
Ubiquitous Learning Applied to Coding
A set of tools and services to deliver code-intensive learning contexts to student devices

Sachar Paulus
Mannheim University of Applied Sciences

Germany
s.paulus@hs-mannheim.de

Thomas Smits
Mannheim University of Applied Sciences

Germany
t.smits@hs-mannheim.de

Tobias Becht
Mannheim University of Applied Sciences

Germany
t.becht@hs-mannheim.de

Serife Kol
Mannheim University of Applied Sciences

Germany
s.kol@hs-mannheim.de

ABSTRACT
Today programming is a crucial skill in many disciplines, demand-
ing for an adequate education. Unfortunately, programming edu-
cation requires a dedicated set of tools (editor, compiler, ...), often
forcing the students to use the pre-configured machines at their
universities. In an ideal setup, students were able to work on their
programming assignments anywhere and on any device. This pa-
per presents an infrastructure and tool set for a bring your own
device concept in programming education: lecturers are able to
provide applications, data and configurations easily and students
can install individualized setups for different lectures and program-
ming languages on their clients with one click. Neither student nor
lecturer needs detailed knowledge of the installation or configura-
tion process.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools;

KEYWORDS
Ubiquitous Learning, dynamic configuration, bring your own de-
vice, virtual environments
ACM Reference Format:
Sachar Paulus, Thomas Smits, Tobias Becht, and Serife Kol. 2018. Ubiqui-
tous Learning Applied to Coding: A set of tools and services to deliver code-
intensive learning contexts to student devices. https://doi.org/10.1145/3209087.
3209104

1 INTRODUCTION
In 2014, the project “bwLehrpool” [1] was introduced atMannheim
University of Applied Sciences to simplify the setup and usage
of the software environment used by lecturers in the university’s
computer rooms. It provides a substantial improvement of the ad-
ministrative overhead (prior, each semester a software image was
manually created and installed on all machines in the computer

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
ECSEE’18, June 14–15, 2018, Seeon/ Bavaria, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6383-9/18/06. . . $15.00
https://doi.org/10.1145/3209087.3209104

rooms), but the solution does not support the deployment of soft-
ware to the students’ computers. Such a deployment improves the
learning experience of the students, supports blended learning ap-
proaches for programming (and other software intensive) courses
and furthermore allows to reduce the number of computer rooms.

The Ministry of Science, Research and Art of the State of Baden-
Württemberg funded the project “Überall Programmieren Lernen”
(= ubiquitous learning applied to coding), which has the goal to pro-
vide a set of tools and services that enable the deployment of soft-
ware to devices owned by students or the university and to cloud
infrastructures. The project and its deliverables are presented in
this paper.

The paper is structured as follows: first, the project goals are de-
scribed. Subsequently, the first attempts that have been envisaged
are discussed. Next, the status quo regarding existing solutions at-
tempts is described, followed by a short description of the project
results. The conclusion takes a look at potential further improve-
ments.

2 PROJECT GOALS
The basic project idea is to provide an effortless switch between
contexts, where students are enabled to use their own devices for
the programming courses and lecturers are freed from IT support
tasks. Programs and data can be synchronized via cloud services,
providing the same set of tools and the same data on all machines.
We detail the requirements in more detail in this section.

2.1 Better Learning Experience
In classical programming courses, students will be presented with
concepts during lectures and will be asked to translate them into
coding during lab courses in computer rooms equipped with pre-
configured computers. This limits the learning experience to the
lab time. What if students would be able to perform the exercises
at home, without needing to set up a separate programming envi-
ronment? Such an approach would allow for a much more flexible
course structure - making use of learning concepts like project-
based learning or inverted classroom in the programming context.
A solution consists in using student owned devices both at home
and in class rooms.

An increasing number of public institutions support “bring your
own device” (BYOD) concepts [6], e. g. for email and web usage.
Nevertheless, these concepts are often poorly integrated into the

87

https://doi.org/10.1145/3209087.3209104
https://doi.org/10.1145/3209087.3209104
https://doi.org/10.1145/3209087.3209104
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3209087.3209104&domain=pdf&date_stamp=2018-06-14

ECSEE’18, June 14–15, 2018, Seeon/ Bavaria, Germany Sachar Paulus et al.

learning environment: lecturers have to spend a significant amount
of time providing technical support to the students (e. g. installing
software, or synchronizing files). To address this problem, one ma-
jor goal of the described project is to foster the usage of student-
owned devices in programming-intensive courses.

