
M.J. Smith and G. Salvendy (Eds.): Human Interface, Part I, HCII 2009, LNCS 5617, pp. 271–278, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Distribution of Human-Machine Interfaces in
 System-of-Systems Engineering

Sandro Leuchter and Dirk Mühlenberg

Fraunhofer Institute for Information and Data Processing (IITB)
Fraunhoferstr. 1, 76131 Karlsruhe, Germany

{sandro.leuchter,dirk.muehlenberg}@iitb.fraunhofer.de

Abstract. System-of-systems integration requires sharing of data, algorithms,
user authorization/authentication, and user interfaces between independent sys-
tems. While SOA promises to solve the first issues the latter is still open.
Within an experimental prototype for a distributed information system we have
tested different methods to share not only the algorithmics and data of services
but also their user interface. The experimental prototype consists of nodes pro-
viding services within process portals and nodes realizing services with soft-
ware agents. Some of the services were extended with WSRP (web service
remote portlet) to provide their own user interface components that can be
transmitted between separated containers and application servers. Interoperabil-
ity tests were conducted on JBoss and BEA Portal Workshop. Open questions
remain on how the layout of one component should influence the internal layout
of other GUI-components displayed concurrently. Former work on user inter-
face management systems could improve todays tools in that respect.

Keywords: HMI, portlet, wsrp, web clipping, interoperability.

1 Preface and Problem Statement

Generally integration of software systems means to use functions or data from one
system in the other. Enterprise application integration (EAI) deals with frameworks
and middleware to integrate business data sources of different software systems. An-
other important field of data integration is how to deal with different user login identi-
ties and access rights. The problem is how to identify users from one system for the
other (authentication) and how to map their access rights (authorization). Solutions
have to address not only the technical side but also organizational issues. The third
important field of system integration is how to distribute functionality between inte-
grated systems. To achieve this functions have to be identified that are to be shared
between systems. The system that provides such a function has to be extended with a
new interface that can be accessed by function consumers over a network. The current
technological approach is using a communication middleware like an enterprise ser-
vice bus with different adaptors as interfaces to the services providers (e.g. via web
services). A further area in integration is discovery of such services.

272 S. Leuchter and D. Mühlenberg

It remains open how to interactively use services by consumers: Normally a service
provides a specified functionality that is accessed via a certain interface over which
parameters are given to the underlying process. The nature and semantics of the pa-
rameters depend on the service. But how to specify the parameters interactively re-
mains to the consumer that has to build input fields in it own user interface. From an
engineering point of view it is not useful to share functionality but not user interface
elements. Thus there are some different methods emerging how to share user interface
elements besides business data, user data, and functionality. In the following section
web service remote portlets, web clipping and smart clients are presented.

2 Methods for Sharing Human-Machine-Interfaces

2.1 Technological Approach

In a context of a network of SOA nodes (like in a System of systems ad-hoc ap-
proach) services may be exchanged on a simple syntactic contract base i.e. by ex-
changing W3C web service signatures via WSDL (web service description language)
files for integration in a business process coded in BPEL4WS (business process exe-
cution language for web services). This approach lacks any (semantic) information on
how to use the selected Web service, the responsibility for the correct usage of the
service falls to the consumer of the remote service. If the service is simply an end-
point for a deployed BPEL process, the advertisement via WSDL is enough for a
correct operation. But in an end user scenario for a real business process in a big en-
terprise portal, the user needs the semantics of the service usage to avoid erroneous or
useless operation. The requirement for usage semantics covers the range of provision
of simple constraints on input parameters like valid numerical ranges over the more
elaborated networked dependencies between parameters - in case of input space of the
service is not normalized – to the necessity of user guidance through a wizard – in
case of input parameter sets, which need a deep understanding of the sequence of
parameter input and the appropriate expert knowledge for parameterising the underly-
ing process like an automatic target recognition.

The lack of usage semantics may be easily remedied by not simply supplying only
input / output data, but annotating the method’s signature by usage handles in the
form of declarative or real user graphical elements. This approach of UI (user inter-
face) surfacing not only improves end user operation, but also avoids error prone code
duplication of UI element generation in each portal, and makes the integration prob-
lem of portal fragments not a programming but a real management task performed by
the administrator of the consuming portal. An additional essential advantage of this
responsibility shift is, that the administrator is the one role which manages user au-
thorization and authentication information, thus the management of the portal frag-
ments goes hand in hand with SSO and access right configurations and management.
Three roles are identified in the context of surfacing:

− the producer owns the service of interest and hosts it via a network-enabled
protocol

− the consumer accesses the web service and provides the UI to its registered client

 Distribution of Human-Machine Interfaces in System-of-Systems Engineering 273

− the client accesses the consumer, which is a proxy to the UI of the service on the
producer, displays the graphical elements and relays user interaction to the proxy.

