
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281812376

Evidence-Based Trustworthiness of Internet-Based Services Through

Controlled Software Development

Conference Paper · April 2015

DOI: 10.1007/978-3-319-25360-2_8

CITATIONS

4
READS

175

3 authors, including:

Nazila Gol Mohammadi

University of Duisburg-Essen

47 PUBLICATIONS   249 CITATIONS   

SEE PROFILE

Sachar Paulus

Hochschule Mannheim

61 PUBLICATIONS   517 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Nazila Gol Mohammadi on 16 September 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/281812376_Evidence-Based_Trustworthiness_of_Internet-Based_Services_Through_Controlled_Software_Development?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/281812376_Evidence-Based_Trustworthiness_of_Internet-Based_Services_Through_Controlled_Software_Development?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nazila-Mohammadi?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nazila-Mohammadi?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Duisburg-Essen?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nazila-Mohammadi?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sachar-Paulus?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sachar-Paulus?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hochschule-Mannheim?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sachar-Paulus?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nazila-Mohammadi?enrichId=rgreq-2a26cb149ca202ded4f24d3ee7252a68-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgxMjM3NjtBUzoyNzQyNDA2MTIwNzM0NzJAMTQ0MjM5NTQ2NTAyNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Evidence-based Trustworthiness of
Internet-based Services through Controlled

Software Development

Francesco Di Cerbo1, Nazila Gol Mohammadi2, and Sachar Paulus⋆3

1 SAP Product Security Research, Mougins, France
francesco.di.cerbo@sap.com

2 paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Duisburg, Germany

nazila.golmohammadi@paluno.uni-due.de
3 Mannheim University of Applied Sciences, Mannheim, Germany

s.paulus@hs-mannheim.de

Abstract. Users of Internet-based services are increasingly concerned
about the trustworthiness of these services (i.e., apps, software, plat-
forms) thus slowing down their adoption. Therefore, successful software
development processes have to address trust concerns from the very
early stages of development using constructive and practical methods
to enable the trustworthiness of software and services. Unfortunately,
even well-established development methodologies do not specifically sup-
port the realization of trustworthy Internet-based services today, and
trustworthiness-oriented practices do not take objective evidences into
account. We propose to use controlled software life-cycle processes for
trustworthy Internet-based services. Development, deployment and op-
erations processes, can be controlled by the collection of trustworthiness
evidences at different stages. This can be achieved by e.g., measuring the
degree of trustworthiness-related properties of the software, and docu-
menting these evidences using digital trustworthiness certificates. This
way, other stakeholders are able to verify the trustworthiness properties
in a later stages, e.g., in the deployment of software on a marketplace,
or the operation of the service at run-time.

Keywords: Trust, Trustworthiness, Software Development Methodol-
ogy, Digital Trustworthiness Certificate, Metrics, Evidences

1 Introduction

The adoption and acceptance of Internet-based services by the end-users are
largely dependent on whether users have trust into these services. [15]. Security
and trustworthiness have become more critical because of a) ubiquity of the
Internet makes it difficult to produce secure software in the first place, b) the

⋆ Authors by alphabetical order. Corresponding author: s.paulus@hs-mannheim.de



2 Di Cerbo et al.

increasing general distrust into the Internet (e.g., related to Snowden’s revela-
tions4). Existing software life-cycle processes and approaches were not able to
successfully address this important requirement. Despite different theoretic (e.g.,
automated proving, data flow analysis techniques etc.) and practical (Common
Criteria [10], Microsoft SDL [25] etc.) approaches, we still often see that software
either is not able to be (or stay) secure, or that it is not used for potential trust
reasons, or both. The authors believe that the current software development and
operations approaches need some improvement in order to successfully address
the complex issue of delivering trustworthy services. The major development
practices towards trustworthiness used today are either too limiting and con-
strained (leading to a very complex and costly process) or too much based on
the individual competences of the people working on the software (where the
quality and trustworthiness of the software/services is difficult to manage). In
case of being too constrained, it would actually impact usage, usability or simple
development efforts negatively. In the other case, with a too ”loose” methodology,
it will be with high probability vulnerable and less aligned with the necessary
goals and elements towards trustworthiness.
Proposal Overview. This paper proposes a new type of approach towards de-
veloping, deploying and operating trustworthy Internet-based services. The basic
idea is to create a trade-off between the formal, constrained approach and the
rather informal, uncontrolled approach. Hence, we aim at a controlled approach,
similar to the introduction of software quality in general, but in our case adjusted
to the requirements of trustworthy software and (Internet-based) services.