If students use their own devices, it will no longer be necessary
to tie programming courses to the university’s computer rooms.
Storing programs and data in the cloud and synchronizing them
with the student’s machine ensures that the data is always up-to-
date on every device – at least as long as it is connected to the learn-
ing infrastructure. Source code can be synchronized using version
control tools1 and data via services like OwnCloud or Nextcloud2.
Doing so would enable the mentioned advanced learning concepts
in programming and thus lead to a better learning experience.

2.2 Flexibility and Efficiency
Our ubiquitous learning solution shall provide a flexible learning
environment not only for students, but also for universities. Since
it is no longer needed to use specific computers for certain courses,
the computer rooms can be usedmuchmore flexible and eventually
less computer rooms are needed at all. Consequently, a program-
ming course can then take place in any room and may even be
performed remotely (but, in contrast to pure online learning offer-
ings, they may still being accompanied by professional teachers)
or in blended learning setups.

To support this approach, it is necessary that our ubiquitous
learning solution can install, change or uninstall applications and
services driven by external configurations on any student-owned
device. Alternatively, remote terminal solutions could be used to
allow students access to the programs from their devices without
any local installation.

Lecturers should spend less time supporting students with tech-
nical problems. Their main focus should be on the content of a
lecture rather than helping to install an integrated development
environment or configuring applications. Consequently, a goal of
this project is to reduce the time teachers spend on helping stu-
dents with IT problems so that they will be able to spend more
time on governing the actual learning process.

Therefore, one of the main goals of this project is to save time by
reducing the workload of the device and application management.
Students should be able to instantly switch between workspace
configurations. Ideally, synchronizing data should be relatively ef-
fortless – sharing files and applications between devices. Students
will be able to use the provided learning environment whenever
they want to.

3 STATUS QUO
This section shortly describes existing solutions and approaches
we identified at the beginning of our project and explores the lim-
itations we observed.

1Preferred version control services are GitLab, GitHub or Phabricator.
2An open source software, which helps creating file synchronization and hosting
services.

3.1 Web Applications
BYOD can easily be realized by using web applications as a main
source for application delivery. Most of the devices don’t require
additional installation of applications or libraries.

To make use of web applications, it is important to ensure that
applications required by lecturers are available through a store or
an application catalog. On the one hand this solution solves depen-
dency issues and avoids local installation; on the other hand the set
of software engineering applications, which are available as a web
application (e.g. Eclipse CHE [4]), are rather limited.

Most of the preferred IDE’s3 are not available as a web applica-
tion (e.g. IntelliJ IDEA, Visual Studio, PyCharm, ...). Some solutions
are provided as a web application via a collaboration service like
Office 365 by Microsoft.

To sum it up, most IDE’s and other development tools require
a local installation or cannot easily be converted to a web applica-
tion.

3.2 Application Servers
Terminal server / remote desktop solutions consist of a server with
applications installed and a client. Every application has to be in-
stalled on the server. Additionally, this approach depends on an
active connection between server and client. If a valid connection
is established, the applications can easily be streamed to any de-
vice, and specifically to mobile devices.

Furthermore, a serious amount of processing power and stor-
age space is needed to create an application server with a lot of
IDE’s and their dependencies. NoMachine’s Linux Terminal Server
workswith the latest version of theNX client to connect and stream
desktop applications to mobile devices or local environments [5].
This product needs to be licensed and the price range varies de-
pending on the number of CPU cores. The same applies to the ap-
proach providing a Windows Desktop through a Windows Termi-
nal Server solution, where a user based licensing is necessary.

An open-source alternative is the Linux Terminal Server Project
[2], which provides a terminal server image and clients. This open-
source project is driven by the community, however, it is not sup-
ported any more, since the news section and the sources are out-
dated. Furthermore, most of the modern applications do not work
at all with the Linux Terminal Server Project and after all a high
amount of knowledge is required to get started.

