
ORIGINAL RESEARCH

Integrating Arden-Syntax-based clinical decision support
with extended presentation formats into a commercial patient
data management system

Stefan Kraus • Ixchel Castellanos • Dennis Toddenroth •

Hans-Ulrich Prokosch • Thomas Bürkle

Received: 1 August 2012 / Accepted: 9 January 2013 / Published online: 26 January 2013

� Springer Science+Business Media New York 2013

Abstract The purpose of this study was to introduce

clinical decision support (CDS) that exceeds conventional

alerting at tertiary care intensive care units. We investi-

gated physicians’ functional CDS requirements in periodic

interviews, and analyzed technical interfaces of the exist-

ing commercial patient data management system (PDMS).

Building on these assessments, we adapted a platform that

processes Arden Syntax medical logic modules (MLMs).

Clinicians demanded data-driven, user-driven and time-

driven execution of MLMs, as well as multiple presentation

formats such as tables and graphics. The used PDMS

represented a black box insofar as it did not provide stan-

dardized interfaces for event notification and external

access to patient data; enabling CDS thus required peri-

odically exporting datasets for making them accessible to

the invoked Arden engine. A client–server-architecture

with a simple browser-based viewer allows users to

activate MLM execution and to access CDS results, while

an MLM library generates hypertext for diverse presenta-

tion targets. The workaround that involves a periodic data

replication entails a trade-off between the necessary com-

putational resources and a delay of generated alert mes-

sages. Web technologies proved serviceable for reconciling

Arden-based CDS functions with alternative presentation

formats, including tables, text formatting, graphical out-

puts, as well as list-based overviews of data from several

patients that the native PDMS did not support.

Keywords Arden Syntax � Clinical decision support �
Clinical event monitoring � Patient data management

system � Intensive care unit

1 Introduction

The Arden Syntax for medical logic systems [1] is a lan-

guage for encoding medical knowledge. It is an HL7

standard that is supported by a number of commercial

clinical information systems. We integrated clinical deci-

sion support (CDS) functions based on the Arden Syntax

into a commercial patient data management system

(PDMS) to supply additional functions, like monitoring

laboratory values, score calculations, information retrieval

for billing purposes, and even treatment guidelines.

This paper concentrates on the technical aspects of

integrating CDS in a typical, commercially available

PDMS, and specifically addresses these research questions:

• Like many other clinical information systems the used

commercial PDMS is a black box system, insofar as it

does not provide interfaces required for integrating

CDS functions. Is it nevertheless possible to integrate a

S. Kraus (&)

Center for Communication and Information Technology,

University Hospital Erlangen, Erlangen, Germany

e-mail: stefan.kraus@uk-erlangen.de

I. Castellanos

Department of Anesthesiology, University Hospital Erlangen,

Erlangen, Germany

e-mail: ixchel.castellanos@kfa.imed.uni-erlangen.de

D. Toddenroth � H.-U. Prokosch � T. Bürkle

Department of Medical Informatics, Biometrics and

Epidemiology, Chair of Medical Informatics, Friedrich-

Alexander-University Erlangen-Nuremberg, Erlangen, Germany

e-mail: dennis.toddenroth@imi.med.uni-erlangen.de

H.-U. Prokosch

e-mail: ulli.prokosch@imi.med.uni-erlangen.de

T. Bürkle

e-mail: thomas.buerkle@imi.med.uni-erlangen.de

123

J Clin Monit Comput (2014) 28:465–473

DOI 10.1007/s10877-013-9430-0



full featured technical platform to execute Arden

Syntax knowledge modules?

• Some of the requirements of our clinical users such as

tabulated and graphical outputs clearly go beyond the

typical scope of the Arden Syntax. In particular there

was a request for list-based processing and for mech-

anisms to present generated information. Is it expedient

to implement such mechanisms directly in Arden

Syntax and what are the potential benefits?

2 Environment

The University Hospital of Erlangen (Universitätsklinikum

Erlangen, UKER) is a tertiary care university hospital with

1.400 beds. In 2006 UKER introduced a commercial PDMS

(Integrated Care Manager, ICM�, Dräger Medical, Lübeck,

Germany) in an interdisciplinary operative intensive care unit

(ICU) [25]. The PDMS has since been rolled out at eight ICUs

altogether, covering about 100 beds of surgical, neurosurgical,

medical and paediatric intensive care.

At an early stage during the rollout clinical users asked

for additional capabilities in terms of tools for ICU scoring,

monitoring of critical data, and various kinds of informa-

tion retrieval for the purpose of decision support. Espe-

cially scores with a specific relevance for intensive care

such as PRISM score, MELD score or RIFLE/AKIN score

which simultaneously consider the constellation of differ-

ent patient parameters were required.