The concept of UI surfacing is technically realized in different approaches, from
which the most common are presented here in the following three sub-chapters.

2.2 WSRP

WSRP is the acronym for Web services for remote portlets, which summarizes the
technology blend realizing this approach. In fact, reviewing the conceptual needs for
UI surfacing, this solution implements the idea of consolidation of service data and
the required GUI elements in a smart and direct fashion. The main idea is, to bring
existing industry standards together to realize a new standard which fits seamlessly
into existing portal and SOA technologies. In 2003, the OASIS [1] organization pub-
lished their version 1.0 of the WSRP standard, which is adopted by all relevant portal
vendors. One of the crucial factors was, that the main technical contributors (partici-
pants like Microsoft, IBM, ORACLE, …) tested their implementations from the be-
ginning against each other, to assure the WSRP interoperability between portals based
on different portal vendors (see Interoperability SC on OASIS website). Two technol-
ogy base concepts, namely portlets and common W3C web service stack were
brought together to constitute a new web service interface which published not only
the data, but the complete graphical user interface in the context of portal fragments
(named parts or portlets). WSRP service descriptions are published by standard
WSRP files, but instead of coding the functional signature of the underlying process,
the WSRP WSDL contains a series of well-defined technical service endpoints which
realizes the WSRP framework. From these services two a mandatory:

− Self-description: this web-service allows the consumer to reflect the producer’s
capabilities and the portlets hosted on producer site inclusive their meta data,

− Access to HTML markup: this service allows the consumer to access the markup
of the portlet running on a selected producer.

There are two optional service ports which expand the functionality of the con-
sumed portlet:

− Registration: instantiates a binding between producer and consumer for accounting
purposes or auditing, this binding allows the consumer to parameterise attributes of
a portlet,

− Portlet management: this service gives access to the life cycle management of a
portlet and some persistent state saving.

Each vendor has the possibility to publish and implement additional services,
which are only significant between portals of this vendor.

The portlet specifications (JSR-168, 286) are understandable as an extension of the
Java servlet specification (JSR-154), which in fact realizes rectangular non-
overlapping areas in a standard web page. They are visualized as discrete windows of
independent mini applications, this technique is preliminary intended for visualizing a
bulk of diverse data in a compact and dense manner (like graphical charts or tables for
a stock exchange page). A portal page based on portlets aggregates the data by a
compact view through many small windows. Nevertheless, portlets may exchange

274 S. Leuchter and D. Mühlenberg

data or events by vendor-specific extensions, if this is necessary. Portlets may be
implemented in any language, which is supported and understandable by the portlet
container and the underlying web (or application) server, the UI elements may be
coded in simple HTML up to elaborated usage of JSF (java server faces) or dynamic
features like AJAX (asynchronous Javascript and XML).

With portlets as the main structuring building blocks of a portal page, one is able to
aggregate an application by simply arranging the desired mini applications on the
page and configuring the attributes of these portlets. This task may be performed by
an administrator for main portal pages and their core applications, but also by regis-
tered users on their own pages (so called dashboards or community pages with
accompanying user spaces). This is a dynamic approach, each addition, removing,
rearranging and configuring of such pages is done during normal server uptime. To
achieve such a dynamics, it is vital to provide a framework by the portal software,
which allows these different modifications during runtime. These frameworks are
vendor-specific with proprietary APIs, which are generally hidden by comfortable
tools in the management workspace of the administrator or the community tools for
the dashboard handling by normal portal community members.

2.3 Web Clipping

The web clipping concept stems from the need to display filtered Web content on
small mobile devices like PDA (first implemented in Palm OS 3.5) to avoid overload-
ing these crippled devices by the rich internet content designed mainly for the more
powerful desktop computers. The main idea is to filter heavy static data from the
overburdened internet pages (images, banner, videos, big audio streams), then fit
these information blocks to the capabilities of the device, to cache the adjusted data
only once for a page and to update only dynamic data during online time. The major
difference to programmable web filter is, that the filter intelligence is generally hosted
on a proxy server or at least a separate process, with which the client (some browser)
interacts over an eventually proprietary (i.e. in the case of the Palm) protocol. This
technique is adopted to some portal implementations and stand-alone frameworks
(like Kapow RoboSuite Web Integration Platform [2]), thus enabling standard desktop
web application to clip from existing remote portal pages. The main motivation in the
context of desktop applications is the same as in the case of WSRP, to easily aggre-
gate own portal pages by leaning some clipped content (and thus the underlying ap-
plications) from remote portals (known under the keyword “enterprise mashup via
presentation level integration”).