Overall, either the solution is commercial or does not work prop-
erly. Both approaches rely on a stable connection for streaming ap-
plications, which is in general the case only on site in universities.
As a result, this approach cannot be considered since a stable net-
work connection cannot be ensured when students are learning
outside of the university.

3.3 Docker
Docker4 provides a clean and isolated deployment solution for ap-
plications designed to run as services in containers. It provides a

3IDE is an acronym for IntegratedDevelopment Environment with extended support
for programming languages and tools to develop applications, services and/or web
based solutions.
4Docker is a software which helps to create containerized applications, provides vir-
tual network infrastructure and container isolation as a security concept.

88

Ubiquitous Learning Applied to Coding ECSEE’18, June 14–15, 2018, Seeon/ Bavaria, Germany

virtual environment for applications and can be configured to use
local resources5.

Whereas Docker is perfectly suited to set up and run services
such as web servers or databases for learning environments, it is
not designed for running applications that make use of a graphical
user interface of the host platform. There are some workarounds
to run graphical applications in docker containers [3]. Our exper-
iments shows that some applications still tent to freeze. This so-
lution is not reliable and furthermore cannot be used natively on
mobile devices with an Android or iOS operating system. Finally,
there is still the limitation of providing support for the local instal-
lation of docker on student devices.

3.4 Virtual Machines
Virtual environments and virtual machines can be used to deploy
complete sets of applications, data and configurations to lectur-
ers and students. Those applications are bundled with an operat-
ing system. Mannheim University of Applied Sciences uses a ser-
vice called bwLehrpool [1] to start virtual machines over network
and to load the desired configuration for almost all computer pro-
gramming courses. There is a pool of virtual machines available
and those environments contain a number of applications, most of
them are redundant for every virtual machine image created (e.g.
Microsoft Office on Windows machines).

This approach has two drawbacks: first, this solution is not gen-
erally available on mobile devices and it cannot be accessed via
remote desktop solutions, rather just as a virtual machine image
that students need to install locally. Second, those virtual environ-
ments are large in size and therefore a high capacity in storage
space is required to save them for mobile usage.

To provide context changes on student devices, students need
to switch between virtual machines, thereby installing all required
virtual machine images on their device. Moreover, a change in con-
figuration by the lecturer might not be recognized by a student
and thus he would work with an outdated version of the virtual
machine.

Virtual machines may seem the way to go, but storage restric-
tions and software redundancy need to be solved. Another chal-
lenge is how to license software that is formally used outside of
the universities infrastructure.

3.5 Remote Desktop Environment
Some classes of devices cannot execute virtual machines, such as
smartphones, tablets or netbooks. This can be solved by providing
applications and services using a remote desktop environment or
through a terminal server. Data and files can be accessed through a
file share via SMB or SSHFS (similar to the bwLehrpool approach).
This method is a good fall back for “weak” devices, although it is
not a good standard solution because it requires constant Internet
connectivity and can not be used while traveling.

3.6 Data Synchronization
Data synchronization solutions, such asOwnCloud, Nextcloud, Drop-
box, Google Drive, iCloud and OneDrive cannot be used to deploy
applications, because these typically rely on local dependencies.
5Examples are storage, CPU cores, libraries, files and network.

3.7 Versioning
To create applications in a development environment, the system
should provide tools to manage source code and versioning of files.
Services like git, svn or mercurial provide those features. To ensure
the quality of the infrastructure and to eliminate costs, self-hosting
services like GitLab or Phabricator are great resources. Using such
an infrastructure, students are capable of syncing their data af-
ter modifying code while working on an exercise. This is a major
advantage compared to environments like bwLehrpool, where un-
saved changes may result in a loss of data, since data is only stored
during the runtime of the provided operating system.

4 APPROACH
In this section, we describe our approach finding a solution to our
challenge. The concept was developed in the period Jan 2017 - May
2018 and during this phase, numerous discussions took place with
representatives from different stakeholders.