We decided to search for a flexible and expandable

technical solution based on available standards. Thus a

development cooperation with the PDMS vendor was ini-

tiated to integrate the PDMS with a commercial Arden

environment (Arden Syntax IDE�, Medexter Healthcare,

Vienna, Austria).

3 Background

A clinical decision support system (CDSS) is a computer

program ‘‘designed to aid directly in clinical decision

making, in which characteristics of individual patients are

used to generate patient-specific assessments or recom-

mendations that are then presented to clinicians for con-

sideration’’ [2]. For decades these systems have been in

use, and several systematic reviews have corroborated that

they can enhance clinical performance [3–8]. The utiliza-

tion of a CDSS requires the medical knowledge to be

encoded in a representation format that can be processed by

a computer. The Arden Syntax is such a format. Its design

objectives were knowledge transfer between institutions

and easy knowledge encoding [9]. In Arden, medical

knowledge is structured in independent modules, called

medical logic modules (MLMs), which usually contain

sufficient knowledge to make one single clinical decision.

For an introduction of how to write MLMs see [10].

Using Arden syntax presupposes a set of technical

components: The first one is an Arden compiler to make

MLMs executable, for example by translating Arden Syn-

tax into a different programming language such as Java

[11–14], C?? [15, 16], or stored procedures of the

underlying database system [17, 18]. A later approach is

using ArdenML [19] and extensible stylesheet language

transformation (XSLT) instead of a classical compiler [20].

The second component is an Arden engine, which controls

the execution of MLMs by reacting to clinical events.

Compiler, engine and additional tools like MLM editors

and management tools form the Arden environment.

MLMs are specifically designed for clinical event

monitoring [21], typically running invisibly in the back-

ground unless they identify a predefined critical situation

that causes an alert. Hripscak et al. [22] call event monitors

‘‘tireless observers, constantly monitoring clinical events’’,

and distinguish three basic types of events, depending on

whether program execution is triggered by data entry

(data-driven), by GUI events (user-driven), or executed

periodically (time-driven). Integrating a clinical event

monitor into an existing information system thus requires

(at least) a trigger mechanism and a way to access data.

If an institution wants to adopt the Arden Syntax, it

encounters two basic problems. The first one, called the

compiler problem, is that building an Arden compiler is a

difficult and resource-intensive task [19]. Recently both a

commercial Arden environment [13] as well as an open source

solution [23] have become available. The second one, referred

to as the curly braces problem, is that data and message types

of a clinical information system must be mapped onto Arden

Syntax data types and vice versa (since the mapping is spec-

ified by the parameters inside a pair of curly braces). The

designers of the Arden Syntax deliberately left this mapping

process to the particular institution due to the lack of stan-

dardized interfaces and patient records [24].

4 Methods

Integrating CDS functions based on the Arden Syntax into

an existing PDMS has to take into account the require-

ments of the clinical users and the technical properties of

the interfaces to be connected. Therefore, these steps had to

be taken:

• Analyzing the clinical and technical requirements.

• Creating a technical platform for executing MLMs

by connecting the PDMS and the Arden Engine. This

466 J Clin Monit Comput (2014) 28:465–473

123



comprised workarounds for improving interfaces, solv-

ing the curly braces problem and extending the system

for a multi-ICU environment.

• Creating mechanisms for presenting generated infor-

mation. We decided to perform this step completely in

Arden Syntax.

4.1 Analyzing requirements

We had already integrated a basic CDSS prototype as a

proof of concept before the beginning of the funded

cooperation. This gave us a good impression of the clinical

users’ requirements that was expanded in periodic inter-

views and enabled us to create a blueprint of the system to

build.

The technical requirements were determined by ana-

lyzing the interfaces of the PDMS and the Arden Engine.

The Arden engine provides a generic interface named Ar-

denHostInterface to connect it to a clinical information

system. We used some example code shipped with the

Arden environment to examine the ArdenHostInterface. A

set of MLMs were written and their interaction with the

ArdenHostInterface was investigated. The PDMS provides

an export interface (‘‘exporter’’) that has already been

extensively used in our hospital for other purposes like the

generation of discharge letters, so we could analyze a large

set of existing export jobs to investigate its function.

4.2 Connecting the PDMS and the Arden engine

On the PDMS side we had to provide the lacking data-driven

trigger mechanism and a way to access patient data. As the

exporter was the only available interface, we had to build

workarounds. Data access was enabled by periodically rep-

licating the required parts of the patient records into an

external database that acts as a proxy for the PDMS patient

database (‘‘proxyDB’’). We set up an export job on a dedi-

cated export virtual machine (VM) that creates structured

text files with patient data that are parsed by a self-written

export handler that writes their content into the proxyDB.

