Lattice basis reduction in function fields

Sachar Paulus
Institute of Theoretical Computer Science
Darmstadt University of Technology
64283 Darmstadt
Germany

January 13, 1998

Abstract

We present an algorithm for lattice basis reduction in function fields.
In contrast to integer lattices, there is a simple algorithm which provably
computes a reduced basis in polynomial time. Moreover, this algorithm
works only with the coefficients of the polynomials involved, so there is no
polynomial arithmetic needed. This algorithm can be generically extended
to compute a reduced lattice basis starting from a generating system.
Moreover, it can be applied to lattices of integral determinant over the
field of puiseux expansions of a function field. In that case, this algorithm
can be used for computing in Jacobians of curves.

1 Previous work

In [4], A. Lenstra published a work on factoring multivariate polynomials over
finite fields. Part of the problem was solved by computing a smallest vector of a
lattice in a polynomial ring. To solve this problem, he formulated an algorithm
which works “only” with coefficients of the finite field. The “only” means that
except addition and substraction no polynomial arithmetic is performed; every
reduction step consists in the solution of a triangular linear system of equations
with coefficients in the finite field.

A. Lenstra proposed this algorithm for lattice bases which are not necessarily
of full rank. We argue that this algorithm can also be used (with some mi-
nor changes) for computing a reduced basis starting from a generating system.



The main argument for its correctness is analogous to the MLLL justification.
Moreover, there is no need to restrict it to polynomials over finite fields. Since
for arithmetical operations on approximations of puiseux expansions there is
no precision loss, one can easily apply this algorithm on generating systems of
“real” lattices, at least the determinant of the lattice is an integer, as used in
[8]. By this way, one can develop an arithmetic on divisor classes of curves of
higher degree.

2 Reduced lattice bases in function fields

Let n be a positive integer and K a field. For a function g € K[X] we denote by
lg| its degree in X. The norm |a| of a n-dimensional vector a = (ay,... ,a,) €
K[X] is defined as max{|a;| : 1 < j < n}.

Let by, ba, ... ,b, € K[X]" be linearly indpendent over K (X). The lattice L C
K[X]™ of rank n spanned by by,... ,b, is defined as

L= K[X]bj =Y rbj:r; € K[X](1<i<n)
j=1 j=1

The determinant d(L) € K[X] of L is defined as the determinant of the n x n
matrix B having the vectors by, ... ,b, as columns. The value of d(L) does not
depend on the choice of a basis of L up to units of K. The orthogonality defect
OD(by,... ,by,) of a basis by,... ,b, for a lattice L is defined as

3 b = d(D).

Clearly OD(by, ... ,by) > 0.

For 1 < j < mn a j-th successive minimum |m;j| of L is defined as the norm of a

vector m; of smallest norm in L that is linearly independent of mq,... ,m;_;
over K(X). |m;| is independent of the particular choice of my,... ,m;_1. See

[5].

Proposition 2.1 Letb,... by, be a basis for a lattice L satisfying OD (b1, ... ,b,) =

0 ordered in such a way that |b;| < b; for 1 <i < j <mn. Then |bj| is a j-th
successive minimum of L for 1 < j <n.



Proof: See [4]. O

We say that the basis by, ... , by, is reduced if OD(by,... ,b,) = 0.

3

Proposition 2.2 Let by,... b, be a basis for a lattice L and denote b; ; the
j-th coordinate of b;. If the coordinates of the vectors by, ...
in such a way that they satisfy

b, can be permuted

3

1. |bi| < [bj] for1<i<j<n and
2. ‘bi7j| < |b,1l‘ S ‘bi,k| f()?"lgj<7:<k§’ﬂ,,
then the basis by, ... ,b, is reduced.

Proof: The second condition implies that d(L) = Z?Zl |bj], s0 b1,... by is
reduced. O

The second condition is illustrated by the following figure, where the i-th column
of the matrix is b;. The j-th position in the i-th column gives the condition that
holds for |bi,]":

= || <|b2| <|b3| --- < |byl
< || =1bo| <|bs] - < |bn
<bal < lbo| =1bs| - < byl
<[ < fbo| < bs| o = b

We extend this theory to the case of a lattice whose rank is smaller than n.

