
An Unabridged Source Code
Dataset for Research in Software Reuse

Werner Janjic˚, Oliver Hummel:, Marcus Schumacher˚, and Colin Atkinson˚
˚Software-Engineering Group,

University of Mannheim, Germany
{werner, schumacher, atkinson}@informatik.uni-mannheim.de
:Institute for Program Structures and Data Organization,

Karlsruhe Institute of Technology, Germany
hummel@kit.edu

Abstract—This paper describes a large, unabridged data-set of
Java source code gathered and shared as part of the Merobase
Component Finder project of the Software-Engineering Group
at the University of Mannheim. It consists of the complete index
used to drive the search engine, www.merobase.com, the vast
majority1 of the source code modules accessible through it, and
a tool that enables researchers to efficiently browse the collected
data. We describe the techniques used to collect, format and store
the data set, as well as the core capabilities of the Merobase
search engine such as classic keyword-based, interface-based
and test-driven search. This data-set, which represents one of
the largest searchable collections of source and binary modules
available online, has been recently made available for download
and use in further research projects. All files are available at
http://merobase.informatik.uni-mannheim.de/sources/

I. INTRODUCTION

The creation of a searchable software repository has long
been seen as a key step for increasing reuse levels in software
development [10]. However, even 15 years ago, collecting
more than just a few hundred reusable code entities was a
nearly hopeless undertaking since most development com-
panies kept their source codes private (and are still doing
this today for understandable reasons). However, the rise
of the Internet and the “open-source revolution” opened a
new opportunity for building large collections of searchable
software, prompting Mili et al. [9] to predict a need for
more powerful software retrieval solutions back in the late
1990s. Nevertheless, harvesting publicly available software
over the Internet is not as easy as it might appear. The
widely-recognized failure of the UDDI Business Registry in
2006 [1] demonstrated that service and component repositories
cannot passively wait for developers to populate them, since
the quality of voluntarily uploaded information invariably
degrades over time. Instead, it is necessary to actively crawl
for searchable material and take regular steps to continuously
maintain the quality of an index built upon it. This mirrors
the evolution of search mechanisms in mainstream web search
engines where the first generation of manually maintained web
directories like Yahoo! were almost completely superseded by
crawler-based search engines such as Google.

1The data set includes code retrieved from CVS/SVN repositories without
http sources, which are downloaded by the search engine just-in-time.

II. THE CRAWLING PROCESS

The main part of the data collection and index infrastructure
described in this paper were created in 2006 and 2007 in two
distinct crawling phases. Starting from a few hand-collected
seed URLs we initially crawled the open web using the Nutch
crawl tool which is part of the Lucene search engine project
of the Apache Software Foundation [5]. The second major
crawling effort involved the collection of data from major open
source hosting sites such as SourceForge, JavaForge, etc. In
the following, we provide a more detailed description of the
approach used to crawl the dataset, the data structures used to
store the gathered information in Lucene and the techniques
used to make these resources searchable.

We used the open source tool Nutch to gather the data for
building the index, regardless of whether the resources were
stored locally (e.g., files downloaded from the version control
systems of hosters for open source projects) or were available
over the open web (via the http-protocol). Crawling the web
for reusable source files had limitations since the discovered
files were often relatively isolated. Furthermore, most open
source hosters excluded crawlers from their browsable reposi-
tories on the web (via robots.txt) so that using the locations of
CVS and SVN repositories was a more sustainable solution.
Hence, the bulk of the index was created by downloading
complete open source projects in order to locally crawl the
“mirrors” with Nutch. In order to further increase the output
of our crawls we also used Nutch to download further URLs
contained in the analyzed source files.

The collected data was indexed and made searchable using
the popular document-based data indexing framework called
Lucene, which is also available as an open-source project. In
contrast to relational databases, which might appear a more
natural choice for this purpose at a first glance, Lucene is
the much more efficient solution for text-based searches over
software artifacts since source codes can be better stored and
more efficiently analyzed when stored as textual documents
than as tables in a relational database. As well as being op-
timized to store relationships rather than to support keyword-
based searches, the open-source relational databases available
at that time did not offer useful relevance ranking mechanisms

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

339



TABLE I
CONTENT OF THE CVS/SVN SOURCE FILE DATASET.