Event detection is carried out by comparing exports.

Whenever the export handler detects a data item that has not

been previously exported, it creates an entry in an event list

that is finally sent to the Arden Engine. Another workaround

was needed for providing microbiological data. The PDMS

can only provide data that is insufficiently structured for

automatic processing, so we duplicated the stream of HL7

messages at our communication server. A self-written parser

processes these messages and writes their content into the

proxyDB, preserving its structure.

On the Arden side we implemented the control and

curly braces evaluation methods of the ArdenHostInterface.

The Arden engine was integrated into an open source

application server to provide a web service interface. The

resulting system is called the Arden server. With regard to

the curly braces problem we focussed on making the

structure of the mapping clauses as simple as possible for

the knowledge engineers in order to support the paradigm

of ‘‘doctors as programmers’’ [26].

After successfully providing decision support on a first

ICU, we expanded our system to a multi-ICU environment.

A centralized export of patient data across multiple ICUs is

not supported by the PDMS, so we built a partly distributed

system. Hence, we provided one export VM with one

export job and export handler on any ICU.

For user driven execution of MLMs we wrote a stand-

alone mini web browser (‘‘MLM viewer’’) and connected it

to a GUI element (‘‘Arden button’’) in the PDMS. We have

ensured that the MLM viewer is always running in the

foreground as long as it is used to avoid mistaken patient

identities by viewer instances that could be forgotten in the

background. We then built a web application with a button

row and a display area to show MLM-generated output. A

web service client was integrated that sends event mes-

sages to the Arden Server on button click.

4.3 Presenting generated information

Because all requirements regarding the presentation of

results could be fulfilled using web technologies, we

decided to completely implement all presentation mecha-

nisms in Arden Syntax by writing presentation MLMs that

generate HTML and JavaScript. We implemented MLMs

for formatting fonts, generating tables from plain lists,

generating more complex tables from description objects,

expanding and collapsing elements by mouse click, and for

generating scalable line plots from description objects. We

created a separate MLM reserved for all object declarations

that can be included in other MLMs. For the line plots we

used an open source JavaScript library.

5 Results

We were able to integrate a full featured technical platform

to execute MLMs by providing workarounds for data

access and data-driven event notification. MLMs can be

executed by the Arden Engine over a web service interface.

We provided a web application shown in an MLM viewer

for user-driven execution of MLMs. Generated results can

be presented using a set of presentation MLMs. A total of

30 MLMs (presentation MLMs not included) are in clinical

routine use at an interdisciplinary surgical and a pediatric

ICU of the UKER. They can be divided into MLMs

for data-driven monitoring of laboratory values (such as

J Clin Monit Comput (2014) 28:465–473 467

123



potassium and blood glucose), and MLMs for user-driven

decision support (like formula calculations such as anion

gap or ventilation volume, or calculation of score profiles).

These 30 MLMs have been cumulatively invoked 161.400

times (84.3 % data-driven, 15.7 % user-driven by 144

distinct users) within one year, corresponding to a daily use

of 442 invocations on average.

5.1 Analyzing requirements

The interviews showed that the use of alert boxes was

clearly unrequested. The desired methods of communica-

tion with the system were emails and SMS messages for

data-driven and time-driven MLMs and a graphic user

interface started by a GUI button (‘‘Arden button’’) for

user-driven MLMs. Figure 1 shows the basic architecture

of the intended system.

The required presentation mechanisms comprised text

formatting, creation of tables and line plots, and the ability

to expand and collapse arbitrary elements on mouse click.

There was also a large requirement for list-based MLMs to

simultaneously process information for numerous patients

to generate overviews which the PDMS does not support.

The technical analysis of the PDMS exporter showed

that it is capable of exporting patient data into arbitrary text

formats and executing command line statements. It sup-

ports user-driven and time-driven, but not data-driven

execution. There is no way to start an export from outside

the PDMS.

The ArdenHostInterface is initially empty and must be

implemented by the customer by providing control meth-

ods to operate the Engine externally and curly braces

evaluation methods that are implicitly called whenever the

control flow reaches a statement associated with a curly

braces expression (e.g. a READ-Statement).

Therefore, the clinical and technical requirements

involved following steps of implementation:

• Enabling access to patient data

• Enabling data-driven execution of MLMs

• Implementing the ArdenHostInterface

• Implementing a GUI and Web application for execution

of user driven MLMs

• Implementing mechanisms to present information gen-

erated by MLMs

5.2 Connecting PDMS and Arden engine

MLMs can access patient data from the proxyDB that is

periodically updated by the export handler. The replication

interval is 10 min. The export handler also creates an event

list that is processed by an integrated web service client.