Let m be a positive integer < n, let bi,...,b, € K[X] be linearly indepen-
dent over K(X) and let L be the lattice in K[X]" of rank m spanned by
bi,...,bm. Denote by B the n x m matrix having the b; as columns. We

define the determinant d(L) of L to be the maximum of the norms of the de-
terminants of the m x m submatrices of B. The orthogonality defect is again
defined as OD(by,... ,bm) = >.iv, |bil — d(L). A basis is called reduced if
OD(by,... ,by) = 0. If the vectors are sorted according to their norm, then |b;|
is a i-th successive minimum of L.

We have an analogous proposition to the one above:

Proposition 2.3 Let by,...,b, be a basis for a lattice L of rank m < n and
denote b; j the j-th coordinate of b;. If the coordinates of the vectors by, ... by,
can be permuted in such a way that they satisfy



1. |bi| < [bj] for1<i<j<m and

2. ‘bi7_7‘|<|bi’z‘ S‘bz7k| for1§j<i§mandi<k§n,
then the basis by, ... , by, is reduced.
Proof: The second condition implies that d(L) = Z?:l |bj], s0 b1,... by, is
reduced. a

The second condition is illustrated by the following figure, where the i-th column
of the matrix is b;. The j-th position in the i-th column gives the condition that
holds for |b; ;|:

= || <|bo| <lbs| -+ <[bm]
<ol =1b2| <[b3| -+ < |bpl
<ol <fbo| =1b3| - < |bpl
<ol < b2 <[bs| o = |bpl
< bl < bo| < b3 --- < by
< b < bo| < b3 --- < by

Finally, we want to compute a reduced basis starting from a generating system.
Therefore we need the following

Proposition 2.4 Let by,... ,b, be a generating system for a lattice L and
denote b; j the j-th coordinate of b;. If the coordinates of the vectors by, ... by
can be permuted in such a way that they satisfy

1. |b;| < b5 for1<i<j<m and
2. |b; | < |biil < |bik] for1<j<i<mandi<k<n,
then the system by,... by forms a (reduced) basis of L.

Proof: The determinant of the submatrix (b; ;); j=1,... .m has the largest degree
of all v x m submatrices, namely [];", |b;| and is obviously # 0 . If by,... ,bp
were linear dependent, then the vectors resulting from cutting the last n — m
coefficients were also linear dependent and the determinant were 0 which is a
contradiction. Thus by,...,b,, are linear independent over K(X) and so form

a basis. O



3 The algorithm

We will now describe an algorithm which will compute a reduced basis of a
lattice of full rank given by a generating system of vectors. In the course of the
algorithm the coordinates of the vectors will be permuted several times. The
original ordering of the coefficients can be restored by applying the appropriate
permutation.

For a polynomial b; ; we denote by b; ;, the coefficient of XP.

Algorithm 3.1 Input: by,... b € K[X]

Output: ay, ..., ay basis of (b1,...,by)

1. k<0
2. WHILE &k <1 DO

2.1. Choose ¢ € {bgt1,...,b} such that |c] = min{|b;| : k+1 < j < I},
let i, be the corresponding index, swap(bgy1,bi,)

k
2.2, Solve ) ajjja;mi = Cje| for 1 < j<kin K
i=1

k
23. d+c— > riXlel=lail g,

i=1

2.4. IF |'| = |c| THEN

242l a4 < ¢

2.4.a2 Permute the coordinates (k + 1,...,n) such that |agi1 py1] =

[y
243 k«+ k+1
ELSE /* We have found a shorter vector, possibly 0 */

2.4b1 IF ¢ =0 THEN

2.4.b1.al eliminate by

24bla2l«1-1

ELSE /* Insert the new vector at the right place and restart from
there */

2.4.b1.bl p+ max{0,... ,k:|a| < ||}

2.4.b1.b2 FOR j = k + 1 DOWNTO p + 2 DO b; « a;_;
2.4.b1.b3 bpy1 ¢

2.4.blbd k< p



Remark: We have denoted the vectors which are assumed to be correct during
the computation with a and those which are assumed to be reviewed with b.
Some assignments have been done in the case where these sets are subject to
change (2.4.al, 2.4.b1.b2-3). Those are clearly not to be done in an implemen-
tation: an easy pointer arithmetic can produce the same effect very fast.