4.1 Stakeholder Analysis
Initially, we identified the stakeholders for an ubiquitous learning
solution for programming and subsequently, the processes used.
The major stakeholders are:

(1) Lecturers
(2) Students
(3) Administrators

whereas lecturers teach programming courses to students, and ad-
ministrators support lecturers in providing infrastructure andmain-
taining the courses (in many cases, the lecturers created the learn-
ing infrastructure themselves and were assisted by administrators
in deploying the solution). We analyzed the processes and iden-
tified improvement potential where stakeholders could be better
supported in their work by using specifically developed software,
e.g. infrastructure elements. Notably, the following areas have been
identified:

(1) Currently, lecturers offer full virtual machines to students as
an option to working in computer rooms. The size of these
virtual environments range between 5 and 40 GB. This is
considered as disadvantage, since this in reality only works
by using USB sticks. Furthermore, if the lecturer decides
to change the learning environment, this results in a com-
plete re-installation, often deleting existing already devel-
oped learning artifacts of the student.

(2) An alternative that is often used consists of letting the stu-
dent install its own integrated development environment
(IDE). In this case, the lecturer spends a considerable amount
of time in assisting the students during the configuration of
the software, often during lecture or lab course times.

(3) Finally, the construction of new virtual machines consumes
a lot of time, specifically when installing new software that
shall be provided to students. This has led to the effect that
VMs are built once and then used for a long period of time
- even if new versions of the software used would be avail-
able.

89

ECSEE’18, June 14–15, 2018, Seeon/ Bavaria, Germany Sachar Paulus et al.

4.2 Architecture Design
A system architecture was iteratively designed in several subse-
quent approaches. The upper part of figure 1 shows the compo-
nents that are part of the final system architecture. The lower part
visualizes the architecture elements that needed to be developed.

Figure 1: Component view of the system.

4.3 The Concept
The most effective way of accessing data online and offline is to
use a service like OwnCloud or Nextcloud. Therefore, the project
team integrated this service for data synchronization.

As the discussion in the last chapter shows, some form of virtu-
alization is needed to provide applications to the student devices.
State of the are technologies were tested such as Ubuntu Snaps,
Flatpak, AppImages, Zero-Install andDocker; these solutions differ
by their level of integration into the operating system. Moreover,
they are not available for each student’s operations system. The
software packages available for these technologies are rather lim-
ited compared to a local software installation. The best support for
a multitude of applications and services is therefore a virtual oper-
ating system that allows to install software locally (or remotely).

The next challenge is to identify a (virtual) operating system
that fulfills the requirements of the project. Major requirements
are the availability of applications, the size of the operating system
image and the usability from a student perspective.

Initially, it was planned to use a small virtual environment with
a size of approximately 500 MB. This virtual environment consists
of a minimal desktop setup and loads applications and services as
Docker containers. A number of variants are investigated, among
others the linux variant Alpine OS, a system that is based on lib-
musl. Unfortunately, it is not compatible to many linux applica-
tions (web browsers, editors, etc.) that make use of libc. A small
test among students shows that they prefer a slightly larger sys-
tem if a standard level of comfort regarding the desktop environ-
ment is offered. Unfortunately, the project team could identify a
fully functional desktop environment with the expected small size.
Specifically, Microsoft Windows installations as guest OS with no
/ a reduced set of software applications were much larger than ex-
pected (20 GB and more).

After a number of investigations including usability tests with
students classes, Linux Mint has been identified to be the system
of choice. The size of the system is approximately 4 GB (zipped).

The next step consists of equipping the virtual machine oper-
ating system with some management software allowing it to in-
stall/change/remove lecturer software, called “applications”. It was
decided to use existing state-of-the-art tools with a dedicated, easy
to use graphical interface. A first mock-up for the student interface
is shown in figure 2.

Figure 2: Early scribble of a lecturer’s view on the applica-
tion catalog.

The student interface sends a request to web services that pro-
vide software and the corresponding state transition scripts (e.g.
install or activate) for specific learning scenarios. The student in-
terface, the web API as well as the configuration inferface for these
web services have been developed as part of this project.

5 RESULTS
At the time of writing of this paper, the solution exists as a proto-
type supporting different student usage scenarios (university com-
puter room, BYOD laptop, BYOD tablet). A full documentation and

90

Ubiquitous Learning Applied to Coding ECSEE’18, June 14–15, 2018, Seeon/ Bavaria, Germany

the source code is available at
https://github.com/informatik-mannheim/UEPL.

