
Lattice basis reduction in function �eldsSachar PaulusInstitute of Theoretical Computer ScienceDarmstadt University of Technology64283 DarmstadtGermanyJanuary 13, 1998AbstractWe present an algorithm for lattice basis reduction in function �elds.In contrast to integer lattices, there is a simple algorithm which provablycomputes a reduced basis in polynomial time. Moreover, this algorithmworks only with the coe�cients of the polynomials involved, so there is nopolynomial arithmetic needed. This algorithm can be generically extendedto compute a reduced lattice basis starting from a generating system.Moreover, it can be applied to lattices of integral determinant over the�eld of puiseux expansions of a function �eld. In that case, this algorithmcan be used for computing in Jacobians of curves.1 Previous workIn [4], A. Lenstra published a work on factoring multivariate polynomials over�nite �elds. Part of the problem was solved by computing a smallest vector of alattice in a polynomial ring. To solve this problem, he formulated an algorithmwhich works \only" with coe�cients of the �nite �eld. The \only" means thatexcept addition and substraction no polynomial arithmetic is performed; everyreduction step consists in the solution of a triangular linear system of equationswith coe�cients in the �nite �eld.A. Lenstra proposed this algorithm for lattice bases which are not necessarilyof full rank. We argue that this algorithm can also be used (with some mi-nor changes) for computing a reduced basis starting from a generating system.1



The main argument for its correctness is analogous to the MLLL justi�cation.Moreover, there is no need to restrict it to polynomials over �nite �elds. Sincefor arithmetical operations on approximations of puiseux expansions there isno precision loss, one can easily apply this algorithm on generating systems of\real" lattices, at least the determinant of the lattice is an integer, as used in[8]. By this way, one can develop an arithmetic on divisor classes of curves ofhigher degree.2 Reduced lattice bases in function �eldsLet n be a positive integer and K a �eld. For a function g 2 K[X ] we denote byjgj its degree in X . The norm jaj of a n-dimensional vector a = (a1; : : : ; an) 2K[X ] is de�ned as maxfjaj j : 1 � j � ng.Let b1; b2; : : : ; bn 2 K[X ]n be linearly indpendent over K(X). The lattice L �K[X ]n of rank n spanned by b1; : : : ; bn is de�ned asL = nXj=1K[X ]bj = 8<: nXj=1 rjbj : rj 2 K[X ](1 � i � n)9=; :The determinant d(L) 2 K[X ] of L is de�ned as the determinant of the n� nmatrix B having the vectors b1; : : : ; bn as columns. The value of d(L) does notdepend on the choice of a basis of L up to units of K. The orthogonality defectOD(b1; : : : ; bn) of a basis b1; : : : ; bn for a lattice L is de�ned asnXi=1 jbij � jd(L)j:Clearly OD(b1; : : : ; bn) � 0.For 1 � j � n a j-th successive minimum jmj j of L is de�ned as the norm of avector mj of smallest norm in L that is linearly independent of m1; : : : ;mj�1over K(X). jmj j is independent of the particular choice of m1; : : : ;mj�1. See[5].Proposition 2.1 Let b1; : : : ; bn be a basis for a lattice L satisfying OD(b1; : : : ; bn) =0 ordered in such a way that jbij � bj for 1 � i < j � n. Then jbj j is a j-thsuccessive minimum of L for 1 � j � n.2



