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ARTICLE INFO ABSTRACT

Keywords: Searching for patient cohorts in electronic patient data often requires the definition of temporal constraints
Temporal queries between the selection criteria. However, beyond a certain degree of temporal complexity, the non-graphical,
Phenotyping form-based approaches implemented in current translational research platforms may be limited when modeling

Phenotyping algorithms
Patient cohort identification
Data integration

Data retrieval

such constraints. In our opinion, there is a need for an easily accessible and implementable, fully graphical
method for creating temporal queries. We aim to respond to this challenge with a new graphical notation. Based
on Allen’s time interval algebra, it allows for modeling temporal queries by arranging simple horizontal bars
depicting symbolic time intervals. To make our approach applicable to complex temporal patterns, we apply two
extensions: with duration intervals, we enable the inference about relative temporal distances between patient
events, and with time interval modifiers, we support counting and excluding patient events, as well as constraining
numeric values. We describe how to generate database queries from this notation. We provide a prototypical
implementation, consisting of a temporal query modeling frontend and an experimental backend that connects
to an i2b2 system. We evaluate our modeling approach on the MIMIC-III database to demonstrate that it can be
used for modeling typical temporal phenotyping queries.

1. Introduction

The identification of patient cohorts in electronic patient data, e.g.
for clinical studies, can be a difficult task. Several authors (e.g. [1,2])
have reported challenges in determining whether a patient is eligible to
be included into a research cohort or not. Finding such cohorts in
electronic health record (EHR) data is generally referred to as EHR-
based phenotyping because researchers aim to identify subjects by phe-
notypic traits [3-5]. According to Denny [6] and Ross [7], these include
demographics, diagnoses, treatments and interventions, laboratory
measurements, vital signs, radiological or pathological findings, drugs,
and other information recorded in medical documentation. As de-
scribed by Rea et al. [1], phenotyping plays an important role in the
support of clinical studies, in the collection of quality metrics, in out-
comes research, in observational studies, in decision support, and in
many other tasks.

The set of rules for identifying a specific patient cohort is also called
a phenotyping algorithm [3]. It consists of several inclusion and exclusion
criteria coupled by Boolean logic. Mo et al. [2] mentioned that
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phenotyping algorithms may include operations beyond Boolean logic,
such as numerical comparisons, arithmetic calculations, aggregation
operations, negation, and temporal relationships between events. Ross
et al. [7] found that 85% of the inclusion criteria of clinical trials had
significant semantic complexity and 40% relied on temporal data. Si-
milarly, Conway et al. [8] noticed complex temporal logic in most al-
gorithms of the Electronic Medical Records and Genomics (eMERGE)
network. Consequently, software designed to support EHR-based phe-
notyping should also enable the retrieval of such temporal relation-
ships.

In recent years, various research-driven projects, such as i2b2 [9],
developed translational research platforms for the selection of patient
cohorts. However, as we will describe in more detail in the background
section, these systems may offer only limited functionality for temporal
queries. We assume that the root cause for this is the lack of an easily
accessible and implementable, generic and fully graphical method for
temporal queries, which can be integrated into such systems.

In this paper, we describe a straightforward, yet expressive and fully
graphical notation for manually modeling temporal queries, such as
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“List all patients who developed diabetes during pregnancy”. We model
temporal patterns by arranging horizontal bars on a drawing canvas in
accordance with Allen’s time interval algebra [10]. We extend this basic
approach using duration intervals to allow for modeling complex relative
temporal constraints. To address further requirements of temporal
phenotyping algorithms, such as counting or excluding patient events,
or constraining numeric values, we propose time interval modifiers. We
then describe the basic steps necessary to translate this notation into
executable database queries.

We present a prototypical software implementation, consisting of
two open-source tools. The first one, AllenGUI, is a direct im-
plementation of our query notation and can be used by a researcher to
compose temporal query patterns. The second one, AllenSPARQL, is an
experimental data integration and query execution backend that con-
nects to an i2b2 system and executes the temporal queries. We evaluate
our approach by replicating the temporal queries from Nigrin and
Kohane published in [11] on the MIMIC-III [12] database. Finally, we
discuss the advantages and limitations of our approach and compare it
with similar research.

2. Background
2.1. Temporal patterns in biomedical data

Medicine and time are inextricably linked, as biology, pathogenesis,
diagnosis, and treatment follow complex time-oriented processes. For
example, it is well known that biology adheres to temporal rhythms
[13] and that infectious diseases progress according to patterns in time
and space [14]. Diagnosis and treatment are usually performed in
compliance with clinical guidelines [15] that define sequences of action
for the guidance of physicians. Similarly, cause and effect play a pivotal
role in medicine. For example, it is known that the treatment of an
ischemic stroke with thrombolysis may lead to cerebral hemorrhage
[16].

Biomedical research aims to uncover such cause-effect mechanisms,
and patient data plays an indispensable role in this task. The treatment
of a patient generates huge amounts of time-oriented electronic data. As
described by Moskovitch and Shahar [17], these can be present in the
form of simple time-stamps (e.g., “Hemoglobin value of 9.3 g/100 cc, at
9:05 am, on July 17th, 1998”) or time intervals (e.g., “Administration of a
medication for 4 days”). Time intervals can be part of the original data or
abstractions of it, e.g. “3 weeks of severe anemia”. This abstraction could
have been derived via a temporal pattern, such as “Hemoglobin < 10g/
dL, measured each day for three weeks”. These temporal patterns are also
called time intervals related patterns (TIRPs) in the literature [17].

The identification of yet unknown TIRPs, hidden in the original
patient data, could support the discovery of previously unknown me-
chanisms of cause and effect. Therefore, on the one hand, a number of
research activities are devoted to the formal description of temporal
patterns (e.g. [18-23]) and their automatic recognition in structured
data or clinical texts (e.g. [17,24-32]). On the other hand, clinical study
protocols and phenotyping algorithms already provide a rich source of
known temporal patterns [7,8]. We would like to emphasize that our
work is not concerned with the automatic recognition of temporal
patterns, but with the graphical modeling of already known patterns
and their transformation into executable database queries.

2.2. Querying temporal databases

Unfortunately, temporal relationships in data can only be queried
inefficiently with common database query languages. As described by
Weng et al. in [33], languages such as SQL support only simple time or
date data types, but lack special functionality for sophisticated tem-
poral reasoning. Starting in the 1980s, this has led to the development
of temporal extensions, such as TSQL [34], TQuel [35], the Historical
Relational Data Model [36], or TSQL2 [37]. However, such early query
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languages were too abstract and formal to be used by clinical users
[38], had a high learning curve due to their unique syntaxes, concepts,
and limitations [39,40], or required rich temporal descriptions that
were not common in clinical databases [41].

Consequently, many efforts were made to encapsulate temporal
query languages into user-friendly clinical applications, as demon-
strated e.g. with the integration of the AMAS query language [38] into
the ArchiMed system [42]. Other examples are the Chronus system [43],
which implements a temporal language called TimeLine SQL, or its
successor, Chronus II [44], which uses a subset of TSQL2. The DXtractor
system [11,45] uses textual “atomic” queries to compose expressive
temporal patterns.