A new stiff development process will therefore not be successful at a large
scale (one of the drawbacks of Common Criteria is that it mandates a certain
development model which in practice typically leads to run the development
process twice: 1) for the software, and 2) for the required documentation for
the certification), due to the existing variety and fragmentation of development
practices and methodologies. To introduce some sort of control during the soft-
ware development process, we therefore need to be development process agnostic.
Moreover, since the trustworthiness of software and Internet-based services can
be highly impacted during deployment and operations, the approach must take
the full life-cycle of the software into account.

We introduce measurements and thus evidence collection in different phases
of the software life-cycle, e.g., metric values that express the degree of fulfil-
ment of trustworthiness properties. They allow some sort of prediction of the
to-be-expected trustworthiness properties, and thus to steer and manage de-
velopment activities and correspondingly focus and financial investments to-
wards the trustworthiness goals. The trustworthiness evidences can be applied
to any development process model, and may be used to evaluate the usefulness of
trustworthiness-enabling capability patterns [19] as best practice elements (e.g.,
threat modelling, data flow analysis, user experience design etc.). It is, though,
important that the evidences fulfil a number of conditions so that they can be
successfully used. For details, see section 4. We use the digital trustworthiness

4 See http://www.theguardian.com/us-news/the-nsa-files for an overview



Trustworthiness through Controlled Software Development 3

certificates to express trustworthiness properties in a verifiable manner that also
cater assertions on the observed evidences. This allows to propagate trustwor-
thiness evidences to subsequent phases of the software life-cycle like in software
provisioning, e.g., in a marketplace, the values of the trustworthiness metrics
may serve as input for a decision support system for selecting solutions [5]. To
sum up, any software life-cycle methodology can be enriched by an evidence
approach (identification of trustworthiness qualities, definition of metrics and
measurement procedures, evidence collection and interpretation) to make the
trustworthiness of the developed software manageable and controllable. Quan-
titative and qualitative trustworthiness assertions expressed in digital trustwor-
thiness certificates allow to propagate this control to other parts of the software
life-cycle.

To facilitate the acceptance of proposed approach, a light-weight certification
scheme is developed where, the deployment and operation of an Internet-based
service can receive a certification based on the evidenced and used digital trust-
worthiness certificates. This process is light-weight, since it does not require any
additional development-related activity if our approach is used. The only remain-
ing additional step is a validation of the (quantitative or qualitative) assertions
in the digital trustworthiness certificates by an independent body. To achieve a
fast market adoption, a self-validation may be an option as well.

The remainder of this paper is organized as follows: Section 2 provides a
brief overview on the fundamental concepts and related work with respect to
addressing trustworthiness. In section 3, we propose different categories of de-
velopment methodologies, and in section 4 we describe the elements necessary
for our approach. Section 5 presents our solution in the context of different ap-
plication scenarios. Section 6 concludes the paper and an gives outlook on future
work, including a potential process certification for demonstrating the success-
ful application of the overall approach to a software product or Internet-based
service.

2 Background and Related work

This section summarizes the result of our analysis on existing software develop-
ment methodologies in buliding trustworthiness into software. A brief overview
of development methodologies can be found in our previous work [24]. Although,
it does not specify how these methodologies contribute to the trustworthiness of
the end-product. There, we did not aim on providing solution to extend these
methodologies in enabling trustworthiness.