Our implementation of the ArdenHostInterface contains a

control method for production mode to process clinical

events and another for development of MLMs. We

implemented email addresses, as well as DECT phone

numbers for SMS messages, as communication endpoints.

Multi-ICU support is shown in Fig. 2. Each ICU has its

own export VM, running an export job and an export

handler. The PDMS exporter is capable of detecting

changes in patient records. Any change results in a com-

plete update of the specific patient record (‘‘full snapshot’’).

The GUI of our MLM viewer is deliberately reduced to

a minimum. It consists of a browser element and two

buttons for printing and exiting. The browser element

displays a web application consisting of a row of buttons

and a display area. Clicking a button causes the integrated

web service client to send an event message to the Arden

Server. All resulting output is generated by MLMs, no

refining is done by the web application or the MLM-

viewer. Mapping of buttons to MLMs is of m:n type.

5.3 Generating extended output formats

All user requirements regarding the presentation of results

were solely implemented as MLMs that are called as

subroutines. Formats of timestamps are transformed to

equal those of the PDMS. Further refining can be done in

any MLM by calling the following MLMs:

• fontformatter: Arbitrary formatting of text

• list_to_table: Plain lists are converted to tables

Trigger
mechanism

Patient
database

Arden
engine

A
rd

en
H

os
tIn

te
rf

ac
e

Knowledge
database

Data access

MLM viewer
HTML

JavaScript

SMS, email
User

Data-driven and time-driven events

GUI event (“Arden button“)User-driven events

PDMS

Fig. 1 Basic architecture of the

intended system. Data-driven

and time-driven events are

directly sent to the Arden

engine. User-driven events are

triggered by buttons in the web

application displayed by the

MLM viewer. The viewer is

started by a GUI event (‘‘Arden

button’’)

468 J Clin Monit Comput (2014) 28:465–473

123



• tablegenerator: Table description objects are converted

to tables

• hide_show: Arbitrary items (e.g. tables) can be

expanded and collapsed

• lineplotter: Scalable line plots can be generated from

description objects

We strictly separated MLM output from the storage of

derived information. Any return value is generally treated

as GUI output. All additional derived information can be

written to the proxyDB.

Figure 3 shows an example of the creation of a simple

table from a list. This example has been taken from a

production MLM generating lists of all critically altered

calcium values of a patient stay. The table is created using

a single line of code in the calling MLM. Calling list_-

to_table with a list of critical calcium values generates a

table with three columns: a consecutive number, the value

and its timestamp. This is done by looping through the list

and chaining HTML tags to a table. The table is then

returned by list_to_table as a single string.

Figure 4 shows an example for generating a line plot from

a list of MELD score values (derived by an MLM) using a

description object. The principle is the same as shown in

Fig. 3, except it generates JavaScript instead of HTML. After

instantiating the description object some properties are

assigned. Calling the MLM lineplotter creates JavaScript code

that draws a dynamic scalable line plot within the web

browser. Points that correspond to single measurements are

highlighted on mouse over. Some additional properties like

borderlines or marking of single points could be set but are not

shown in the example to keep it simple.

All presentation MLMs create single strings that can be

concatenated at the end of the ACTION slot to the return

value of the calling MLM and be displayed by any viewer

that is capable of displaying HTML/JavaScript.

6 Discussion

We successfully integrated Arden based clinical decision

support into our PDMS, enabling user-driven, time-driven

and data-driven execution of MLMs. MLMs can call a

number of presentation MLMs that may be extended in the

future. The following aspects are to be discussed:

• Properties and drawbacks of the implemented platform

• Implementing presentation mechanisms in Arden

Syntax

• Experiences with the Arden Syntax

6.1 Lessons learned from integrating Arden Syntax

with a black box clinical information system

The technical integration was successful but some draw-

backs remain. The first one affects the workaround to

provide a data-driven trigger mechanism. Some authors

describe the use of database triggers to provide data-driven

execution of MLMs [17, 27]. We did not have this

opportunity due to a lack of database access. A database

trigger on the proxyDB instead of the patient database was

also not possible as we update all patient data in the

proxyDB by snapshots. Some cases are described where a

database trigger cannot be implemented, involving the

construction of an external component that detects events

by scanning the database [28, 11]. We were completely

limited to periodic exports due to lacking external database

access and had to implement the event detection mecha-

nism in the export handler. Our replication interval is a

trade-off between system load and performance and is

currently set to 10 min. Hence, the alert message for a

critical event like a hypoglycaemia is delayed for up to

10 min after database entry. This delay could be reduced

still further, however only as far as the resulting system

load would allow (in our system about 5 min).