More modern systems include functionality for the interactive vi-
sualization, navigation, and temporal abstraction. As outlined above,
this is the process of abstracting simple timestamp data into high-level
concepts, such as “high fever for a week” [46]. Popular examples of
such systems include KNAVE [47], KNAVE-II [48], and VISITORS
[49,50]. KNAVE is built upon a temporal middle layer called Tzolkin
[51], which utilizes the above-mentioned Chronus system, and RE-
SUME, a knowledge-based temporal abstraction framework [52]. The
later KNAVE-II uses a temporal abstraction framework called IDAN
[53], the ALMA temporal service, and a temporal query language called
TAR [54]. The KNAVE-II interface was mainly geared towards health
care providers aiming to view data of individual patients at the point of
care [55]. As such, its successor, VISITORS, was extended to support the
visualization of groups of time-oriented records [49]. Because such
systems focused on the visualization and interactive exploration of
time-stamped data, the direct formulation of temporal patterns played a
subordinate role. For example, the LifeLines2 system [56] allows a re-
searcher to query for event sequences, but it does not support the de-
finition of temporal relationships among events [57].

Rind et al. [58] found that systems, which encapsulate query lan-
guages with graphical user interfaces, are easier to learn, but often
constrain the expressiveness of query languages in order to keep the
user interface manageable. Consequently, systems that provide ad-
vanced temporal expressiveness utilize a text-based or form-based ap-
proach. However, their notations and workflows may lead to queries
that are difficult to understand. Nigrin and Kohane [11] noted that their
text-based DXTractor system requires complex steps to formulate
queries and that “it is often not immediately obvious how to generate
[...] results in DXtractor, primarily because of the many steps required”
[11]. Form-based approaches are used e.g. in ChronoMiner [59] and the
above-mentioned VISITORS system [49]. Similarly, PatternFinder [60]
uses “form-fill-in elements that support a rich set of pattern queries”
and dialog boxes to model temporal relationships [61]. According to
[57] and [58], the system can construct complex temporal patterns, but
is also complex to use.

According to our understanding, there are only a few fully graphical
approaches which offer high temporal expressiveness and which spe-
cifically deal with the manual modeling of temporal query patterns.
One of these is the QueryMarvel temporal language [57] as implemented
in VizPattern [62]. It uses a comic strip metaphor to model temporal
constraints. Another graphical approach has been developed by Chit-
taro et al. [63]. It uses a paint strip metaphor to graphically model
temporal patterns on a drawing surface and even enables expressing
temporal indeterminacy. A later work, based on [63] and presented in
[64], introduced support for queries with different temporal granula-
rities and other features. As we will discuss at the end of this paper,
these systems offer a high degree of temporal expressiveness, but at the
same time we assume that they are complex implementations that
cannot easily be adopted.

2.3. Translational research platforms

The widespread adoption of electronic health records (EHRs) in the
last decade has led to the development of several translational research
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platforms. Examples include Informatics for Integrating Biology and the
Bedside (i2b2) [9,65], Electronic Health Records for Clinical Research
(EHR4CR) [66-69], TRANSFoRm [70-72] and Observational Health Data
Sciences and Informatics (OHDSI) [73]. Other similar platforms were
reviewed by Xu et al. in [74].

In contrast to the temporal querying systems from above, these
translational research platforms aim to enable researchers to query
clinical data without the need for advanced programming skills. Used
across institutions in research networks, they are a critical component
in translational research, as demonstrated e.g. in [66,67,75-86].

Multiple publications (e.g. [18,87-93]) have highlighted the sig-
nificance of querying time-oriented data, and most of the above-men-
tioned research platforms offer at least some temporal functionality.
The i2b2 system, for example, stores time ranges associated with pa-
tient facts using the Start Date and End Date columns in its Ob-
servation_Fact table [9]. Likewise, the OHDSI OMOP database schema
captures temporal information using timestamps. Abstractions that
were derived from the raw patient data can be stored in separate tables
and are referred to as “eras” [28,29,94]. In terms of modeling and ex-
ecuting temporal queries, the i2b2 webclient uses a form-based ap-
proach to define temporal relationships between patient events [95].
The ATLAS tool from OHDSI [96] uses a similar approach. The EHR4CR
system uses a clinician-readable and computational, text-based notation
called ECLECTIC [66,97].

The literature describes difficulties that occur when representing
temporal queries in such translational platforms [98], which can pos-
sibly be attributed to the way how temporal queries are modeled in
these systems. Even the i2b2 developers noted in their documentation
that the section of the user interface for modeling temporal criteria is “a
bit more complicated” than the one for the non-temporal criteria [95].
According to [62], “it is often hard for users to represent [temporal]
queries using forms.” It would therefore seem reasonable to investigate
how such translational research platforms could be extended with easy-
to-use, yet powerful temporal search functions.

2.4. Allen’s time interval algebra

A groundbreaking work in the field of temporal reasoning is Allen’s
time interval algebra [10], which describes temporal relationships be-
tween time intervals in terms of their chronological sequence. In this
context, a time interval is a time range formed by two timestamps, one
for the start and one for the end. The temporal relationship between
two time intervals is expressed by Allen relations, of which there are 13
in total. If two intervals are linked via an Allen relation, we speak of an
Allen statement. Fig. 1 shows the 14 possible Allen statements between
two time intervals, which can be generated using the 13 Allen relations.
Allen’s relations could be described as consisting of seven basic rela-
tions, of which six have an inverse (note that equals is symmetric). Allen
relations can be formally described by the chronological sequence of
the start and end times of both time intervals, as shown in Fig. 1.

From the perspective of computer science, a group of Allen state-
ments is a directed named graph, with the nodes representing the time
intervals and the edges representing the temporal relationships. In a
single Allen statement, multiple relations can be grouped to form a
composite relation, which allows for expressing temporal in-
determinacy. For example, “C {starts, started by, equals} D” states that
“C starts D”, “C started by D”, “C equals D”, or any combination of these
statements is true. Finally, Allen’s constraint propagation technique,
which makes use of transitivity rules, can be used to infer implicit
knowledge about relationships between time intervals. For example,
from “E before F” and “F before G” one can deduce “E before G”.
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3. Methods
3.1. Graphical modeling approach

For clinical data analysis precise definitions of chronological event
sequences are critically important, e.g. for the analysis of risk factors or
therapeutic utility. For example, a researcher may search for patients
with a specific sequence of drug administrations prior to an interven-
tion, or patients, where the administration of a specific drug overlaps
the administration of another. In these examples, temporal relations,
such as overlaps, before, or contains would be useful to formulate tem-
poral queries.

Since Allen’s time interval algebra seems to intuitively describe such
temporal relationships, we investigated how we could exploit his
formalism for a graphical notation. We intended to investigate whether
it is possible to concatenate multiples of his “pictorial examples” (as in
Fig. 1) to create complex search patterns.

Following this basic idea, we position horizontal bars on a two-di-
mensional drawing canvas to symbolize time intervals. The x-axis on
the canvas represents the flow of time: the left vertical side of a bar
depicts the interval’s start time, the right side its end time. Whenever
two time intervals touch each other, be it vertical or horizontal, a
temporal relationship in the form of an Allen statement is created. The
whole set of these statements, implicitly combined by the Boolean op-
erator “AND”, describes the temporal properties a patient has to fulfill
in order to be eligible to be included into the resulting patient cohort.
This is equivalent to a TIRP [17]. Note that we do not address modeling
Boolean logic (as e.g. in the “logical area” in [64]), because we consider
this functionality already well integrated in current phenotyping plat-
forms.

In our approach we distinguish between two types of time intervals:
symbolic time intervals (as also defined in [17]) and duration intervals.
The first type deals with the representation of phenotypic concepts,
whereas the second type is used to constrain the lengths of time in-
tervals, to model relative temporal distances or temporal gaps between
time intervals of the first type.

3.1.1. Symbolic time intervals

With regard to symbolic time intervals, each bar depicts a time in-
terval that itself refers to an event' or an episode in the patient’s his-
tory. It symbolizes a phenotypic concept, such as a diagnosis, a treat-
ment, a laboratory measurement, etc. By combining such time intervals,
simple temporal search patterns can be modeled.