Granularity # Files

All files 8, 964, 433

Java source files 2, 429, 999

Java class files 203, 689

.jar containers 27, 168

Java source files within .jar containers 40, 692

Java class files within .jar containers 4, 342, 376

Java methods 22, 262, 954

LOC 182, 224, 390

C files 1, 046, 239

C# files 193, 949

for ordering the results. In other words, a row in a relational
database is either recognized as belonging to the return set for
an SQL query or not. With the application of a few “tricks”
to the index data, a Full-Text Search Framework like Lucene
can be enabled to support advanced searches for things like
the interface of Java classes.

III. REPOSITORY CONTENT

To make the contents of Merobase’s code repository avail-
able for other researchers we have created a downloadable
bzipped tarball file (compressed approximately 15 GB, un-
packed approximately 50 GB) archived on June, 2nd 2010. Its
containment is listed in table I.

An interesting aspect of the archive is the size that in-
dividual classes can reach. For example, the largest file
in the dataset, the AMD64RawAssembler class, contains
51, 860 lines of code within 7, 550 methods, followed by the
StdOverloadedList class with 50, 680 lines of code in
4, 854 methods. Furthermore, in addition to these numerical
properties we analyzed various other characteristics like the
used open source licenses or the types of artifacts (i.e. whether
they are applets, EJBs or test cases) and also measured several
software metrics.

IV. INDEX STRUCTURE

Like Merobase, other code search engines – from academia
and industry – such as Sourcerer [2] or Krugle [4] also use the
Lucene search framework to index their data. Today, Lucene is
the first choice in terms of scalability and performance for text-
based search applications. However, in contrast to other search
engines, Merobase not only stores the textual elements of the
software artifacts (i.e. usually their source code, it also extracts
a variety of analytical information and stores it in additional
fields of the index. Examples include an artifact’s project
name, type and hash value, which can be used to determine the
number of duplicates in the dataset. Table II shows the basic
attributes in the schema used in the Merobase index. Mili et
al. [9] call such an approach a faceted classification scheme,
where each field of the scheme describes a different facet of
the software artifact.

As depicted in Table II, not all fields of the schema are
unique for each software artifact. Instead several fields have
a multiplicity that is greater than one, such as method, for
example. This reflects the fact that a software component can
contain more than one method or, if one considers method
overloading, that even a method with the same name can
appear more than once. To handle such cases, Lucene allows
multiple fields to have the same tag name what we illustrate
with the multiplicity indicator. In contrast, there can also be
fields that are not filled when no appropriate information can
be extracted from the indexed artifact.

Lucene is able to perform searches on all available fields to
find and retrieve artifacts matching a user’s query. Queries can
also be composed over various fields using boolean operators.
The fact, that these searches can be carried out with high
performance results from the special tokenizing technique used
to store the indexed text. The so-called Lucene Analyzer is re-
sponsible for extracting the contents for each field and splitting
them into several tokens that can be stored within Lucene’s
dedicated tree structure. While this is usually an advantage,
it can, however, have some undesirable consequences when
it comes to more complex searches for software interfaces.
Consider the following example illustrating how the interface
of an operation is stored in the index in order to support
concrete searches:

mn:doSomethingUseful:pt_int:pt_int:rt_String

In order to find a method doSomethingUseful with
two integer parameters returning a string, for example, we
have to circumvent Lucene’s normal tokenizing behavior so
that we are able to store method interfaces within a class in
their full form. As Lucene would normally split signatures
(as well as any other text) containing white space characters,

TABLE II
INDEX SCHEMA

Field Description Mult.

content source code 1
url source URL of the artifact 1
host the hostname in the URL 1
name the artifact’s name 1
lang the programming language 1
form source or binary 1
dependency recognized dependencies 0..*
kind applet, test case, EJB, etc. 1
namespace the artifact’s namespace 0..1
extends direct superclass of this artifact 0..1
implements names of implemented interfaces 0..*
method the contained operation names 0..*
methodSig Signature of contained methods 0..*
methodParamsSyntax parameters of the contained methods 0..*
license (open source) license 0..1
author author(s) of the artifact 0..*
duplicates amount of verbatim duplicates 0..1

340



we use the underscore to separate the method names (“mn”),
the parameters (“pt”) and the return types (“rt”) from each
other. In order to create an efficiently searchable string from
a parsed signature, the parameters of each method are ordered
alphabetically so that even signatures with varying parameter
orders can be matched. Obviously, all search requests have
to be transformed into this format by a query parser before
searches are performed on the index. For this purpose, we
created a special Java parser that is able to translate Java files
into an appropriate search request. Since we wanted to be
able to also search for pure method signatures (i.e. ignoring
the method names), we defined an additional field that omits
the mn:doSomethingUselful in the above case.