Correctness: The following invariants are easy to check to hold before step
2.1:

Il ja;| <ajlfor 1 <i<j<k

12 Jag| < bj| for k < j <1

I3 |a; ;| <|aii| <|ainlforl1<j<i<kandi<h<n
4 a;q #0for 1 <i<k

15 a,;’jv‘ai‘ =0for1 S] <'L§k

Note that 14 and I5 imply that the linear system to be solved in step 2.2. is in
fact triangular with non-zero entries on the diagonal. Thus there exists a unique
solution.

The algorithm terminates, since in step 2.4. either Zf:] |ai| + Zizkﬂ |b;| be-
comes smaller, where k& becomes also smaller, or stays unchanged, in which
case k is increased by 1. The algorithm terminates if k = [, so exactly when
Zle |a;| equals the determinant of the lattice. Thus only a finite number of
passes through 2.4. is possible.

If the algorithm terminates, then the vectors ay, ... , ay fulfill 11,1213 with k£ = [,
thus with proposition 2.4 they form a reduced basis of the lattice. O

We will express the complexity of the algorithm in terms of arithmetical opera-
tions in K. By an arithmetical operation in K, we mean addition, subtraction,
multiplication or division of two elements of K. We will first study the case
where the input of the algorithm is a basis by, ... ,b;. In that case, the number
of passes of step 2.4. of the algorithm is bounded by (I+1)-(OD(by,--- ,b;)+1)
since either 22:1 |bi| decreases by at least 1 or stays unchanged, in which case
at most [ + 1 passes are possible, since then k is increased by 1. Now ev-
ery pass of the main loop consists of O(k?) operations in K for step 2.2. and
O(k -m-max|b;|) operations in K for step 2.3. Thus we get the following result:

3

Proposition 3.2 Algorithm 3.1 takes O(I> -n - max |b;| - OD(b1, ... ,by)) arith-
metical operations in K to compute a reduced basis starting from a basis by, ... ,b;.



Now if the input of the algorithm is not a basis, the analysis stays unchanged,
but the upper bound given by OD(b;,... ,b;) makes no longer sense. In that
case, we use as upper bound for the number of passes trough the main loop
(L+1)- (X', |bs] — d(L) +1). We get the following

Proposition 3.3 Algorithm 8.1 takes O(I* - n - (max|b;|)?) arithmetical op-
erations in K to compute a reduced basis starting from a generating system
bi,...,0b.

If the lattice is “real”’-valued and has an integral determinant, then given a
sufficient accurate precision p, the algorithm above can be used without changes.
The complexity of the algorithm is then O(I- (14 p)-n-max |b;|-OD(by, ... ,by)).
If the determinant is not integral, then the termination of the algorithm is not
as easy.

4 An application in divisor class groups

There exist several applications for this algorithm. E.g. A.K. Lenstra used it
for factoring multivariate polynomials over finite fields. It can also be used for
the presentation of large simple groups. We will give a new application in the
context of divisor class groups.

As described in [6], the (degree zero) divisor class group of a hyperelliptic curve
can be uniquely represented by reduced ideals in an imaginary quadratic func-
tion field. In the composition algorithm of reduced ideals, the reduction process
of non-reduced ideals plays an important role.

It is a major goal in function field theory to have a reasonably fast arithmetic
for the divisor class group of function fields of degree > 2. One hopes that this
arithmetic also works with “reduced” ideals. In contrast to the number field
case, there may exist a better analogy to imaginary quadratic function fields,
namely function fields where the (chosen) infinite prime is totally ramified. In
this situation, first results concerning uniqueness of representation of divisor
classes are obtained (see [2]). In that model, one needs an algorithm which
computes for a given ideal an equivalent ideal of smallest degree. This can
be achieved by the puiseux expansions version of the algorithm proposed in
this paper analogously to the integral basis reduction in [8]. One applies the
algorithm to the image of the ideal basis in the puiseux expansions field and
transports the modifications done on the original basis. The first vector of the
resulting basis will be the shortest vector of the ideal. Thus dividing the ideal
basis elements by this vector will yield a reduced basis.
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