In the upper example of Fig. 2, the two symbolic time intervals
“Diabetes” and “Pregnancy” are arranged according to the during rela-
tion (compare Fig. 1). The modeled Allen statement in this depiction
therefore is “Diabetes during Pregnancy”. This query aims to identify all
patients who developed diabetes during pregnancy. Note that the time
scale is not linear; therefore the length of a bar does not specify the
duration of the depicted time interval. This becomes possible with the
definition of duration intervals as described in the next section.

The Allen relations before and after require a slightly different gra-
phical notation, because time intervals connected via these relations do
not touch. We alleviate this problem by using a horizontal connector
line, as already indicated in Fig. 1 and as demonstrated in the second
example of Fig. 2. This query searches for all patients who were treated
with thrombolysis after an ischemic stroke and who experienced cere-
bral bleeding after this treatment.

! We actually convert patient data, which only exist as simple time stamps
and not as time intervals, e.g. laboratory measurements and diagnoses, into 1-
second time intervals as a preprocessing step. This is a workaround to make the
data to be queried fully compatible with Allen’s time interval-based algebra. We
tolerate the fact that this is not entirely clean from a formal point of view as it
simplifies a later implementation considerably.
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Allen Statements with ... Pictorial Chronological
Basic Relations | Inverse Relations Example Sequence
X before Y Y after X CXONY ] | Xstart < Xend < Ystart < Yend
XequalsY Y equals X E Xstart = Ystart < Xend = Yend
X meets Y Y met by X CX T Y 1| Xstart < Xend = Ystart < Yend
X overlaps Y Y overlapped by X '—le Y | Kstart < Ystart < Xend < Yend
X contains Y Y during X 3T | Xstart < Ystar < Yena < Xend
X starts Y Y started by X = 1 | Xstart = Ystart < Xend < Yend
X finishes Y Y finished by X —— 55— | Yetart < Xstart < Xena = Yend

Fig. 1. Allen’s time interval algebra. The table shows the 13 possible Allen relations between the two time intervals X and Y, their pictorial notation and the
chronological sequence of the start and end times of the intervals. The dashed connector line (at the before and after depiction) is a modification that we require in

Section 3.1.

1 | Diabetes |

Fig. 2. Two simple temporal queries with symbolic
time intervals. The first query aims to identify all
patients who developed diabetes during pregnancy.

| Pregnancy

| The second query searches for all patients who were

treated with thrombolysis after an ischemic stroke

and who experienced cerebral bleeding afterwards.

2 |Ischemic Stroke N Thrombolysis N Cerebral Bleed |

3.1.2. Duration intervals

To link more time intervals to create expressive and complex
queries, we first need to integrate the temporal construct duration. It is
similar to the duration data type of the Arden Syntax, which “is a length
of time that is not anchored to a particular point in time” [99]. Duration
is not part of Allen’s time interval algebra [100], but support for it can
be integrated into our approach via a second time interval type, which
we call duration intervals. These are similar to the symbolic time inter-
vals described above, but refer to time spans instead of phenotypic
concepts. They may be composed using seconds, minutes, hours, days,
months and years. For example, valid time spans are “2 Weeks” or “1
Year 3 Months”. The distinction on the technical level is that symbolic
time intervals have associated start and end times in the patient data,
whereas duration intervals are only constructs of the temporal query
pattern.

Four examples with duration intervals are shown in Fig. 3. The first
query illustrates how duration intervals can be used to constrain the
length of a symbolic time interval. In this example, the surgery must
have lasted at least 3h, but not more than 6 h. The second example
extends the second query from Fig. 2 by stating that all events must
have occurred within 4 days. Without this constraint, the three events
could theoretically be years apart. The third query demonstrates the
basic approach of modeling explicit temporal gaps. It aims to find pa-
tients who showed AIDS symptoms more than 10 years after their HIV
diagnose. This is achieved via the dashed connector bar between “10
Years” and “AIDS”, modeling the after Allen relation. If the two inter-
vals on the right, however, would meet as the two on the left, the query
would search for patients who developed AIDS exactly 10 years after the
HIV diagnose. A more complex example, which models relative tem-
poral constraints, is given in the fourth pattern. It aims to identify all
patients who had a chemotherapy finishing at least six but at most ten

weeks before surgery. The chemotherapy must have started at least ten
weeks before surgery, and patients must have been given the medica-
tion mitomycin in the six weeks before surgery. Note that “4 Weeks”
and “6 Weeks” together form the ten-weeks interval.

3.1.3. Multiple-referencing of time intervals

If a user aims to add more bars, others may already occupy the space
on the drawing area. We solve this problem by allowing multiple re-
ferences to time intervals. Such a reference is created whenever a bar
uses a label that has already been used for another one. This type of
referencing allows the researcher to add more time intervals to a tem-
poral query, even if there is no space left at the current position on the
drawing canvas. An example will be given later in in Fig. 7.

3.1.4. Time interval modifiers

As outlined in the introduction, exclusion, event counting, numer-
ical restriction and relative comparisons are other important aspects of
phenotyping algorithms. For example, a researcher might be interested
in counting the number of drug applications during a chemotherapy
treatment. Another researcher might want to constrain a query by la-
boratory values, or specifically exclude patients who had a certain
medical condition. We address these aspects with a concept that we call
time interval modifiers. These specify a time interval more precisely with
additional constraints and thereby allow for excluding or counting
events and for constraining numerical values. The modifiers are pre-
fixed and suffixed to the medical concept that is associated with the
time interval when building the search pattern. There are three types of
modifiers:

® Occurrence Modifier (prefixed): Can either be “NO” for exclusion,
or a numeric comparison, such as “=10”, to count occurrences.
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1 [ 3Hours |

Fig. 3. More complex temporal queries with
symbolic time intervals (white) and dura-
tion intervals (gray). The first query de-

Surgery

monstrates how to use duration intervals for

| 6 Hours

| constraining the lengths of symbolic time
intervals. The second one restricts the events

from the second example from Fig. 2 to less

than 4 days. The third one aims to find all

2 | Ischemic Stroke Ny Thrombolysis [Ny Cerebral Bleed |

patients who developed AIDS more than

| 4 Days

10 years after their HIV diagnose. The fourth
| query demonstrates the use of duration in-

tervals for the specification of relative tem-

3 [ HIvV | 10 Years

S S)\ Y AIDS

poral distances between symbolic time in-
tervals.

[ 4Weeks | 6 Weeks

4 [ Mitomycin |

| Surgery |

| Chemotherapy |

e Value Modifier (suffixed): A value comparison that constrains the
value of a numerical concept, such as a laboratory value.

e Enumeration Modifier (suffixed): A number behind a hash (e.g.
“#3”), used to distinguish individual instances of time intervals of
the same medical concept.

As an example, consider the query pattern in Fig. 4. It aims to
identify all patients experiencing lactic acidosis as a delayed side effect
of metformin, even though the latter was not administered in the 48 h
before surgery [101]. As an indicator of acute acidosis, the right part of
the query searches for two or more pH measurements <7.35 during
surgery [102]. As no metformin must have been taken in the 48 h be-
fore surgery, we exclude this medication with the “NO” occurrence
modifier during the interval “48 Hours #2”. However, to ensure that
the patients are actually metformin patients, we require them to have
received the medication in the two days before (“48 Hours #1”). The
two enumeration modifiers “#1” and “#2” indicate that the two de-
pictions are referring to two different 48-h duration intervals.