The prototype has been tested in different courses at the Com-
puter Science Department of Mannheim University of Applied Sci-
ences in the timeframe Sept 2017 - Feb 2018, whereas feedback
from lecturers and students was collected and taken into account
for subsequent versions of the prototype.

Figure 3: Deployment view of the prototype.

5.1 Server
The web API is split into a web service, which stores scripts, files
and manages the relationship between applications6, lectures and
users and a configuration service which controls the content of the
corresponding scripts. The following states can be changed:

• (Un-)Install an application
• (De-)Activate the context of an application

To maintain the scripts, administrators make use of the web in-
terface of the service reachable on port 10000 on the hosting server
by default. The web front end enables lecturers to create their own
lecture for a specific class or to create a virtual image by first in-
stalling the context on a virtual environment and creating a snap-
shot of the image. This snapshot can be used to distribute a certain
configuration, e.g. applications and corresponding data.

The web API runs in a docker container (or, alternatively, di-
rectly on a custom server). It supports authentication against an
LDAP-server as default, but allows to use a custom authentication
provider. Corresponding script files are stored at file system level;
relations are stored in a SQLite db-file database. Other database
providers are supported as well, such as MySQL or SQL server.

Besides these services, an OwnCloud server has been set up
to provide synchronization of data between different end points
6In the software, applications are called artifacts, since applications are only one po-
tential use case; another might be e.g. a database server.

(two or more instances of the virtual operating system, running
on different computers (in the university computer room, on the
students laptops, at home or alternatively on a Remote Desktop
instance). Alternatively or in addition, a GIT server could be used.

By the date of this document, a demo version is running on bw-
Cloud7 infrastructure.

5.2 Client
Our virtual operating system uses Linux Mint 18 with Mate desk-
top environment as an operating system. Just one service is con-
figured to run on startup and to manage the operating system re-
sources; there is an icon on the desktop to start the student inter-
face.

Once the VM is installed on a student computer, the students
can make use of the student interface, illustrated in figure 4, to
download the lecture specific contexts and to (un-)install or (de-
)activate them. The service will execute the state transition scripts
after checking the integrity of all downloaded programs and data
using pre-shared certificates. The student interface makes use of
standard packet managers (rpm) and shell scripts.

This allows the following scenario: students can start working
on a programming exercise in the computer room of the univer-
sity. Any work item produced is synchronized to the Cloud. If they
want to continue their work (and assuming they have installed the
VM on their laptop), they simply can change the lecture in the stu-
dent interface, and continue to work on their exercises using their
laptop. The laptop can be offline during work; online connectivity
is needed during the lecture switch and at the end of the work (to
synchronize work items).

Furthermore, students can access a VM prepared like described
above running in the Cloud using Remote Desktop Protocol (RDP).
This way, students can access the same and synchronized learning
environments in the Cloud from a tablet computer. The condition
is, of course, an online connection.

6 CONCLUSION
This section summarizes the results and experiences we have col-
lected from the project as well as possible extensions of the system.

6.1 Summary
The Ubiquitous Learning approach presented in this paper enables
every institution to synchronize data, deliver content and share
applications with people, especially students.

With the current prototype it is possible to add lectures and as-
sign applications that will be installed on demand as soon as a stu-
dent clicks the install button for the corresponding lecture.

Application pools and other artifacts can be managed by operat-
ing system experts or administrators. They specify which system
to use and ensure the scripts will run without problems.

Our provided tools and infrastructure enable the lecturers to
provide dynamic environments without the need of pre-installed
software or detailed knowledge of the installation and configura-
tion process.

The software developed is public domain and therefore can be
freely used or customized, or even further developed.
7BwCloud is a custom hosting service of the state Baden-Württemberg.

91

https://github.com/informatik-mannheim/UEPL

ECSEE’18, June 14–15, 2018, Seeon/ Bavaria, Germany Sachar Paulus et al.