There are many research contributions towards constructive quality assur-
ance of software systems, proposing guidelines, principles, and methodologies
for developing high-quality software. There are also more generic and well-
established development methodologies that can be tuned into more security-
aware variants, and there are specialized constrained methodologies that are
probably not relevant for most organizations. Sommerville [28] states that reuse-
oriented, or test-driven development can, in principle, result in trustworthy sys-
tems as well, since continuous user feedback, reuse, and early testing can enhance



4 Di Cerbo et al.

software quality and mitigate risks. Eliciting end-user requirement is a key as-
pect of User-Centered Design [29], which can be seen as potential to consider
users trust concerns early in the development. Weigert [32] conclude that model-
driven engineering [26] significantly facilitates the development of trustworthy
software. TOGAF [13] is a comprehensive framework for developing enterprise
architectures (e.g., guidelines, patterns, and techniques) based on stakeholder
requirements.

Some approaches have been standardized and explicitly focus on certain soft-
ware quality attributes, mostly considering security. ISO 27001:2013 [11] consid-
ers certification based on the development and operation of Information Security
Management Systems, and explicitly addresses requirements for secure software
development. Common Criteria (ISO 15408) [9] aims at evaluating and certifying
software systems with regard to security properties, whereas SSE-CMM (ISO
21827) [10] proposes a maturity model for developing secure software, mainly
covering organizational and process aspects. The Building Security In Maturity
Model (BSIMM) [2, 3] initiative also aims at assessing maturity and describing
related activities. Process-independent best practices for developing secure soft-
ware are proposed in [14, 18, 16]. Furthermore, some projects, such as OWASP
[22] or SHIELDS [27, 17], provide methods and tools for detecting, assessing and
mitigating security hazards and risks.

To best of our knowledge, existing development methodologies for trustwor-
thy systems typically focus on robustness, correctness and security functionality,
while there is a need for a broader view of trustworthiness, taking for instance so-
cial and economic aspects into account. Hence, there is potential to enhance and
tailor existing development methodologies so that certain aspects of a holistic
view on trustworthiness are taken into account.

The Trusted Software Methodology (TSM) [1, 4] is the only comprehensive
approach that describes processes and guidance for engineering and assessing
trustworthy software. It covers multiple quality attributes, and focuses on pro-
cesses instead of evaluating development artifacts. TSM provides a set of Trust
Principles, which describe established development practices or process charac-
teristics that enhance software trustworthiness. A development process can be
assessed by means of five different levels of trustworthiness, according to the
conformance to the trust principles. Though the principles constitute general
best practices, however, the methodology is assumed to be applied following
a military standard for software development [4]. In contrast, our focus is on
enhancing a broad spectrum of general software development methodologies in
order to incorporate the consideration of trustworthiness and to evaluate the
practiced process targeting trustworthiness. Yang et al. [33] developed a meta-
model that includes trustworthy products dependent on a trustworthy process.
But their aim is to provide mechanisms to evaluate the trustworthiness of pro-
duced artifact.

An exhaustive overview of development methodologies can be found in [12].
Though Jayaswal and Patton do not specify how these methodologies contribute
to the trustworthiness of the product. It documents their generic characteristics



Trustworthiness through Controlled Software Development 5

and an overview of the historical evolution of different development strategies
and life-cycle models.

3 Constrained and Controlled Development Processes

In order to narrow the scope of discussion, we introduced general categories of
trustworthy software development. Based on the distinction of introduced pro-
cess categories, the well-established development methodologies with respect to
their suitability to enable trustworthiness-by-design can be discussed further.
We may describe three main categories of development as identified, namely:
Uncontrolled: The applications are developed without any special considera-
tions of trustworthiness. This generic approach is very risky regarding the effort
(and costs) required for reconstructing, measuring and documenting the elements
of trustworthiness of the development process.
Controlled: Trustworthiness is considered, measured and managed along all
phases of the development process. It does not necessarily mean that the de-
veloped application is trustworthy (or not) but only that trustworthiness has
thoroughly been considered with a specific attention.
Constrained: The application is developed in a special way, possibly with a spe-
cific language, to assure that the design principles result in verifiable elements
of trustworthiness so that specific trustworthiness properties can be (formally)
demonstrated.
Although they may in principle all lead to trustworthy systems in the end, it is
more likely that this will be the case using a constrained rather than an uncon-
trolled methodology. Nevertheless, with an uncontrolled methodology the goal
would probably not be to create the worlds most trustworthy system, but some-
thing that is trustworthy enough for its purpose. Similarly, it may not be feasible
to apply a constrained methodology to all development projects. The point is
that in general we need to make informed decisions on which ”trustworthiness-
by-design” steps we choose and apply them based on the characteristics of the
methodology at hand.