To finish the description of our graphical notation, we aim to em-
phasize that it is capable of handling any number of time intervals and
all types of Allen relations. It is unambiguous because the chronological
sequence of all start and end times (as in Fig. 1, “Chronological Se-
quence”) is preserved in each set of fully interconnected time intervals
on the drawing canvas.

3.2. Translation into database queries

We will now illustrate how to create database queries from our
graphical notation. Note that the database schema used below is overly
simple for the sake of clarity. It assumes that all attributes are stored in
separate columns of a single table. To be generic and independent of the

database schema, most research systems (e.g., i2b2) model their data
according to the Entity-Attribute-Value (EAV) schema [103]. For this
reason, a real implementation of our approach has to consider the pe-
culiarities of a given database schema.

3.2.1. The query graph

By parsing our graphical notation, one can derive a query graph,
which can serve as a formal temporal query definition that can be
translated into a database query. If one examines all pairs of directly
touching bars, the Allen relations can be obtained easily by referring to
Allen’s depictions in Fig. 1. These Allen statements form a directed
named graph, as shown in Fig. 5 with the solid edges for the fourth
example of Fig. 3. Allen’s constraint propagation technique can then be
used to derive the additional Allen statements between all time inter-
vals that do not touch directly, as shown with the dashed edges. For
example, it was deduced that the chemotherapy is before the surgery
(Allen statement 7). The result is a graph with @ edges (=Allen
statements), where n denotes the number of nodes (=time intervals).

A graphical query pattern can be translated into a database query by
processing the Allen statements from the inferred query graph. For an
SQL query, these Allen statements are used to generate the filter criteria
in the WHERE clause.

3.2.2. Processing symbolic time intervals

For Allen statements about symbolic time intervals, the inequations
that define the chronological sequence of the points in time at the start
or at the end of time intervals can be used to directly build the WHERE
clause, which then filters the patients via the valid times [104] in the
patient data according to the temporal pattern. For example, for the
Allen statement “Pregnancy contains Diabetes” from Fig. 2, the chron-
ological sequence is defined as Xsart < Ystart < Yend < Xeng- Assuming

Enumeration Modifier
A2 2

| 48 Hours #1 | 48 Hours #2 | Surgery

| Metformin | | NO Metformin | | >=2pH <7.35 |

L Occurrence Modifier —j Value Modifier

Fig. 4. Time interval modifiers. A temporal pattern with enumeration, occurrence and value modifiers.
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Chemotherapy

Modeled Statements (solid edges):

(01) Chemotherapy overlaps 4 Weeks
(02) 4 Weeks meets 6 Weeks

(03) 6 Weeks meets Surgery

(04) 6 Weeks contains Mitomycin

Query Graph : i
Qumry O 225 Mitomycin  ----- ‘e
S A \
JUTt Ll before _» contains '
,’ l’ Se=-= v
meets meets
; 4 Weeks ——> 6 Weeks ——» Surgery
1 \
‘\ Qc" \\\ ﬁ AR
‘ 2 Sl L before _ _* "
’ before Tes= 4

’
before -’
- -

Inferred Statements (dashed edges):

(05) Chemotherapy before 6 Weeks
(06) Chemotherapy before Mitomycin
(07) Chemotherapy before Surgery
(08) 4 Weeks before Mitomycin

(09) 4 Weeks before Surgery

(10) Mitomycin before Surgery

Fig. 5. The query graph of the fourth query from Fig. 3. Inferred statements from Allen’s constraint propagation are shown with dashed edges.

that “X = Pregnancy” and “Y = Diabetes”, these constraints can be
directly translated into an SQL WHERE clause:

SELECT Patient ..
WHERE Pregnancy_start <Diabetes_start
AND Diabetes_ start <Diabetes_end
AND Diabetes_end < Pregnancy_end

3.2.3. Processing duration intervals

Duration intervals cannot be processed in the same way as symbolic
time intervals. Considering the fourth example from Fig. 3 and fol-
lowing the above approach, one might assume that it is necessary to
know the start and end times of the 4 and 6 weeks duration intervals in
order to identify the patients. However, duration intervals do not even
exist in the database; they only exist as part of the query pattern.
Consequently, start and end times of duration intervals cannot be
queried in the patient data. For example, a query that includes an SQL
WHERE clause such as “WHERE Chemotherapy start<4 Week-
s_start” will inevitably fail, just like any other query that refers to
duration intervals. The solution is to eliminate these references via
arithmetic operations, which determine the relative temporal distances
between all start and end times of the symbolic time intervals. This is
the amount of time by which the times of the “outer” symbolic time
intervals are pushed apart or held together by the “inner” duration
intervals.

In a first step, only these Allen statements that involve duration
intervals are collected from the inferred query graph to generate a
system of inequations. This system fully describes the chronological
sequence of all start and end times. For the example from Fig. 5, such a
system is shown in Table 1 in the right column. Additionally, the actual
durations of the duration intervals have to be defined (last row). To
enable the arithmetic operations and to allow for querying the relative
temporal distances in the database, we converted all durations into
seconds. Similarly, we assume that the time stamps of the patient data
in the database are also represented in seconds relative to a set date (as
in Unix time).

In a second step, solving this system of inequations for the start and
end times of the duration intervals allows for deriving inequations,
which model the relative temporal distances between the start and end

Table 1

Expressing relative temporal distances with inequations. The definitions of
Allen’s relations (see Fig. 1) and the known durations (last row) can be used to
define a system of inequations.

Statement Allen Statement & System of Inequations
No. (Fig. 5) Durations
1 Chemotherapy Chemotherapy _start < 4 Weeks_start
overlaps 4 Weeks 4_Weeks_start < Chemotherapy_end
Chemotherapy_end < 4_ Weeks_end
2 4 Weeks meets 6 4_Weeks_start < 4_Weeks_end
Weeks 4_Weeks_end = 6_Weeks_start
6_Weeks_start < 6_Weeks_end
3 6 Weeks meets 6_Weeks_start < 6_Weeks_end
Surgery 6_Weeks_end = Surgery _start
Surgery_start < Surgery_end
4 6 Weeks contains 6_Weeks_start < Mitomycin_start
Mitomycin Mitomycin _start < Mitomycin_end
Mitomycin_end < 6_Weeks_end
5 Chemotherapy Chemotherapy_start < Chemotherapy_end
before 6 Weeks Chemotherapy_end < 6_Weeks_start
6_Weeks_start < 6_Weeks_end
8 4 Weeks before 4 Weeks_start < 4 Weeks_end
Mitomycin 4 Weeks_end < Mitomycin_start
Mitomycin_start < Mitomycin_end
9 4 Weeks before 4 Weeks_start < 4 Weeks_end
Surgery 4 Weeks_end < Surgery_start
Surgery_start < Surgery_end
Durations 4 Weeks = 2419200 4 Weeks_end — 4_Weeks_start = 2419200
Seconds
6 Weeks = 3628800 6_Weeks_end — 6_Weeks_start = 3628800
Seconds

times of all symbolic time intervals. When solving the system from
Table 1 for the four variables 4 Weeks_start, 4 Weeks_end, 6_Week-
s_start and 6_Weeks_end, the following result can be obtained:

(1) 4 Weeks_end = Surgery_start — 3628800

(2) 4_Weeks_start = Surgery_start — 6048000
(3) 6_Weeks_end = Surgery_start

(4) 6_Weeks_start = Surgery_start — 3628800
(5) Surgery_start - Chemotherapy_end > 3628800
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(6) Surgery_start - Chemotherapy_end < 6048000
(7) Surgery_start - Chemotherapy_start > 6048000
(8) Surgery_start - Mitomycin_start > 3628800

(9) Surgery_start - Mitomycin_end > 0

The first four equations (1-4) describe the four variables according
to which the system was solved. They are not further relevant in the
following. However, the remaining five inequations (5-9) refer to the
relative temporal distances between “Chemotherapy”, “Surgery” and
“Mitomycin”; this is the time by which the start and end times of these
outer symbolic time intervals are pushed apart or held together by the
inner duration intervals. Note that the original 4-week and 6-week
duration intervals no longer appear in the form of variables. As such,
the inequations 5-9 can now be translated directly into a database

query:

SELECT Patient ..