As mentioned previously, Lucene is much more efficient
than relational databases when it comes to full-text searches,
but it is not as good at storing relationships. This is a disad-
vantage that manifests itself whenever a user is interested in
searches that depend on relationships within components, such
as defining multiple methods for one class or relationships in
between classes such as imports and inheritance dependencies.
While the former can be easily solved by concatenating
method signatures, the latter involves more effort and is
currently under investigation in our research group to extend
the underlying repository of the Merobase search engine in a
way that offers the best of both technologies.

A. Search Capabilities

Based on the index structure explained before, Merobase
supports three main types of searches, namely pure Lucene-
based text matching searches that can use any combination of
free text and the fields listed above as well as interface-driven
searches for operations or complete classes. As an example of
the first, assume that we are looking for a poker game class
in Java that contains a deal method:

name:pokergame lang:java method:deal

Lucene queries are by default case insensitive and AND
concatenated. As mentioned before, Merobase is able to parse
Java/C# code so that the following query for a Matrix class
containing an add and a multiply method is also possible:

public class Matrix {
public Matrix add(Matrix) {}
public Matrix multiply(Matrix) {}

}

If no exact match on such a class can be found special
heuristics are applied in order to retrieve the potentially most
relevant candidates first. These heuristics are also the reason
that a plain search for “matrix”, for example, also delivers
usable matrix classes first.

In order to be able to execute searches for method signatures
while ignoring the method name the so-called Merobase query
language (MQL) needs to be used to formulate a query like
$(int):boolean; in which the dollar sign is used as a wildcard
for the method name so that any method expecting an int
parameter and returning a boolean value is delivered.

Due to space limitations we are unable to provide more de-
tails here, and refer the interested reader to the merobase.com
website for more example queries. More details on the index
structure have already been published elsewhere [6].

B. Tool Support

In order to make it easier to browse and study our data set
without the need for creating an own search engine, a tool
called MeroL is also included in the downloadable resources
that serves as a local front-end to the index and the sources.
In this subsection we give a brief overview of how MeroL can
be used to browse our data-set. It is necessary to navigate to

http://merobase.informatik.uni-mannheim.de/sources/

where the crawled sources, the Merobase index and MeroL
can be downloaded. Provided that a Java VM is installed, the
tool can be started from the command line with

java -jar -Xms2048m MeroL-ăversioną.jar

The startup parameter ensures that there is enough mem-
ory allocated to the VM so that even large result sets
can be processed. After the program has started, the user
should create a new project using the File menu. This is
achieved by defining the location where the project data
should be stored and entering the location of the index. If the
downloaded index was for example unpacked in /home/user/
the correct information provided to the program would be
/home/user/indices/public/finalIndex/. It is important that the
public folder does not contain anything but directories (like,
for example a hidden .DS Store file on a Mac) since this seems
to confuse Lucene in some settings.

Subsequently, the location of the source files can be set via
the Project menu. The CVS and SVN directory location should
point to the MEROCVSROOT respectively MEROSVNROOT
directory of the unpacked source files. After this minimal
configuration effort, the tool is ready to perform searches and
to let the user inspect the retrieved results. Figure 1 shows a
screenshot of a search for a downloaded method that takes a
String as input parameter and returns a File object as result.