A number of standards and other activities that address security in the soft-
ware development process fall into the controlled methodologies category. Se-
curity is, in that sense, primarily a set of quality requirements that need to be
specified in the first place, and assured along the completely remaining develop-
ment and operations activities. As such, addressing trustworthiness within the
development life-cycle could very much benefit from the activities that are meant
to address security since they in general en- compass practices for the assurance
of specific (security) properties. There has been little attention, though, in con-
sidering the measurably of security-related properties. Some works, e.g., [22, 21],
have target process enhancements that target security to build a ’secure’ soft-
ware system, describe their measurably capabilities and identify corresponding
innovation potential, specifically towards extending security to trustworthiness.

We may consider two distinct applications designed to fulfil a particular
task, one application developed in an ad-hoc manner, not following any kind of
development methodology, and another one developed using a carefully studied



6 Di Cerbo et al.

development process and extensively tested (as in [21]). Trustworthiness metrics
should allow comparing both applications and give solid evidence as to which of
both is ”more trustworthy”, disregarding the method used to develop each one
respectively. We argue that a user should justifiably distrust the first one much
more than he should distrust the second one. This trustworthiness is based on the
idea that, although we cannot know how trustworthy each application really is
beforehand, we do know that the second one could at least have followed a better
development process, which in turn is known to help avoiding vulnerabilities.
Thus, we can say that the trustworthiness of applications (taking development
methodology itself as evidence) is dependent on the development process and
methodology and it can make the user confident to some extent.

We will extend this approach in this paper by not taking a specific develop-
ment practice into account, but rather concentrate on the metrics of trustworthi-
ness properties as used in the comparative example above so that in principle any
development process can be used in a controllable way. Thus, using trustworthi-
ness metrics, we can render an arbitrary development process into a controlled
one (whereas, of course, for improving the metric values, additional practices or
capability patterns may be employed).

4 From Trustworthiness Qualities to Evidences and
Certificates

Assessing a software development process to identify its intrinsic qualities gen-
erally is a non-trivial task. An assessment methodology must take into account
multiple aspects and factors at the same time, from human interactions to the
artefacts produced. Therefore, analysing a software development process requires
to answer to two important questions: a) which aspects must be considered and
b) with which criteria (e.g., metrics) such aspects must be analysed. Starting
from the complexity of the problem, established and recognised software mea-
surement approaches and among them notably GQM [30] propose to address
both questions at the same time, in order to produce meaningful analysis. Syn-
thesising roughly, the GQM approach is composed by two processes: a top-down
refinement of Goals into Questions and then into Metrics, and a bottom-up in-
terpretation of the collected data. The definition of metrics is particularly impor-
tant: choosing scientifically sound and acknowledged metrics permits to obtain
results that are easier to understand and compare with other similar initiatives.
In particular, when these conditions are met, the results of the measurement
process become objective elements whose interpretation in the bottom-up phase
of GQM may lead to meaningful interpretations. Moreover, such objective ele-
ments demonstrate the soundness of claims made on the qualities of a software
process; when this happens, these elements become evidences i.e., elements able
to provide assurance about a specific quality. This concept is used in certification,
where it is the cornerstone for supporting certificate claims.
Trustworthiness Metrics for Controlled Software Development. Soft-
ware metrics have a long tradition in software quality, first practical applications
date back to the 1980s (e.g. [8]). There are basically two approaches dealing with



Trustworthiness through Controlled Software Development 7

metrics: bottom-up (use what you can measure) and top-down (try to measure
what you think is valuable). One probably can say that the more mature a
software development area is, the better the two converge. With respect to se-
curity and trust, unfortunately, there are a number of bottom-up metrics, that
often do not match corresponding bottom-down approaches. A typical example
is the area of hacker-proofness: whereas one would like to measure observations
that express the security against hacks, most available bottom-up metrics give
information about attack vectors, attack surfaces, successful attacks etc.