WHERE Surgery_start - Chemotherapy end>3628800
AND Surgery_ start - Chemotherapy end<6048000
AND Surgery start - Chemotherapy start>6048000
AND Surgery_ start - Mitomycin_start >3628800
AND Surgery_start - Mitomycin_end>0

To complete the query for the example from Fig. 5, one has to also
process the constraints for the statements 6, 7 and 10 of Fig. 5 as de-
scribed in Section 3.2.2, and include the derived SQL code into the
above query.

3.2.4. Processing time interval modifiers

As described in Section 3.1.4, we use time interval modifiers to
specify the properties of a symbolic time interval. Time interval
modifiers can be used to constrain a medical concept by its numeric
value, describe exclusion, count occurrences, or distinguish instances
via enumeration.

Integrating support for value modifiers is straightforward. In addi-
tion to the temporal constraints in the WHERE clause of an SQL query, a
numeric restriction on the value has to be created. For the example in
Fig. 4, this could be as simple as adding “AND pH_value < 7.35” to the
WHERE clause of the SQL query.

Translating occurrence modifiers into database queries is more
complicated. “NO” indicates that events or time intervals must not have
occurred in the patient’s history. A proper way of implementing this is
to first ignore all excluded time intervals (those with “NO” modifiers) in
an initial search and then, by using n subsequent searches (with n equal
to the number of excluded time intervals), to subtract patients that do
have one of the excluded events in their data. For the example in Fig. 4
this would mean that the “NO Metformin” time interval is not con-
sidered in the query graph. This initial query may however contain
patients who received metformin in the second 48-hour duration
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interval. To exclude them, a second query must be generated that
searches for specifically these patients. The patients identified in this
second query are then removed from those of the first query (Fig. 6).

If occurrence modifiers that describe a numerical comparison are
used, the generation of more complex SQL statements becomes neces-
sary. For the example in Fig. 4, the software would have to create an
SQL subquery that searches for at least two pH measurements having
taken place during surgery.

Support for enumeration modifiers occurs automatically when the
software routine, which derives the inferred query graph via Allen’s
constraint propagation technique, relies only on the names of the in-
tervals. With enumeration modifiers added, duration or symbolic in-
tervals are automatically distinguished. Conversely, it is only necessary
to use enumeration modifiers if two intervals that have exactly the same
name should be distinguished. For this reason, the two metformin in-
tervals in Fig. 4 were not equipped with the modifiers.

4. Results
4.1. Prototype implementation

To test our approach in practice, we implemented a software pro-
totype consisting of a graphical frontend for modeling the temporal
patterns and a backend for query execution. Therefore the im-
plementation of the frontend should replicate the methods described in
Section 3.1, the backend the techniques described in Section 3.2.

4.1.1. Frontend application (AllenGUI)

The first program implemented is AllenGUI, a graphical temporal
query modeler (see Fig. 7). The tool provides a drawing canvas on
which temporal relationships can be composed graphically. Using a
computer mouse, the user can draw, resize, move and rename hor-
izontal bars depicting intervals. AllenGUI renders bars associated with
symbolic time intervals, duration intervals, and interval modifiers using
different colors. Whenever the user changes the temporal pattern, Al-
lenGUI creates an inferred query graph (as shown in the “Allen State-
ments” window on the right), which is stored in a file for the later
processing by the backend.

The complex temporal query in Fig. 7 searches for patients who have a
history of statins during six months before surgery and received propofol
and amiodarone approximately at the time of surgery. This temporal un-
certainty is achieved with the one-day duration interval between propofol,
amiodarone, and surgery. Note that the query pattern does not specify
whether propofol was administered prior to amiodarone because these
two symbolic time intervals do not touch each other. The pattern models
the statements “Surgery during 1 Day”, “Propofol during 1 Day”, and
“Amiodarone during 1 Day”. The lower part of the pattern references the
“Surgery” interval from above. It specifies the medical history after the
surgery, where it aims to detect rising creatinine kinase values (CK) within

From the patient set from the original query pattern with all “NO” intervals removed,

| 48 Hours #1 |

48 Hours #2 |

Surgery |

| Metformin | |

subtract the patient set with the original query pattern with all “NO” intervals inverted:

I | >=2pH<7.35 |

| 48 Hours #1 |

48 Hours #2 |

Surgery |

[ Metformin |

| s™€xMetformin |

| >=2pH<7.35 |

Fig. 6. Exemplary translation of the “NO” occurrence modifier. This fig. explains how to exclude the patients that received metformin in the second 48-h duration

interval from Fig. 4.
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Fig. 7. User interface of AllenGUI. The AllenGUI tool is used for the graphical modeling of temporal constraints.

two days. This is done via the three CK intervals, which make use of time
interval modifiers (#1, #2, #3) and relative value comparisons. Via the
orange connector lines, the temporal pattern expresses that CK #1 must be
before CK #2, which in turn must be before CK #3. The relative value
comparisons in the two CK intervals on the right state that the value of CK
#2 has to be higher than that of CK #1, and that the value of CK #3 has to
be higher than that of CK #2.

AllenGUI is implemented in Java and uses an AWT and Swing-based
user interface. We decided to integrate Allen’s constraint propagation
technique into the frontend to enable direct user-feedback; for example,
the user gets notified when the tool detects an inconsistent temporal
pattern. For this we relied on an existing open-source software library
[105]. To implement the horizontal connector lines for the before and
after relationships, we utilized a trick: Technically, these are normal
(but “flat”) symbolic time intervals that have no visual label and which
form meets relationships with their neighboring intervals. Via Allen’s
constraint propagation technique, these are inferred automatically into
the before and after relationships as intended by the user.

4.1.2. Backend application (AllenSPARQL)

Furthermore, we implemented a Java-based backend called
AllenSPARQL. Similar to generating SQL queries from a query graph
that can be executed on relational databases (and as outlined in Section
3.2), AllenSPARQL produces SPARQL queries [106] that it executes on
a triple store.

We decided to connect AllenSPARQL to the i2b2 system, a widely used
clinical research platform with a well-understood database schema, as-
suming that this facilitates the adoption and replication of our method. A
researcher can select an already executed i2b2 query. As a data prepara-
tion step, AllenSPARQL then converts the relational i2b2 patient data from
this i2b2 query into the RDF format [107] and transfers the data using
D2RQ [108] into an Apache Jena Fuseki [109] server. AllenSPARQL also
implements a simple unsupervised temporal abstraction method based on
the concatenation of adjacent time intervals below a threshold value
(described further in [110]), which can be configured and applied during
the data preparation. The data are then ready for being filtered via the
temporal patterns generated by AllenGUIL

Whenever AllenSPARQL detects a change in the query graph pro-
duced by AllenGUI, it translates the temporal pattern into a SPARQL
query and executes it on the Fuseki server. To perform the calculations
necessary for handling duration intervals (as described in Section
3.2.3), we use the open source mathematical software SageMath [111].
After query execution, AllenSPARQL lists and counts all identified pa-
tients. Generated SPARQL queries are also prepared for the retrieval of
additional data, such as the start and end times of time intervals, or the
values of numeric data elements. After uncommenting the respective
variables in the SPARQL code, the query can be manually executed on
Fuseki’s web interface, which then retrieves and renders the patient
data in a tabular format.

