovery and Reuse of Software Compo-
nents,” Proc. IEEE Int’l Conf. Information Reuse and
Integration, IEEE Press, 2004, pp. 66–72.

	 4.	 O.A.L. Lemos, S. Bajracharya, and J. Ossher, “Code-
Genie: A Tool for Test-Driven Source Code Search,”
Proc. Int’l Conf. Object-Oriented Programming, Sys-
tems, Languages and Applications, ACM Press, 2007,
pp. 917–918.

	 5.	 O. Hummel, W. Janjic, and C. Atkinson, “Evaluating
the Efficiency of Retrieval Methods for Component
Repositories,” Proc. Int’l Conf. Software Eng. and
Knowledge Eng., IEEE Press, 2007, pp. 570–575.

	 6.	 O. Hummel and C. Atkinson, “Supporting Agile Reuse
through Extreme Harvesting,” Proc. Int’l Conf. Agile
Processes in Software Eng. and Extreme Programming,
Springer, 2007, pp. 28–37.

	 7.	 W.J. Brown, R.C. Malveau, and H. McCormick, Anti
Patterns: Refactoring Software, Architectures, and
Projects in Crisis, John Wiley & Sons, 1998.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Oliver Hummel is a consultant for Perot Systems Germany. His research interests in­
clude software reuse, information retrieval, and software development processes. Hummel
received his PhD in software engineering from the University of Mannheim. Contact him at
oliver.hummel@ps.net.

Werner Janjic is a PhD student in software engineering at the University of Mann-
heim. His main research interests are in practical software reuse in the context of agile de-
velopment and its impact on the software development life cycle. Janjic has a diploma in
computer science and business administration from the University of Mannheim. Contact him
at janjic@informatik.uni-mannheim.de.

Colin Atkinson is chair of software engineering at the University of Mannheim. His
research interests focus on object and component technology and their use in the systematic
development of software systems. Atkinson received his PhD in computer science from
Imperial College, London. Contact him at atkinson@informatik.uni-mannheim.de.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

View publication stats

https://www.researchgate.net/publication/3249563