The replication delay also affects the content a user sees

in the MLM viewer. If a user sees a new value in the GUI

of the PDMS and starts an MLM that would process this

value, it can take up to ten minutes until the MLM is able

to read this value because it is only available after the next

replication step.

Another drawback is the high consumption of system

resources. One heavily utilized export VM is needed for

Export
job

Export
handler

Export VM ICU_n

Export
job

Export
handler

Export VM ICU_2

Export
job

Export
handler

Export VM ICU_1

ProxyDB
Arden
server

Event
notification Database update

Data access

…

Fig. 2 Architecture of the

multi-ICU capable system. Each

ICU runs an export VM with

one export job and one export

handler. Database updates are

performed as full snapshots of

patient records. The export

handlers detect events by

comparing exports and notify

the Arden server

J Clin Monit Comput (2014) 28:465–473 469

123



any ICU to export patient data. These machines cannot be

used for other purposes in export mode. Additional system

load is created by constant updates of the proxyDB and con-

stant checks for new events by the export handler. At least the

system load is somewhat balanced because of the distributed

architecture. The cost of wasted resources is high for substi-

tuting interfaces that ideally should be provided by the PDMS.

The curly braces problem itself proved not to be difficult to

solve and only required normal programming work.

6.2 Presentation mechanisms implemented in Arden

Syntax

We encountered strong demand for the presentation of

MLM results in formats other than plain text. This matter is

rarely addressed in publications regarding the Arden Syn-

tax. The specification of our used version 2.5 [29] only

contains some string operators like the use of format

strings. This is not surprising for two reasons: Firstly, a

Fig. 3 Example for generating

a table from a list. The

presentation MLM list_to_table

returns a string containing an

HTML table with three

columns: consecutive number,

value and timestamp. The table

is a screenshot from a real

patient. More complex tables

can be generated from

description objects using the

presentation MLM

tablegenerator

Fig. 4 MELD score: example

for generating a line plot from a

description object. The

presentation MLM lineplotter

returns a string containing

JavaScript code that draws a

scalable line plot with

highlighting of points on

mouse-over events. The graph is

a screenshot from a real patient

470 J Clin Monit Comput (2014) 28:465–473

123



message created by an MLM usually contains only a short

text. A typical example from Henri Mondor Hospital [11]:

‘‘serum potassium (3.3) is low (minimum is 3.5)’’

Secondly, MLM-generated strings are usually sent to

communication endpoints that are not capable of display-

ing formats other than plain text (pagers, DECT phones,

alert boxes). Regarding mobile devices in the clinical set-

ting this is likely to change in the near future as for

example modern mobile phones start to process HTML.

Karlsson et al. [30] describe a web based telemedical

platform where strings returned by MLMs are inserted into

a HTML template. Our MLMs in contrast return strings

that already contain HTML or JavaScript generated by

presentation-MLMs. Both approaches can be combined.

Advanced presentation of information can easily be pro-

vided using templates in HTML and JavaScript. Such

templates can be developed using a standard browser and

than integrated in an MLM that adds patient data to the

template.

Manual insertion of HTML in a generated string is

considered unsuitable as it obliterates the code, compli-

cates maintenance and stresses the knowledge engineer.

Leaving the burden of coding HTML in MLMs to the

knowledge engineer contradicts the paradigm of doctors as

programmers and most likely would reduce the willingness

to write more complex MLMs.

Of course, there are alternative approaches to present

information. For example, MLMs could generate XML by

calling a mapper on an Arden Syntax object. The XML

data could be transformed to HTML/Javascript by a

stylesheet. Which of these approaches is easier for a par-

ticular user depends on his individual skills. We presume

that the presentation MLMs could be used more easily by a

physician acting as a knowledge engineer.

Another approach would be to refine the information

by a presentation layer inside the system itself. However,

such an approach would interfere with the design goal of

knowledge transfer. If the process of refining is integrated

into the presentation layer of the CDSS, it cannot easily be

transferred with the MLMs. If it is implemented as pre-

sentation-MLMs, these can be transferred with the other

MLMs containing the medical knowledge. A knowledge

transfer requires only a normal web browser on the receiver

side to view the MLM output in the same way as the sender

does.

6.3 Experiences with the Arden Syntax

From a technical point of view any high-level program-

ming language could have been used to implement the

described functionality. We decided to use Arden Syntax

for two reasons. Firstly, it is an HL7 standard that supports

knowledge transfer. Secondly, it is a language specifically

designed for the medical domain that is very easy to learn,

even promising to allow physicians to implement decision

support functions on their own.