We based our decision to use Semantic Web technologies [112] on
the fact that these are built on the foundation of graph structures. As
such, they are compatible with the query graph described in Section
3.2.1, which simplifies the translation into database queries. However,
as we aimed to focus on the graphical notation, a more detailed de-
scription of the backend would go beyond the scope of the paper.

4.2. Evaluation

We have carried out an evaluation consisting of two parts. The first
part aimed to ensure technical functionality using a minimal, known set
of artificial test data. In the second part, we used a larger amount of real
patient data to examine whether the implementation was acceptable in
terms of query runtimes. More importantly, we used medical queries
published in the literature to analyze whether our graphical notation is
capable of modeling typical temporal patterns from a conceptual point
of view.

4.2.1. Technical i2b2 test dataset

As a first step, we created a minimal technical i2b2 test dataset. It
contains 13 fictional patients (one for each Allen relation) with data for
the two concepts “A” and “B”. The temporal data consists of short time
intervals in a predefined pattern to test the data preprocessing (such as
the simple temporal abstraction) in AllenSPARQL and the translation of
query graphs into SPARQL code. The dataset also contains known nu-
meric values to allow for testing value modifiers. Using the dataset
enabled us to analyze whether a temporal query returned the expected
results. For example, when querying “A after B”, our “last” Allen rela-
tion, the system should identify the “last” patient with ID 13. In this
way, the functionality could be tested in a systematic way, which was
particularly important for the implementation of the prototype. The test
dataset is described in more detail in [110].

4.2.2. Queries on the MIMIC-III dataset

To further assess the capability of our approach for modeling and
executing typical medical temporal queries on real data, we replicated
the temporal queries from Nigrin and Kohane [11] on the Medical In-
formation Mart for Intensive Care (MIMIC-III) [12] database, version 1.4.
This openly accessible database contains de-identified data from about
40,000 intensive care patients admitted to the Beth Israel Deaconess
Medical Center in Boston. It includes ICU data (bedside monitoring,
charts), laboratory and microbiology tests, provider order entry, billing-
related data (ICD9, DRG, CPT), demographics, as well as free text notes
and reports [12].

Our evaluation environment comprised an i2b2 version 1.7 instance
with an Oracle database (11 g Enterprise Edition Release 11.2), both
installed on servers inside the University Hospital Erlangen. We ex-
ported a subset of MIMIC-III data into these systems. AllenGUI and
AllenSPARQL were executed on a typical Windows 7 office computer,
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Table 2
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The temporal queries that we adopted from Nigrin and Kohane [11] and executed on the MIMIC-III dataset. Query execution times are shown as mean and standard

deviation across three measurements.

Query  Description

i2b2 Query Execution on our system

1 Diabetic patients (type 1 diabetes) with at least two occurrences of glycohemoglobin values

greater than 10 percent.

“Diabetes Type 1” and “HbAlc” i2b2 patients: 122
Triples: 7482
AllenSPARQL patients: 6

Query time: 99 + 25ms

2 Diabetic patients who have had at least one elevated glycohemoglobin value that is not

coincident with the time of their diagnosis (one month).

“Diabetes Type I” and “HbAlc” i2b2 patients: 122
Triples: 7482
AllenSPARQL patients: 2

Query time: 288 = 88 ms

3 Patients with congenital hypothyroidism who were not seen in the endocrine clinic within

“Congenital Hypothyroidism” and i2b2 patients: 11

one month after an elevated thyrotropin (TSH) laboratory result (i.e., a value greater than or ~ “TSH” and “ICU” Triples: 1007
equal to 10 nU/ml). Note: “endocrinic clinic visit” was AllenSPARQL patients: 8
replaced with ICU stay. Query time: 33 + 4ms
4 Patients with Tanner Stage 2 breast characterization uninterrupted by a Tanner Stage 1 “SAPS” i2b2 patients: 44,476
characterization. Note: “Tanner stages” were replaced with  Triples: 4,481,087
SAPS scores. AllenSPARQL patients: 86
Query time: 67.8 = 1.6s
5 All patients with three ICU stays with increasing SAPS scores. “SAPS” i2b2 patients: 44,476
Triples: 4,481,087
AllenSPARQL patients: 2,606
Query time: 26.9 + 0.9 min
6 All patients with three ICU stays within 3 months, with increasing SAPS scores. “SAPS” i2b2 patients: 44,476
Triples: 4,481,087
AllenSPARQL patients: 1,062
Query time: 4.2 + 0.05 min
7 Patients with elevated glycohemoglobin value (>12 percent), followed by onset of “uAlb” and “HbAlc” i2b2 patients: 988

microalbuminuria (uAlb > 20 mg/g), followed by a glycohemoglobin value greater than 12

percent, but with persistence of microalbuminuria.

Triples: 15,523
AllenSPARQL patients: 3
Query time: 208 = 8 ms

8 Patients with HbAlc greater than 12% that is coincident within one month with
microalbuminuria (pAlb > 20 mg/g), followed by an HbAlc value less than 12% that is still

coincident with microalbuminuria.

“uAlb” and “HbAlc” i2b2 patients: 988
Triples: 15,523
AllenSPARQL patients: 0

Query time: 236 = 40 ms

equipped with a first-generation Intel Core i5 CPU, 8 GB of RAM and a
solid state drive. This machine was not performance-optimized and ran
various programs in the background, such as PostgreSQL with the
MIMIC-III database. Furthermore, D2RQ and Apache Jena Fuseki were
installed on this computer to handle the i2b2 data in RDF.

Table 2 lists the temporal queries from [11], which we have re-
modeled so that they can be executed with our approach. The required
data elements for each query were first queried in the i2b2 system using
the MIMIC-III data, as shown in column “i2b2 Query”. The resulting
i2b2 patient set was then post-processed with AllenGUI and Allen-
SPARQL using the respective temporal pattern from Fig. 8. The final
patient counts returned by AllenSPARQL are denoted as “AllenSPARQL
patients”. Where it seemed appropriate, we also carried out additional
queries (5, 6 and 8). It is important to understand that not all data
elements from these initial i2b2 queries had to be part of the temporal
pattern. For example, in query 1 the i2b2 patient set contained data
only from diabetics. As the diabetes concept has no further temporal
relationship with the HbAlc concept, it was not necessary to reuse this
concept in the temporal pattern.

We were able to successfully reproduce all temporal patterns by
Nigrin and Kohane with our approach. During the modeling process,
however, we noticed some aspects that we would like to elaborate on in
the following.

For query pattern 1 it is worth noting that this query can be modeled
directly in i2b2 (without temporal logic) when constraining the HbAlc
to be greater than 10 and by setting the occurrence of the HbAlc

concept to greater than 1. Such an i2b2 query also returns the same six
patients as in our approach.

As described by Nigrin and Kohane, query 1 can be further refined
from a medical perspective by excluding all patients who had an HbAlc
measurement coincident with their diabetes diagnose, e.g., within
1 month. We implemented this query as shown in pattern 2 by tem-
porally linking the (excluded) HbAlc to the diagnosis via the one-
month duration interval. It is interesting to note that when inferring
across this temporal pattern, the left HbAlc and the diabetes intervals
are linked via the generic Allen relation. This is a composite Allen re-
lation comprising all thirteen Allen relations:

NO HbAlc #1 > 10 {before, after, during, contains, overlaps, over-
lapped by, meets, met by, starts, started by, finishes, finished by, equals}
Diabetes Type I

In the context of Allen’s formalism, this means that no conclusions
can be drawn regarding the direct relationship between the two sym-
bolic time intervals (as all thirteen Allen relations between the intervals
are possible). However, our support for duration intervals allows us to
deduce additional timing constraints between both intervals. By resol-
ving a system of inequations as described in Section 3.2.3, further
constraints are derived, which then ensure that the two symbolic time
intervals occur within one month.