Therefore we decided to follow a top-down approach as proposed by [30]
with the GQM methodology to develop metrics. Since subsequently we want to
meaningfully aggregate metric values, a number of additional requirements are
necessary.

First of all, we assume that all values will be percentage numbers, or alterna-
tively numbers between 0 and 1, similarly to probabilities or assurance factors.
The higher the number, the more the aspect/attribute in question should con-
tribute tot he trustworthiness. This way, we will be able to compare values and
to perform a number of useful computations. This is a design principle for all
top-down metrics, but also needs to apply for all bottom-up metrics that may
be considered later on. If we want to use different qualitative levels like ”low”,
”medium” and ”high”, then there must be a mapping of the qualitative levels
to percentage values (reference value = 100, real value = 0, 25, 50, 75 or 100
say for a 4-level qualitative metric (which we think should be avoided as far as
possible).

The aggregation of metrics to attribute values is done by computing a weighted
sum of the metrics that are considered to belong the the attribute. The weight
may be interpreted as an importance of the aspect measured in view of the trust-
worthiness attribute in question, for example when measuring the percentage of
function calls that are protected by authorization checks, how much this mea-
surement should be considered to contribute to the “security” attribute.
We have developed significant number of metrics (more than 100 available in a
online tool5), that may serve as a basis for future use in the context of the con-
trolled software development approach. The online tool on the metrics discusses
how they could be used programmatically as well as for a theoretical discussion
[20].

Evidences and Assertions. An Evidence can be expressed as a proof of a
claim that a specific quality can be associated to an Asset (i.e. a software or one
of its parts). For instance, evidences can be derived from the calculation of spe-
cific metrics like software metrics computable on a software artefact (e.g. lines
of code, McCabes cyclomatic complexity or others [7]), process or behavioural
metrics. However, this definition can also comprise evidences coming from ex-
isting certification schemes: in Common Criteria, for example, evidences that
evaluators gather are defined as “anything” that can prove the compliance with
a mandatory CC requirement or the respect of a criterion: they generally con-

5 http://optet.atc.gr/metrictoolwiki/en/StartingPoints



8 Di Cerbo et al.

sist of documents, interviews as well as statements made by evaluators on their
assessment.

Digital Trustworthiness Certificates. Certificates are means to cater assur-
ance to third-parties that trust the certification body. However, certificates are
not always descriptive [31], i.e., they not disclose full information about collected
evidences and their collection process. The Digital Trustworthiness Certificate
concept (DTWC) [6] permits to describe precisely evidences and their interpreta-
tion to support claims on trustworthiness qualities of a software. Such evidences
may be product or process metrics, anyway compliant with the definition previ-
ously proposed.

The DTWC is a digital artefact that is machine-readable and -understandable,
in contrast with traditional certificates that are documents often written in legal
terms. It aims at representing claims on the trustworthiness qualities of a soft-
ware, where trustworthiness is defined as “the objective performance evaluation
of the relevant set of quality attributes, based on the evidence from observed
system behaviour” [23]. It is based on a Linked Data vocabulary and it is com-
posed by four main parts: system description, trustworthiness problem defini-
tion, trustworthiness property specification and evidences (Fig. 1). The system
description is scalable in granularity (from methods, libraries and modules up to
the whole architecture) and allows for including references to other DTWCs in
order to depict exhaustively a software system; the problem definition captures
the threats for software qualities that have been considering for a software during
its design, development process and runtime execution, similarly to what ISO
27000 proposes for threat modelling. The property specification expresses claims
about the qualities of the software (or its specific parts), while the evidence sec-
tion supports such claims with objective elements. The DTWC is descriptive as
it permits a full disclosure of the elements of confidence for a software prod-
uct or its development process. More details on DTWC can be found at [6]. It

Fig. 1. A schematic representation of DTWC main components

is possible, therefore, to create a conceptual link among the qualities that are
observable in controlled development methodologies and the possibility to rep-
resent them in details through descriptive certificates and in particular through
DTWC. Metrics identification and measures are captured as DTWC evidences,
that have an explicit link to claims on software/process qualities (the trustwor-
thiness properties) associated to a software or its parts (assets).