Figure 4: Generic desktop client interface with one avail-
able context (white, box unchecked), one context installed
(green, box checked), one active context (blue, box checked)
and context-sensitive controls to perform state transitions.
In the upper area are status indicators, which show the ac-
tual status of local services.

6.2 Future Work
There are a lot of improvements to consider. The following list
shows some of these topics:

• More flexible use of artifacts
The artifacts section and all scripts could be parameterized
to gain more control over installation locations and config-
uration details. This would allow to specify a docker image
name or include generic artifacts to reduce the amount of ar-
tifacts. Furthermore, this would support administrators’ use
of generic templates and customizing the configuration.

• Context data beyond applications
Uploaded data is currently stored in a fixed subfolder of the
service. Metadata or additional information could be sent
to the OS service, thus it would be possible to copy or move
the files. This feature would help creating dynamic projects,
inserting files to work folders or adding further information
to an existing project.

• OS Support
Currently, the only supported operating system is Linux.
Support for Microsoft Windows is in beta status; tests must
be run against the Windows build to ensure the same be-
havior as of the Linux build. Furthermore, to add support
for Windows and macOS, it is needed to change some of
the existing code of the service to run the state transition
scripts without failure and help to diagnose unexpected be-
havior.

• Context aware desktop client
The desktop client is an electron application with a basic au-
thentication mechanism. Some features like assigning con-
texts to user profiles could be implemented on the client
side; they currently exist as a server side feature only.

ACKNOWLEDGMENTS
The authors would like to thank the Ministry of Science, Research
and the Arts of the State of Baden-Württemberg who funded the
project “Überall Programmieren Lernen” as part of the program
“Smart Teaching - Better Learning”.

REFERENCES
[1] bwLehrppol Wiki. 2018. Was ist bwLehrpool? (2018). https://www.bwlehrpool.

de/doku.php/allgemein/was_ist_bwlehrpool
[2] LLC DisklessWorkstations.com. [n. d.]. Linux Terminal Server Project. ([n. d.]).

Retrieved March 18, 2018 from http://www.ltsp.org
[3] Fabio Rehm. 2018. Running GUI apps with Docker. (2018). http://fabiorehm.com/

blog/2014/09/11/running-gui-apps-with-docker
[4] Eclipse Foundation. [n. d.]. Eclipse Che | Eclipse Next-Generation IDE, Cloud

IDE, and Workspace Server. ([n. d.]). Retrieved March 19, 2018 from https://
www.eclipse.org/che/

[5] NoMachine. [n. d.]. NoMachine - Terminal server. ([n. d.]). https://www.
nomachine.com/product&p=NoMachine%20Terminal%20Server

[6] Christoph Pimmer, Magdalena Mateescu, and Urs Gröhbiel. 2016. Mobile and
ubiquitous learning in higher education settings. A systematic review of empirical
studies. Computers in Human Behavior 63 (2016), 490 – 501. https://doi.org/10.
1016/j.chb.2016.05.057

92

https://www.bwlehrpool.de/doku.php/allgemein/was_ist_bwlehrpool
https://www.bwlehrpool.de/doku.php/allgemein/was_ist_bwlehrpool
http://www.ltsp.org
http://fabiorehm.com/blog/2014/09/11/running-gui-apps-with-docker
http://fabiorehm.com/blog/2014/09/11/running-gui-apps-with-docker
https://www.eclipse.org/che/
https://www.eclipse.org/che/
https://www.nomachine.com/product&p=NoMachine%20Terminal%20Server
https://www.nomachine.com/product&p=NoMachine%20Terminal%20Server
https://doi.org/10.1016/j.chb.2016.05.057
https://doi.org/10.1016/j.chb.2016.05.057

	Abstract
	1 Introduction
	2 Project Goals
	2.1 Better Learning Experience
	2.2 Flexibility and Efficiency

	3 Status Quo
	3.1 Web Applications
	3.2 Application Servers
	3.3 Docker
	3.4 Virtual Machines
	3.5 Remote Desktop Environment
	3.6 Data Synchronization
	3.7 Versioning

	4 Approach
	4.1 Stakeholder Analysis
	4.2 Architecture Design
	4.3 The Concept

	5 Results
	5.1 Server
	5.2 Client

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Acknowledgments
	References