Since the MIMIC-III database does not contain all data elements
used by Nigrin and Kohane, we had to substitute some of them, while
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[ HbA1c #1 > 10
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HbA1c #2 > 10

NO HbA1c #1 > 10 |
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| Diabetes Type |

.
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Fig. 8. The graphical temporal patterns used to model the queries in Table 2.

keeping the original temporal patterns. This was the case in query 3,
where we replaced the endocrine clinic visit with an ICU stay. Similarly,
because the MIMIC-III database does not include Tanner stages, we
replaced this concept with SAPS scores in query 4. As such a query does
not make sense from a medical perspective, we modified the pattern in
query 5 to search for patients with increasing SAPS scores for each ICU
stay. Running such a query on a live reporting system could be useful to
predict complications for patients with clinical deteriorations.

Query 7 is another example of such a sequential search pattern. One
problem is that the before and after Allen relations do not model true
sequences, but rely on the transitive properties of these relations. For
query 7, this means that there could be any number of microalbumin
measurements in the patient data between the two microalbumin
measurements described in the query pattern. Query pattern 8 attempts
to model the research question in a different way by linking the HbAlc
to microalbumin via a one-week duration interval (similar to query 2).

As outlined in Table 2, the query execution times varied depending
on the RDF dataset size and query pattern. In most cases, and whenever
we made changes to the query pattern in AllenGUI, the system re-
sponded to new queries without significant delay. Query performance
was poor only in query 5. This is because the SPARQL engine has to
identify all combinations of subsequent SAPS scores while comparing
their values. Processing such “sequences” is a computationally intensive
task. The reason for this is the huge search space, a consequence of the
sequential order of clinical facts on the timeline, in combination with
the unspecific use of the Allen relations before and after in the query

pattern. However, the execution time of the query can be considerably
reduced when introducing additional temporal constraints, as we show
in query 6. If one demands that the three SAPS values occur within
three months, the search space and the execution time are reduced
considerably, with the latter to about 4 min.

Finally, to analyze whether our implementation returned correct
results, we reviewed the generated SPARQL code for soundness, but
also checked the returned data records of the executed queries by
modifying the SPARQL code to also retrieve patient data (as described
in Section 4.1.2).

5. Discussion and outlook

In 2015, Xu et al. [74] discovered that almost all cohort identifi-
cation systems use Boolean logic to couple inclusion and exclusion
criteria. That is, Boolean logic is the set standard for this task. At the
same time, the authors observed that the integration level of temporal
query functionality is “not very high”. They assume that this is due to
the complexity of dynamic temporal phenotyping algorithms or due to
a lack of tools for modeling them. However, as there is a vast amount of
research dealing with time-related retrieval, exploration and visuali-
zation of data (see e.g. the review by Rind et al. in [58]), the question
arises why the methods described therein are not yet widely used in
current translational research systems.

As described by Combi and Oliboni in [64], it is not always simple
to distinguish between visualization and visual exploration on the one

10
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“Patients who take medicine X between 10" and 50t day [after the start of a medical trial],
and then within 7 days have chest pain and stomach pain at the same time, followed by
feeling nausea for two consecutive days.” (compare Jin 2009, Fig. 9)

Allen relations are too constraining.

Medical Trial |
1 9 Days | 41 Days |
| Medicine X_| a__7 Days ~ |
I} _cChestPain [ n
Naive implementation, which would not find ! Stomach Pain 2 Days

any patient because the “equals” and “meets”

" s e

\| / Nausea

A pL 2

Medical Trial c ted impl i h
orrected implementation wi
9 Days | [ Me::c:?:ay)s( | | “relaxed” constraints in the pattern.
2 | Medicine X | 7 Days |
Chest Pain |
[ 1Hour#1]| |1 Hour#2 | 2 Days |
| Stomach Pain Nausea |

[1 Day 12 Hours |

| Headache |

| Stomach Pain |

20 Days |
Medicine X |
30 Days |

“Within 20 days of taking medicine X,
patients get a headache. And within 30
days of taking medicine X, patients get
stomach pain.” (Example from Jin 2009,
impossible query in QueryMarvel)

Fig. 9. Comparison with QueryMarvel. The fig. shows how one would model queries from [57] with our graphical notation. While the upper example is complex to
model with our approach, the lower one (pattern 3) is impossible with QueryMarvel.

hand and query of temporal clinical information on the other hand,
since both are intertwined. As such, we assume that many of the sys-
tems described by Rind in [58] are specialized standalone research
applications, and their functionality for temporal queries may not al-
ways be transferable to other implementations.

5.1. Comparison with other approaches

As described in the background section, most approaches to model
temporal queries are either text-based or form-based. There are only a
few approaches which we consider truly graphical, such as the
QueryMavel temporal language [57] or the approach by Chittaro, Combi
and Oliboni [63,64]. Due to the similarities in modeling, we briefly
compare these two approaches with ours.

QueryMavel uses a comic strip metaphor to model temporal con-
straints. Certain temporal patterns can be modeled more intuitively in
QueryMarvel than with our method, as demonstrated with the patterns
1 and 2 in Fig. 9. A good understanding of Allen’s formalism is required
to successfully construct queries in our notation. As such, the naive
adoption of one of the temporal QueryMarvel patterns from [57],
shown in pattern 1, would not return the desired results. This is due to
the very restrictive nature of the equals and meets relations (circles),
which assume a precision of timing in patient data that is unlikely to
match clinical reality. This effect can be mitigated via the more com-
plex pattern 2 or the other methods discussed below. In addition, the
unintentionally modeled statement “41 Days overlaps 7 Days” in pattern
1 was incorrect; this was solved in pattern 2 via the double referencing
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of “Medicine X”. From this point of view, QueryMarvel is easier to use,
but on the other hand it does not support parallel timelines [57] or
patterns that can be created easily with our method (see e.g. pattern 3).

The approach by Chittaro, Combi and Oliboni [63,64] uses a paint
strip metaphor to graphically model time intervals on a drawing sur-
face. These can be (technically) squeezed and stretched to enable the
definition of composite Allen relations that are conceptual neighborhoods
[113]. This approach enables expressing temporal indeterminacy. In
our notation, one would have to resort to disjunctions, as described in
[63] and as shown in pattern 1a in Fig. 10. However, via a workaround
it is possible to model such disjunctions by relying on Allen’s constraint
propagation technique: As shown in pattern 1b, using an intermediate
duration interval allows for inferring the composite temporal relation
“A {starts, started by, equals} B”. The drawback is that this modifies the
original query by specifying that A and B must have a duration of at
least one second. Patterns 2 and 3 in Fig. 10 show adaptations of similar
queries from [64] using our approach. We will discuss possible alter-
natives for modeling indeterminacy below.