Trustworthiness through Controlled Software Development 9

5 Use Cases for Lightweight Certificate based on
Trustworthiness Metrics

It is possible to use DTWC, exploiting their machine-intelligibility, in differ-
ent use cases: be them automatic or human-oriented. For the former case, one
can think to DTWC as meta-data providers in software/service discovery or for
Linked Data operations. The latter case requires to present DTWC content in
a manner that is: i) easily recognizable (ideally visually), ii) simple enough to
address properties or objectives that can be grasped intuitively, iii) allows a drill
down to look up detailed information that specifies that the certificate actually
means in detail and iv) that is used in an intelligent way to support users in
selecting applications based on their requirements.

The characteristics of DTWC, as seen in Section 4, permits fulfiling all the
mentioned requirements. The hierarchical structure of DTWC and its system de-
scription permits to describe a software system and its components, their claims
and evidences at different granularities, so that for example different software
can be analysed selecting a comparable and objective basis. It also permits a hi-
erarchical visualization of the certificate with ”zoom-in” to lower levels of detail
about the evidences.
The “zoom-in” functionality is helping in the following manner: users can eas-
ily perceive the trustworthiness property or objective that is “guaranteed” by
the certificate, and optionally, e.g. for experts, to dive into the more detailed
description levels. Manufacturers can target one specific, or, if necessary, a set
of attributes and/or objectives to get certified. Developers can stay with their
own development model, they may need to provide some transparency on their
practices to improve measurement results over time if demanded by the mar-
ket. Finally, regulators can observe the market evolution, and mandate specific
properties if considered necessary, without changing the technical means.

A key success factor is the technical separation of the visualization of the
certificate on one side, and of the information complexity that is contained in a
certificate. must be different levels of information related to the certified prop-
erty/objective in question. We currently envisage three levels of information: i)
a visual component that can be displayed using graphical means (like the “TV
sticker”), ii) a high level descriptive format that uses the metric(s) in question,
showing the names and values of the metric and iii) a low level descriptive for-
mat, that explains the computation, meaning and possible interpretations of the
metric in view of the property/properties in question. This information is NOT
specific to a software component, and could be retrieved via URI(s) from e.g.,
the metrics online service.

6 Conclusion and Future Work

In This paper, a new way of demonstrating trustworthiness of software and
Internet-based services is described based on individual evidences, either quan-
titatively using trustworthiness metrics or other types of qualitative evidences.
We have applied this research in limited use cases and we can demonstrate their



10 Di Cerbo et al.

usefulness. The major work that still needs to be done is to perform feasibil-
ity studies by applying trustworthiness metrics to larger real life examples and
correspondingly improving the metrics over time.

Furthermore, an evaluation and certification process shall be developed to
actually implement the independent validation of the certificates. To support an
open market development, that process shall be as open as possible. Therefore,
the concept of the certification process should allow different approaches in the
following dimensions:
- Using different certification authorities (these being, in the language of certifi-
cation processes according to ISO 17021, the certification bodies, as well as the
owners of the technical “CA” in PKI terms), allowing from self-signed certifi-
cates, industrial certification bodies up to nation-level certification authorities/-
bodies if deemed necessary.
- Using different evaluation laboratories, that perform the actual assessment /
verification of the metrics values, allowing from the manufacturers’ own quality
assurance department, industrially driven standards organizations up to special-
ized accredited evaluation labs.
- Using different scopes and context conditions, as well as choice of metrics (and
so evidences), allowing to adapt to different business and maybe also consumer
scenarios, in different verticals with different success factors and requirements
for trustworthy software or services.
One important question that needs to be specified in a first application of this
scenario is the reliability of the overall process. In a first implementation, we
would recommend to stick to ISO 17021 and to apply software quality mea-
surement techniques as described in ISO 25021ff., thereby hoping to benefit
from the existing infrastructure for accreditation and certification that has been
established and has proven to be successful in the market, e.g. for quality man-
agement systems, information security management systems, and even Common
Criteria certification schemes.