V. ONGOING WORK

In order to address the central weakness of a pure Lucene
index, which makes it hard to handle relational associations
between two software artifacts like associations dependencies,
we are currently working on a new and enhanced index which
is able to store this information. The obvious solution is to
combine the power of Lucene in the area of text-based searches
with an SQL compliant database for the relational information.
This approach has already been investigated by Sourcerer [2]
for example. Additionally, we are currently also analyzing
different NoSQL solutions, as well as graph-based databases,
since software artifacts with their various connections induce a
high volume of joins into SQL databases, bearing an increased
risk of performance degradation. For the crawling process we
continue to use Nutch, as the latest version offers a further
simplified integration of self-written parsers, as well as a

341



Fig. 1. A search for a “download” method with a String parameter for the source URL returning a File object for the downloaded resource.

new MIME-type detection which simplifies the recognition
of source-code artifacts on the world wide web, even if they
are not available with their normal file extension. The only
weakness of Nutch, as with most other existing web crawlers,
is the missing ability to crawl and gather the content of AJAX
based websites. This weakness arises through the fact, that
AJAX based web sites do not provide the whole contained
information at loading time. Instead, based on the events a
user can trigger, additional content is dynamically loaded and
injected into existing HTML containers, while old content may
be removed. Like described in Duda et al. [3], a crawler that
would be able to gather the whole information provided by
AJAX based websites, needs to know all existing events in
order to get all possible representations of a site. However,
since many source code hosters, like SourceForge or GitHub,
are using this technology, we are facing this problem during
the crawl process and are currently trying out several solutions
to detect and parse dynamically loaded source code.

VI. CONCLUSION

We have made the data set and the index underlying the
Merobase software search engine publicly available with the
hope that researchers find the artifacts contained useful and
will perhaps create novel innovative applications for it. In
recent work we have talked about the importance to establish
a common set of reusable artifacts and retrieval challenges
in order to create a reference collection that can serve as a
benchmark for large-scale software search and reuse tools [7],
which could also be one usage scenario of this data set. Hence,
we would like to renew our call to other researchers to join
forces in this area and to use the Merobase data as a basis to
create a significant reference collection allowing to evaluate
software retrieval approaches. As stated in earlier publications,
our initial proposal in this field includes creating definitive

queries for concrete reusable artifacts in the form of test cases
that can be used to determine free of doubt whether a delivered
candidate will be usable in a given context specified by the
test case [8].

ACKNOWLEDGEMENTS

We would like to thank all participants of the Merobase
project for their contributions. Especially, we would like
to thank our former “Crawlmeister” Philipp Bostan for his
outstanding work in compiling the index.

REFERENCES

[1] C. Atkinson, P. Bostan, O. Hummel, and D. Stoll. A practical approach
to web service discovery and retrieval. In IEEE International Conference
on Web Services, 2007., pages 241–248. IEEE, 2007.

[2] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes. Sourcerer: a search engine for open source code supporting
structure-based search. In 21st ACM SIGPLAN symposium on Object-
oriented programming systems, OOPSLA ’06, pages 681–682, New
York, NY, USA, 2006. ACM.

[3] C. Duda, G. Frey, D. Kossmann, R. Matter, and Chong Zhou. Ajax
crawl: Making ajax applications searchable. In Data Engineering, 2009.
ICDE ’09. IEEE 25th International Conference on, pages 78 –89, 29
2009-april 2 2009.

[4] E. Hatcher, O. Gospodnetic, and M. McCandless. Lucene in action (2nd
edition), 2010.

[5] O. Hummel and C. Atkinson. Using the web as a reuse repository. In
Proc. of the 9th Intl. Conference on Reuse of Off-the-Shelf Components,
ICSR’06, pages 298–311, Berlin, Heidelberg, 2006. Springer-Verlag.

[6] O. Hummel, C. Atkinson, and M. Schumacher. Finding Source Code
on the Web for Remix and Reuse, chapter Artifact Representation
Techniques for Large-Scale Software Search Engines. Springer, 2013.

[7] O. Hummel and W. Janjic. Towards better comparability of software
retrieval approaches through a standard collection of reusable artifacts.
Proceedings of the 7th International Conference on Software Engineer-
ing Advances, page 450 to 458, November 2012.

[8] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer: Pulling reusable
software out of thin air. IEEE Software, 25(5):45–52, September 2008.

[9] A. Mili, R. Mili, and R. T. Mittermeir. A survey of software reuse
libraries. Ann. Softw. Eng., 5:349–414, January 1998.

[10] R. C. Seacord. Software engineering component repositories. In Proc.
of the Intl. WS on Component-Based Software Engineering, 1999.

342