Summarizing the existing implementations in the enterprise context, one finds
three solutions to integrate web clipping in existing portal software:

− through specialized (web clip enabled) portlets (like portlet bridge [3])
− through browser extensions (like google notebook [4])
− as a remote service (like openkapow with a web clip robot [5])

A similar technique to web clipping is web scraping or harvesting (through web
crawler) with the main motivation to focus, filter or sample information into a new
often more condensed form.

One noteworthy aspect is the notice of legal issues which results in access or copy
restrictions due to (often only printed) copyrights of the source pages.

 Distribution of Human-Machine Interfaces in System-of-Systems Engineering 275

2.4 Smart Clients

The third variant of sharing human-machine interfaces (HMI) presented here is a
technique, which is not restricted to Web content. The metaphor of smart clients re-
sults from a very new technology blend of the frameworks Spring (J2EE abstraction
[6]) and OSGI (open services gateway initiative [7]). These technologies brought
together allow for a completely new client-server concept named as smart or rich
client in contrast to thin and fat client known from the web respective swing fraction.
The main technical advantage stems from the symmetrical conceptualization of using
the same interfaces and data structures on client and server side; this symmetry allows
a more dynamic assignment of responsibilities of the functional logic building blocks
between server and client along the actual needs or constraints (like network avail-
ability) without changing one source code line. One possible realisation of this ap-
proach is available in the context of the Eclipse Server-Side framework (Rich Server
Platform – RSP [8], see Fig. 1). Each client type mentioned above has its own pros
and contras, but the smart client resembles the “copy & run” paradigm plus the rich
responsiveness and comfort of a fat client as its best. One highlight is a smart client
may run from a simple memory stick or any other removable media, allowing a sales
representative to carry its own secure and actual version of his catalogue browser on a
DVD ready for use on the client’s site.

Fig. 1. Possible implementation of RSP [8]

The main disadvantage of this new technology is its unavailability in commercial
or open source portal implementations, so actual implementations of a smart client
concept have to coexist aside existing enterprise portals on their own platforms using
server-side eclipse or the software from compeople [9].

3 Interoperability Tests

3.1 Experimental Setup and Procedure

For the experimental prototype we chose the WSRP framework due to the excellent
integration and support into the portal software existing from earlier phases of the
project. The OASIS Interoperability sub committee (SC) is the primary source for
interoperability questions referring to the portal implementations of the participants in

276 S. Leuchter and D. Mühlenberg

this SC. In the experimental setup regarding distributed HMI two nodes built on dif-
ferent portal software were tested against each other. The used implementations were
the BEA Weblogic Portal 9.2 and the JBoss Portal 2.6.

On the BEA side, there is a desktop with one book containing different pages. The
desktop and its content is built solely with the existing management tools of BEA
portal and workshop. BEA portal allows for the installation of a community site with
accompanying tools, so registered users in this group may manage their own pages. In
addition to the vendor provided tools, the prototype contains a special portlet, which
allows dynamic adding and removing of portlets on consumer site. This portlet allows
the existing prototype portal to aquire new portlets hosted by remote portal nodes.

The setup included a login portlet, the whole desktop is SSO enabled via SAML
(Security Assertion Markup Language). The application portlet that was used in the
tests is a content based image retrieval (CBIR) application running as a software agent
on an agent platform (JADE). The portlet has access to the user’s filesystem (user
space), which may reside on producer, consumer or client site. The access to the cli-
ent’s data is done via up- or download from respective to the client’s computer, the
representation of the user space in a portal is implemented by an enterprise bean,
which is a façade to a virtual filesystem residing on the bean’s host node. The user
space allows the delivery of data from one step in a workflow to the next one.

The application portlet is implemented as a pageflow portlet, which realizes a strict
separation between control (Java) and view (JSP) in a web adopted model-view-
controller manner. As a prototype for stress testing the WSRP concept and the differ-
ent implementations, this portlet is overloaded with many web artifacts, which are
candidates for producing problems on the remote consumer site. Some of these fea-
tures are Javascript, URLs referencing local resources on a portal, different AJAX
implementations, a tree representation of the user space and a HTTP file upload,
which forces form submission more demanding. The portlet was tested on its pro-
ducer site in all aspects regarding the functional behaviour and the portlet specific
features like personalisation and management to assure correct functionality. The tests
on the different consumer sites exposed many obstacles in programming real interop-
erable portlets.

On the JBoss site, we used the standard unmodified JBoss portal downloaded from
jboss.org. This portal comes with a ready to use portal and community site, the only
management tasks are to add users and to enable SSO via SAML. Portlets from a
remote producer site are easily managed and arranged by the tools of the admin portal
or the community customization tools.