Compared to some other MLM libraries (for example

[31]) ours is rather small. However we were still able to

gain valuable experience with the Arden Syntax that is

sometimes described to have following limitations:

Arden syntax has two key limitations: first, it can

only be used to encode event-driven, patient-specific

rules. For use cases such as drug–drug interaction

checking, or panic lab value alerting, this modality is

sufficient. However, because Arden Syntax is patient-

specific, it cannot be used for population-based

decision support (such as a quality-of-care dash-

board), and because it is event-driven, it cannot be

used for point-of-care reference or information

retrieval support. [32]

It may be that such limitations occur in the case of some

embedded commercial Arden environments, but we did not

encounter them as we had full control over the ArdenHo-

stInterface and could implement all methods at our conve-

nience. The Arden Syntax as a language specification is not

bound by the above limitations. The structure of MLMs is

optimized for data-driven execution, but they can also be

started by a button or using any other convenient method.

Arden Syntax is also not necessarily patient specific. It is true

that in the case of alerting MLMs are executed in the context of

one single patient. But that is only due to the fact that the event

message is in that patient’s context, so data-driven execution

of list-based MLMs would simply not make sense.

An MLM can also process a whole patient list (we

implemented several MLMs that do so) or work popula-

tion-based decision support like monitoring infection out-

breaks. Some authors have suggested an adoption beyond

classical alerting [33–35]. An example for the use of

MLM-packages [36] with high complexity is described at

the University Hospital of Vienna [37, 38].

The Arden Syntax is a turing-complete programming

language, so it can be used for an arbitrary application

range. Only a few of the MLMs we developed during the

cooperation would fit the typical scope of the Arden Syn-

tax. Some of our MLMs do not derive any information but

only present list-based patient data or a different arrange-

ment for customized information retrieval.

A high level of benefit comes from the object data type

that was proposed by Jenders et al. [39] and introduced in

version 2.5. It overcomes the limitations of the flat lists that

were the only complex data types before and did not sup-

port element access by name. As objects can contain lists

and vice versa, the capabilities of the Arden Syntax

have strongly increased and passing complex arguments

J Clin Monit Comput (2014) 28:465–473 471

123



between MLMs is made much easier as demonstrated in

the line plotter example.

6.4 Generalizability of our technical approach

Our solution demonstrates that it is possible to connect an

Arden Engine to a commercial clinical information system

without direct database access or a trigger mechanism, pre-

supposed this system provides an exporting mechanism. The

drawbacks include delays in event detection and data provi-

sion in proportion to the configured replication interval, as

well as a substantial system load caused by the continuous

exports. Although our solution is tailored to our proprietary

exporter, the basic approach of periodic replication into an

external database appears also workable at other institutions.

The integration of an Arden engine in any institution with any

clinical information system requires the implementation of an

interface component like the ArdenHostInterface, as the

Arden Syntax standard generally leaves this step to the par-

ticular institution. Our presentation MLMs are fully general-

izable, insofar as they do not introduce new dependencies on

another specific technology. These MLMs could be trans-

ferred to any institution that uses Arden Syntax, without

requiring adjustment as the only prerequisite is any modern

web browser.

7 Conclusion

We have found that the Arden Syntax is suitable for far more

than data-driven alerting. Since the introduction of objects in

version 2.5, the capabilities of the Arden Syntax combined

with its easy-to-learn syntax could even make it a suitable

generic plug-in language for clinical information systems. It

could be seen in a broader context as tool for providing clinical

information systems with additional capabilities. Our main

problem in integrating Arden Syntax into our PDMS was its

lack of adequate interfaces. As long as it does not provide them

we are limited to workarounds like replicating patient data into

the proxyDB. Until now we have not been writing back MLM-

generated data into the patient record, but have stored it in the

proxyDB. Currently, we are working on enabling MLMs to

write data into the patient record using the PDMS inbound

interfaces. We also intend to create a chain of escalation to

ensure prompt reactions to critical events.

References

1. Pryor TA, Hripcsak G. The Arden Syntax for medical logic

modules. Int J Clin Monit Comput. 1993;10(4):215–24.

2. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving

clinical practice using clinical decision support systems: a

systematic review of trials to identify features critical to success.

BMJ. 2005;330(7494):765.

3. Randell R, Mitchell N, Dowding D, Cullum N, Thompson C.

Effects of computerized decision support systems on nursing

performance and patient outcomes: a systematic review. J Health

Serv Res Policy. 2007;12(4):242–51.