The original approach as described in [63] was updated in [64],
where the authors, besides support for relative temporal distances and
other features, introduced support for queries involving different tem-
poral granularities [114]. This is a feature not considered in our ap-
proach. For example, it is not possible to model that symbolic intervals
must start in the same calendar year (pattern 2 in Fig. 10). Instead, we
define relative temporal relationships via duration intervals, which, in
our opinion, seems to be more adapted to medical research, as health
problems are not tied to calendar units. However, such support for
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“Intervals A and B start at the same time, but it is
irrelevant when A and B finish.” (Chittaro 2003)
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end.” (Combi 2012, Figs. 3-5, parts (a))

“Headache, fever, and sore throat must start in the same year, the fever must finish
at least in the following year, while it does not matter when headache and sore throat
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Sore Throat |

Headache

| 2

Figs. 3-5, parts (b))

“Fever and headache must finish the same day,
headache must start at least one day before its end,
and it does not matter when fever starts.” (Combi 2012,

3 | Fever
| 1 Second
1 Day

| Headache

Fig. 10. Comparison with the approach from Chittaro, Combi and Oliboni. The fig. shows how one would model queries from [63] and [64] with our graphical

notation.

different temporal granularities could be of use for administrative as-
pects, such as quality control or financial analyses.

QueryMarvel and the approach by Chittaro, Combi and Oliboni
have in common that they require rather complex user interface im-
plementations, because of the metaphors they use. In contrast, our
approach only uses horizontal bars. Furthermore, for our Allen-based
notation we did not have to develop a new algorithm to check the query
pattern for basic logical consistency and could rely on an existing im-
plementation [105] of the original algorithm proposed by Allen in [10].

5.2. Is Allen’s time interval algebra too expressive?

Other researchers (e.g. [115-117]) have discussed that the high
level of Allen’s temporal expressiveness can be a problem in practice,
for which the phenomena described in Fig. 9 and Fig. 10 are good ex-
amples.

In pattern 1 of Fig. 9, the equals relations between chest pain and
stomach pain would only identify patients where the start and end
times of the two time intervals are the same. This issue can be partially
mitigated via more complex patterns, as the one in pattern 2. A second
solution, which we also implemented in AllenSPARQL, is the relaxation
of the temporal constrains of Allen’s relations via a configurable epsilon
value. Added to the definition of chronological sequences (as in Fig. 1),
this epsilon value can be used to capture temporal uncertainties in the
query pattern or in noisy patient data. This idea is further described e.g.
in [17,118,119]. A third solution (for this specific example) would be to
round all time stamps in the patient data to days. The query would then
operate on the temporal granularity of days.

Similarly, the issues discussed in the context of Fig. 10 are other
effects stemming from the high specificity of Allen’s temporal relations.
A possible solution might be the adoption of the “broken paint strip”
metaphor from [64] for modeling open symbolic time intervals, as
sketched in Fig. 11. When translating this updated graphical notation
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2 \ Headache
[Headache 2 [ Fever |

| 1 Year #1 | 1Year#2 |
[Sore Throat3

Fig. 11. A possible implementation of “open symbolic time intervals”. A (gra-
phical only) adoption of the “broken paint strip” metaphor from [64] could be
useful for modeling temporal indeterminacy. The patterns shown correspond to
those in Fig. 10.

into a query graph, we would have to create composite Allen relations
whenever we encounter such a broken interval end. For pattern 3 of
Fig. 11, the Allen relation between “Fever” and “1 Day” would be
“Fever {finished by, equals, finishes} 1 Day”. Another option worth in-
vestigating is using Freksa’s semi-intervals [113] to model the open
intervals.

To reduce the expressiveness of Allen’s time interval algebra, one
could try to combine the detailed Allen relations (meets, during, starts,
finishes, and their inverses) into coarser ones, as Allen has already de-
scribed in his original work [10]. For example, the relations before and
meets could be merged into bef and during, starts and finishes into dur.
Nevertheless, complex Allen relations, such as meets, overlaps, during,
starts and finishes, are essential for supporting relative temporal dis-
tances, as demonstrated throughout our work. We would therefore
discourage the use of a reduced Allen formalism, as it would sig-
nificantly limit temporal expressiveness.
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5.3. Limitations and future improvements

The practical use of our approach presupposes a good under-
standing of Allen’s time interval algebra. The graphical representation
of Allen relations might be misinterpreted by some users, which may
cause errors to creep into queries. Our initial observations from pilot
usage indicate that the logical precedence of time interval modifiers
may not always be comprehensible to users, especially when using a
combination of occurrence and value modifiers (as illustrated in Section
3.1.4 with the pH interval). A possible solution could be to replace the
currently used standard relational operators with those from the Arden
Syntax, such as “AT MOST”, “AT LEAST”, etc. [120]. This would also
lead to further consistency with the “NO” occurrence modifier.

When reinterpreting the search patterns from Nigrin and Kohane
and implementing the AllenGUI queries, we observed that search pat-
terns could sometimes be modeled in different ways (compare e.g.
queries 7 and 8 in Table 2). This is caused on the one hand by linguistic
inaccuracies of the research question, and on the other hand by the high
expressiveness of Allen’s time interval algebra. Such different queries
usually also return different results. Nevertheless, it is not always pos-
sible to tell which temporal pattern best answers a medical question.
These uncertainties remind of those described in Hripcsak et al. [121],
albeit less pronounced in our case. Temporal queries, as presented in
our work, should only be used for preselecting patients. Subsequently,
close collaboration with physicians and an additional accurate assess-
ment of the results (possibly with direct access to the original patient
records) is required.

Three further constructs would be valuable in our approach and are
planned to be integrated in future revisions. First, it is not yet possible
to directly express the Boolean operator “OR”, both for the logical and
the temporal part of a query. A solution for the first could be to allow
for expressing disjunctions in single symbolic time intervals, as in
“Propofol OR Amiodarone”. A practical solution for temporal disjunc-
tions could be to adopt the broken paint strip metaphor from [64], as
discussed above. Second, while our approach has some support for
modeling trends of numerical values over time, as shown in the lower
part of Fig. 7 for the CK values, or as in the temporal pattern 5 of Fig. 8,
it does not allow for modeling true ordered sequences. This feature,
which has been implemented e.g. in Eureka! [122], VizPattern [62],
and many other visual data exploration tools, could be potentially in-
tegrated into our approach by extending the 13 Allen relations with two
new relations, precedes and succeeds. Third, there is currently no support
for absolute time intervals. Such a feature could be implemented via
intervals that encode absolute start and end times, as in “2017-01-01 -
2017-03-19”.

Finally, we will reconsider the use of our RDF-based backend, al-
though it has worked well as a proof-of-concept. However, in [123] and
[124] we recently demonstrated that query formalisms from one system
can be converted into another one, and demonstrated this between i2b2
and Samply [125]. We aim to continue with this research by in-
vestigating to what extent temporal constraints, created with AllenGUI,
can be translated and injected into other query formalisms (such as an
i2b2 XML query definition [126]). We assume that it will not always be
possible to reproduce the full expressiveness of our notation in these
systems, but we expect that many typical temporal patterns can be
translated. Processing temporal query patterns where this does not
work will be an interesting aspect of this future research. Another op-
tion would be the translation of the temporal patterns into executable
code, for example based on the Arden Syntax [127,128], or im-
plemented in a programming language that natively provides support
for Allen’s relations, such as the Clinical Quality Language [129,130].

6. Conclusions

The efficient processing of temporal information is of utmost im-
portance in medicine. We have presented a straightforward but

13

Journal of Biomedical Informatics 100 (2019) 103314

expressive approach to graphically model queries with complex tem-
poral constraints. Via the extensions, duration intervals and time interval
modifiers, we were able to overcome many challenges associated with
EHR-based temporal phenotyping. We have shown that our graphical
notation is suitable for modeling typical medical temporal queries.
Other approaches may be more powerful in certain aspects, but are
more complex to implement and may not always be generic enough to
be transferable to other environments. The results of our work suggest
that similar temporal expressiveness can be provided with a mini-
malistic graphical notation. We plan to refine our graphical approach in
the near future and aim to conduct a detailed usability assessment.
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