4 Results

4.1 JBoss

The CBIR portlet can be displayed in the JBoss portal. The actual site displays the
dashboard of user “admin”. The portlet has a different visual style due to other style
sheets delivered by this portlet container. Beside these visual differences the handling
of the portlet content and the portlet controls is totally alike. One aspect which can be
a show stopper is the fact that the registration of a consumer with a producer on the

 Distribution of Human-Machine Interfaces in System-of-Systems Engineering 277

BEA side has to provide a special attribute which is BEA specific. The consumer has
to know it per se, or to avoid erroneous registration cycles, one can enforce a so called
out-band registration on producer side with a protocol which handles in its first step
an agreement about the next registration step. This agreement is achieved in any
communication context, which may be a phone call or a simple letter.

4.2 BEA Portal Workshop

The first tests with the application and management portlet were done on two BEA
Weblogic portal implementations to discover implementation issues regarding the
WSRP concept in a homogeneous environment related to vendor specific
incompatibilities.

5 Discussion

Open questions remain on how the layout of one component should influence the
internal layout of other GUI-components displayed concurrently. A working mecha-
nism for notification of a layout rearrangement of another portlet to accommodate the
own data layout is the event messaging for portlets. The WSRP V1.0 specification
makes no proposition, how to implement such a event mechanism for portlets, so this
feature is vendor-specific, a standardisation is scheduled for the WSRP 2.0 paper,
which is not yet released, not even as a draft. The work on standardisation of inter-
portlet communication is done by the WSRP Cross portlet coordination SC. A gener-
alisation of the event paradigm between arbitrary components of one portlet with one
of another portlet is not available, the set of event types to react on is restricted to
portlet mode or window state changes, the actions then raised are restricted to mode
or state changes, page activation or a generic user event action. Events may be ac-
companied by a payload, which is simply user defined data. Thus the influence of a
state change of an arbitrary element in one portlet is not easily communicable to an-
other portlet, not with the supplied event framework. The proprietary implementations
of events permit the usage of such a feature in the WSRP context.

One of the next steps in the project workflow is the inclusion of the Web clipping
technique. This approach allows a reuse of nearly every part of an existing web page
in a remote portal, not only the reuse or dissemination of portlets. First of all we have
to test the possible integration types, portlets as a vehicle for web clipping seem to
have much restrictions regarding the clipping functionality.

One major question in using distributed HMI components or even a simple web
service is where to find the appropriate service for the user’s problem. The retrieval of
a service matching the user’s requirements is the precondition for the overall system
acceptance by the user. To achieve a successful matching, the system must provide a
registry for services (directory service, yellow pages) and a convenient information
model for the service and its capabilities. The information model is the publish-find-
bind abstract model of WSRP. It states in its own data structure named “businessEn-
tity” how to publish portlets and producers as own services in the registry. In W3C
web service context a UDDI (Universal Description, Discovery and Integration) is
responsible for managing the registrations and responses to search requests in the

278 S. Leuchter and D. Mühlenberg

context of the installed service model (the so called tModel). Version 1.1 of WSRP
includes the concept of publishing the WSRP WSDL files to UDDI to manage the
advertised WSRP service descriptions in a network-enabled repository. The informa-
tion model of producers and portlets in the service model is very sparse and restricted
to direct properties of the modelled components. Meta data is only accessible indirect
via the service description web service. There is a potential need to enhance the model
with semantic annotations to achieve an appropriate level for quality of service analo-
gous to normal W3C web services lacking any semantic information model.

6 Conclusion

In this paper we have presented a study on distributed human-machine interfaces. We
used a portlet approach to integrate not only functionality but also parts of graphical
user interfaces over a SOA. Interoperability tests suggest that this standard is a prom-
ising way to integrate interactive software systems over a SOA. Depending on the
nature of the applications to be integrated web clipping is also a relevant standard.

References

1. Internet portal of the Organization for the Advancement of Structured Information Stan-
dards (OASIS), http://www.oasis-open.org

2. Internet page Kapow RoboSuite Web Integration Platform,
http://www.kapowtech.com

3. Internet page Portlet Bridge, http://www.protletbridge.org
4. Internet page Google Notebook, http://www.google.com/notebook
5. Internet page Openkapow, http://www.openkapow.com
6. Internet page Spring Framework, http://springframework.org
7. Internet page of OSGi Alliance, http://www.osgi.org
8. Internet page Rich Server Platform,

http://www.infonoia.com/en/rich_server_platform.jsp
9. Internet page Compeople, http://www.compeople.de

	Distribution of Human-Machine Interfaces in System-of-Systems Engineering
	Preface and Problem Statement
	Methods for Sharing Human-Machine-Interfaces
	Technological Approach
	WSRP
	Web Clipping
	Smart Clients

	Interoperability Tests
	Experimental Setup and Procedure

	Results
	JBoss
	BEA Portal Workshop

	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