4. Shojania KG, Jennings A, Mayhew A, Ramsay C, Eccles M, Grim-

shaw J. Effect of point-of-care computer reminders on physician

behaviour: a systematic review. Can Med Assoc J. 2010;182(5):

E216–25.

5. Jaspers MWM, Smeulers M, Vermeulen H, Peute LW. Effects of

clinical decision-support systems on practitioner performance and

patient outcomes: a synthesis of high-quality systematic review

findings. J Am Med Inform Assoc. 2011;18(3):327.

6. Garg AX, Adhikari NKJ, McDonald H, Rosas-Arellano MP,

Devereaux P, Beyene J, Sam J, Haynes RB. Effects of comput-

erized clinical decision support systems on practitioner perfor-

mance and patient outcomes. JAMA. 2005;293(10):1223–38.

7. Johnston ME, Langton KB, Haynes RB, Mathieu A. Effects of

computer-based clinical decision support systems on clinician

performance and patient outcome: a critical appraisal of research.

Ann Intern Med. 1994;120(2):135–42.

8. Hunt DL, Haynes RB, Hanna SE, Smith K. Effects of computer-

based clinical decision support systems on physician performance

and patient outcomes: a systematic review. JAMA. 1998;280(15):

1339–46.

9. Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD.

Rationale for the Arden Syntax. Comput Biomed Res. 1994;

27(4):291–324.

10. Hripcsak G. Writing Arden Syntax medical logic modules.

Comput Biol Med. 1994;24(5):331–63.

11. Karadimas HC, Chailloleau C, Hemery F, Simonnet J, Lepage E.

Arden/J: an architecture for MLM execution on the java platform.

J Am Med Inform Assoc. 2002;9(4):359–68.

12. Gietzelt M, Goltz U, Grunwald D, Lochau M, Marschollek M,

Song B, Wolf KH. ARDEN2BYTECODE: a one-pass Arden

Syntax compiler for service-oriented decision support systems

based on the OSGi platform. Comput Methods Programs Biomed.

2012;106(2):114–25. doi:10.1016/j.cmpb.2011.11.003.

13. Fehre K, Mandl H, Adlassnig KP. Service-Oriented, Arden-

Syntax-Based clinical decision support. In: Proceedings of

eHealth2011. Austrian Computer Society; 2011. p. 123–8.

14. Sojer R, Bürkle T, Criegee-Rieck M, Neubert A, Brune K, Pro-

kosch HU. Knowledge modelling and knowledge representation

in hospital information systems to improve drug safety. J Inf

Technol Healthc. 2006;29.

15. Gao X, Johansson B, Shahsavar N, Arkad K, Åhlfeldt H, Wigertz

O. Pre-compiling medical logic modules into C?? in building

medical decision support systems. Comput Methods Programs

Biomed. 1993;41(2):107–19.

16. Kuhn RA, Reider RS. A C?? framework for developing medical

logic modules and an Arden Syntax compiler. Comput Biol Med.

1994;24(5):365–70.

17. Tafazzoli AG, Altmann U, Wachter W, Katz FR, Holzer S, Dudeck

J. Integrated knowledge-based functions in a hospital cancer reg-

istry–specific requirements for routine applicability. Proc Amia

Symp; 1999. p. 410–4. http://www.ncbi.nlm.nih.gov/pubmed/

10566391.

18. Liang YC, Chang P. The development of variable MLM editor

and TSQL translator based on Arden Syntax in Taiwan. In:

Proceedings of AMIA annual symposium; 2003. p. 908.

19. Kim S, Haug PJ, Rocha RA, Choi I. Modeling the Arden Syntax

for medical decisions in XML. Int J Med Inf. 2008;77(10):650–6.

20. Jung CY, Sward KA, Haug PJ. Executing medical logic modules

expressed in ArdenML using drools. J Am Med Inform Assoc.

2012;19(4):533–6. doi:10.1136/amiajnl-2011-000512.

472 J Clin Monit Comput (2014) 28:465–473

123

http://dx.doi.org/10.1016/j.cmpb.2011.11.003
http://www.ncbi.nlm.nih.gov/pubmed/10566391
http://www.ncbi.nlm.nih.gov/pubmed/10566391
http://dx.doi.org/10.1136/amiajnl-2011-000512


21. Oppenheim MI, Mintz RJ, Boyer AG, Frayer WW. Design of a

clinical alert system to facilitate development, testing, mainte-

nance, and user-specific notification. In: Proceedings of AMIA

symposium; 2000. p. 630–4.

22. Hripcsak G, Clayton PD, Jenders RA, Cimino JJ, Johnson SB.

Design of a clinical event monitor. Comput Biomed Res.