Some success factors still apply, and therefore the results of this analysis
rely on a number of assumptions. Further work is needed to define a common
taxonomy (specifically, relating properties, attributes, the high-level content of
certificates, the description and interpretation of metrics, and so on). To support
the adoption of this approach, there is a need to come up with simple scenar-
ios and implementations of the certification process and even the certificates.
Correspondingly, further work is needed to specify templates for certificates for
some exemplary scenarios that are easy to grasp (e.g. ‘’hacker-proof” by pro-
viding a 100% metric value on the input validation and output sanitization of
all interfaces). It is furthermore important to avoid different interpretations of
the different information detail ‘’levels” within a certificate between different
stakeholders and/or verticals or more generically groups. Therefore, in contrast
to the flexibility of the model in terms of objectives measured, or certification
reliability, the different ‘’levels of taxonomy” (we currently suggest three levels,
as described above) must be fixed from the start.

Acknowledgements.This work is supported by the EU-funded project OPTET
(grant no. 317631).



Trustworthiness through Controlled Software Development 11

References

1. E. Amoroso, C. Taylor, J. Watson, and J. Weiss. A process-oriented methodology
for assessing and improving software trustworthiness. In Proceedings of the 2Nd
ACM Conference on Computer and Communications Security, CCS ’94, pages 39–
50, New York, NY, USA, 1994. ACM.

2. BSIMM-V. The Building Security In Maturity Model. http://www.bsimm.com/.
3. B. Chess and B. Arkin. Software security in practice. Security Privacy, IEEE,

9(2):89–92, March 2011.
4. G. Chisholm, J. Gannon, R. Kemmerer, and J. McHugh. Peer review of the

trusted software methodology. Technical report, Argonne National Lab., IL (United
States), Feb 1994.

5. F. Di Cerbo, M. Bezzi, S. P. Kaluvuri, A. Sabetta, S. Trabelsi, and V. Lotz. To-
wards a trustworthy service marketplace for the future internet. In The Future
Internet, pages 105–116. Springer, 2012.

6. F. Di Cerbo, S. P. Kaluvuri, F. Motte, B. Nasser, W. Chen, and S. Short. Towards a
linked data vocabulary for the certification of software properties. In Signal-Image
Technology & Internet-Based Systems (SITIS), 2014 International Conference on,
pages 721–727. IEEE, 2014.

7. N. E. Fenton and S. L. Pfleeger. Software metrics: a rigorous and practical ap-
proach. PWS Publishing Co., 1998.

8. R. B. Grady and D. L. Caswell. Software metrics: establishing a company-wide
program. Prentice Hall, 1987.

9. International Organization for Standardization. ISO/IEC 15408-1:2009 - Informa-
tion technology – Security techniques – Evaluation criteria for IT security – Part
1: Introduction and general model (SSE-CMM). http://www.iso.org.

10. International Organization for Standardization. ISO/IEC 21827 - Information tech-
nology – Security techniques – Systems Security Engineering – Capability Maturity
Model (SSE-CMM). http://www.iso.org.

11. International Organization for Standardization. Iso/iec 27001:2013- information
technology – security techniques – information security management systems –
requirements. http://www.iso.org.

12. B. K. Jayaswal and P. C. Patton. Design for Trustworthy Software: Tools, Tech-
niques, and Methodology of Developing Robust Software. Pearson Education, 2006.

13. A. Josey. TOGAF Version 9.1 Enterprise Edition. An Introduction. Technical
report, The Open Group, 2011.

14. S. Lipner. The trustworthy computing security development lifecycle. In Proceed-
ings of the 20th Annual Computer Security Applications Conference, ACSAC ’04,
pages 2–13, Washington, DC, USA, 2004. IEEE Computer Society.

15. V. Lotz, S. P. Kaluvuri, F. Di Cerbo, and A. Sabetta. Towards security certification
schemas for the internet of services. In New Technologies, Mobility and Security
(NTMS), 2012 5th International Conference on, pages 1–5. IEEE, 2012.

16. G. McGraw. Software Security: Building Security In. Addison-Wesley Professional,
2006.

17. P. Meland, S. Ardi, J. Jensen, E. Rios, T. Sanchez, N. Shahmehri, and I. Tondel.
An architectural foundation for security model sharing and reuse. In Availability,
Reliability and Security, 2009. ARES ’09. International Conference on, pages 823–
828, March 2009.

18. Microsoft. Security Development Lifecycle. http://www.microsoft.com/

security/sdl/default.aspx.



12 Di Cerbo et al.

19. N. G. Mohammadi, T. Bandyszak, S. Paulus, P. H. Meland, T. Weyer, and K. Pohl.
Extending development methodologies with trustworthiness-by-design for socio-
technical systems - (extended abstract). In Trust and Trustworthy Computing -
7th International Conference, TRUST 2014, Heraklion, Crete, Greece, June 30 -
July 2, 2014. Proceedings, pages 206–207, 2014.

20. N. G. Mohammadi, S. Paulus, M. Bishr, A. Metzger, H. Knnecke, S. Hartenstein,
T. Weyer, and K. Pohl. Trustworthiness attributes and metrics for engineering
trusted internet-based software systems. In Cloud Computing and Services Science
- Third International Conference, CLOSER 2013, Aachen, Germany, May 8-10,
2013, Revised Selected Papers, pages 19–35, 2013.

21. A. A. Neto and M. Vieira. Untrustworthiness: A trust-based security metric. In
Risks and Security of Internet and Systems (CRiSIS), 2009 Fourth International
Conference on, pages 123–126. IEEE, 2009.

22. Open Web Application Security Project (OWASP). CLASP Project (Comprehen-
sive, Light-weight Application Security Process). https://www.owasp.org/index.
php/Category:OWASP_CLASP_Project.

23. OPTET Consortium. Initial concepts and abstractions to model trustwor-
thiness. Project Deliverable D3.1, OPTET Consortium, 2013. available on
http://www.optet.eu.

24. S. Paulus, N. G. Mohammadi, and T. Weyer. Trustworthy software development. In
Communications and Multimedia Security - 14th IFIP TC 6/TC 11 International
Conference, CMS 2013, Magdeburg, Germany, September 25-26, 2013. Proceed-
ings, pages 233–247, 2013.

25. B. Potter. Microsoft sdl threat modelling tool. Network Security, 2009(1):15–18,
2009.

26. D. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer,
39(2):25–31, Feb 2006.

27. SHIELDS. Detecting known security vulnerabilities from within design and devel-
opment tools. http://www.shields-project.eu/.

28. I. Sommerville. Software Engineering. Addison-Wesley, Harlow, England, 9 edition,
2010.

29. A. Sutcliffe. Convergence or competition between software engineering and hu-
man computer interaction. In A. Seffah, J. Gulliksen, and M. Desmarais, editors,
Human-Centered Software Engineering Integrating Usability in the Software De-
velopment Lifecycle, volume 8 of Human-Computer Interaction Series, pages 71–84.
Springer Netherlands, 2005.

30. R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach. Goal question metric
(gqm) approach. Encyclopedia of Software Engineering, 2002.

31. K. Wallnau. Software component certification: 10 useful distinctions. Technical
note. Carnegie Mellon University, Software Engineering Institute, 2004.

32. T. Weigert. Practical experiences in using model-driven engineering to develop
trustworthy computing systems. In IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC 2006), 5-7 June 2006,
Taichung, Taiwan, pages 208–217, 2006.

33. Y. Yang, Q. Wang, and M. Li. Process trustworthiness as a capability indicator
for measuring and improving software trustworthiness. In Q. Wang, V. Garousi,
R. Madachy, and D. Pfahl, editors, Trustworthy Software Development Processes,
volume 5543 of Lecture Notes in Computer Science, pages 389–401. Springer Berlin
Heidelberg, 2009.

View publication stats

https://www.researchgate.net/publication/281812376