1996;29(3):194–221.

23. Gietzelt M, Goltz U, Grunwald D, Lochau M, Marschollek M,

Song B, Wolf KH. Arden2ByteCode: a one-pass Arden Syntax

compiler for service-oriented decision support systems based on

the OSGi platform. Comput Methods Programs Biomed; 2011.

24. Greenes RA. Clinical decision support: the road ahead. Amster-

dam: Academic Press; 2007.

25. Burkle T, Castellanos I, Tech H, Prokosch HU. Implementation

of a patient data management system—an evaluation study of

workflow alterations. Stud Health Technol Inform. 2010;160

(Pt 2):1256–60.

26. Nadkarni PM. Metadata-driven Software Systems in Biomedicine

Designing Systems that can adapt to changing knowledge: health

informatics. London: Springer-Verlag London Limited; 2011.

27. Arkad K, Ahlfeldt H, Gao X, Shahsavar N, Wigertz O, Jean FC,

Degoulet P. Integration of data driven decision support into the

HELIOS environment. Int J Biomed Comput. 1994;34(1):195–

205.

28. Johansson B, Bergqvist Y. Integrating decision support, based on

the Arden Syntax, in a clinical laboratory environment. In: Pro-

ceedings of annual symposium on computers applied to medical

care; 1993. p. 394–8. http://www.ncbi.nlm.nih.gov/pubmed/

8130502.

29. V2.5-2005 AHA. Health Level Seven Arden Syntax, Version 2.5

(revision of ANSI/HL7 Arden V2.1-2002). 2005.

30. Karlsson D, Ekdahl C, Wigertz O, Shahsaver N, Gill H, Forsum

U. Extended telemedical consultation using Arden Syntax based

decision support, hypertext and WWW technique. Methods Inf

Med. 1997;36(2):108–14.

31. Jenders R, Huang H, Hripcsak G, Clayton P. Evolution of a

knowledge base for a clinical decision support system encoded in

the Arden Syntax. In: Proceedings of AMIA Symposium Amer-

ican Medical Informatics Association; 1998. p. 558–62.

32. Wright A, Sittig DF. A four-phase model of the evolution of clinical

decision support architectures. Int J Med Inf. 2008;77(10):

641–9.

33. Sailors RM, Bradshaw RL, East TD Moving Arden Syntax out-

side of the (Alert) box: a paradigm for supporting multi-step

clinical protocols. In: Proceedings of AMIA Symposium; 1998.

p. 1071.

34. Sherman EH, Hripcsak G, Starren J, Jenders RA, Clayton P.

Using intermediate states to improve the ability of the Arden

Syntax to implement care plans and reuse knowledge. In: Pro-

ceedings of AMIA annual; 1995. p. 238–42.

35. Starren J, Hripcsak G, Jordan D, Allen B, Weissman C, Clayton

P. Encoding a post-operative coronary artery bypass surgery care

plan in the Arden Syntax. Comput Biol Med. 1994;24(5):411–7.

36. Adlassnig KP, Rappelsberger A. Medical knowledge packages

and their integration into health-care information systems and the

World Wide Web. Stud Health Technol Inform. 2008;136:121–6.

37. Koller W, Blacky A, Bauer C, Mandl H, Adlassnig KP. Elec-

tronic surveillance of healthcare-associated infections with

MONI-ICU–a clinical breakthrough compared to conventional

surveillance systems. Stud Health Technol Inform. 2010;160

(Pt 1):432–6.

38. Adlassnig KP, Blacky A, Koller W. Artificial-intelligence-based

hospital-acquired infection control. Stud Health Technol Inform.

2009;149:103–10.

39. Jenders RA, Corman R, Dasgupta B. Making the standard more

standard: a data and query model for knowledge representation in

the Arden syntax. In: Proceedings of AMIA annual symposium;

2003. p. 323–30.

J Clin Monit Comput (2014) 28:465–473 473

123

http://www.ncbi.nlm.nih.gov/pubmed/8130502
http://www.ncbi.nlm.nih.gov/pubmed/8130502

	Integrating Arden-Syntax-based clinical decision support with extended presentation formats into a commercial patient data management system
	Abstract
	Introduction
	Environment
	Background
	Methods
	Analyzing requirements
	Connecting the PDMS and the Arden engine
	Presenting generated information

	Results
	Analyzing requirements
	Connecting PDMS and Arden engine
	Generating extended output formats

	Discussion
	Lessons learned from integrating Arden Syntax with a black box clinical information system
	Presentation mechanisms implemented in Arden Syntax
	Experiences with the Arden Syntax
	Generalizability of our technical approach

	Conclusion
	References