Proof: See [4]. 2We say that the basis b1; : : : ; bn is reduced if OD(b1; : : : ; bn) = 0.Proposition 2.2 Let b1; : : : ; bn be a basis for a lattice L and denote bi;j thej-th coordinate of bi. If the coordinates of the vectors b1; : : : ; bn can be permutedin such a way that they satisfy1. jbij � jbj j for 1 � i < j � n and2. jbi;j j < jbi;ij � jbi;kj for 1 � j < i < k � n,then the basis b1; : : : ; bn is reduced.Proof: The second condition implies that d(L) = Pnj=1 jbj j, so b1; : : : ; bn isreduced. 2The second condition is illustrated by the following �gure, where the i-th columnof the matrix is bi. The j-th position in the i-th column gives the condition thatholds for jbi;j j: 0BBBBB@ = jb1j < jb2j < jb3j � � � < jbnj� jb1j = jb2j < jb3j � � � < jbnj� jb1j � jb2j = jb3j � � � < jbnj... ... ... ...� jb1j � jb2j � jb3j � � � = jbnj
1CCCCCAWe extend this theory to the case of a lattice whose rank is smaller than n.Let m be a positive integer < n, let b1; : : : ; bm 2 K[X ] be linearly indepen-dent over K(X) and let L be the lattice in K[X ]n of rank m spanned byb1; : : : ; bm. Denote by B the n � m matrix having the bi as columns. Wede�ne the determinant d(L) of L to be the maximum of the norms of the de-terminants of the m �m submatrices of B. The orthogonality defect is againde�ned as OD(b1; : : : ; bm) = Pmi=1 jbij � d(L). A basis is called reduced ifOD(b1; : : : ; bm) = 0. If the vectors are sorted according to their norm, then jbijis a i-th successive minimum of L.We have an analogous proposition to the one above:Proposition 2.3 Let b1; : : : ; bm be a basis for a lattice L of rank m < n anddenote bi;j the j-th coordinate of bi. If the coordinates of the vectors b1; : : : ; bmcan be permuted in such a way that they satisfy3



1. jbij � jbj j for 1 � i < j � m and2. jbi;j j < jbi;ij � jbi;kj for 1 � j < i � m and i < k � n,then the basis b1; : : : ; bm is reduced.Proof: The second condition implies that d(L) = Pnj=1 jbj j, so b1; : : : ; bn isreduced. 2The second condition is illustrated by the following �gure, where the i-th columnof the matrix is bi. The j-th position in the i-th column gives the condition thatholds for jbi;j j: 0BBBBBBBBBBBB@
= jb1j < jb2j < jb3j � � � < jbmj� jb1j = jb2j < jb3j � � � < jbmj� jb1j � jb2j = jb3j � � � < jbmj... ... ... ...� jb1j � jb2j � jb3j � � � = jbmj� jb1j � jb2j � jb3j � � � � jbmj... ... ... ...� jb1j � jb2j � jb3j � � � � jbmj

1CCCCCCCCCCCCAFinally, we want to compute a reduced basis starting from a generating system.Therefore we need the followingProposition 2.4 Let b1; : : : ; bm be a generating system for a lattice L anddenote bi;j the j-th coordinate of bi. If the coordinates of the vectors b1; : : : ; bmcan be permuted in such a way that they satisfy1. jbij � jbj j for 1 � i < j � m and2. jbi;j j < jbi;ij � jbi;kj for 1 � j < i � m and i < k � n,then the system b1; : : : ; bm forms a (reduced) basis of L.Proof: The determinant of the submatrix (bi;j)i;j=1;::: ;m has the largest degreeof all m�m submatrices, namely Qmi=1 jbij and is obviously 6= 0 . If b1; : : : ; bmwere linear dependent, then the vectors resulting from cutting the last n �mcoe�cients were also linear dependent and the determinant were 0 which is acontradiction. Thus b1; : : : ; bm are linear independent over K(X) and so forma basis. 24



3 The algorithmWe will now describe an algorithm which will compute a reduced basis of alattice of full rank given by a generating system of vectors. In the course of thealgorithm the coordinates of the vectors will be permuted several times. Theoriginal ordering of the coe�cients can be restored by applying the appropriatepermutation.For a polynomial bi;j we denote by bi;j;p the coe�cient of Xp.Algorithm 3.1 Input: b1; : : : ; bl 2 K[X ]Output: a1; : : : ; am basis of hb1; : : : ; bli1. k  02. WHILE k < l DO2.1. Choose c 2 fbk+1; : : : ; blg such that jcj = minfjbj j : k + 1 � j � lg,let ic be the corresponding index, swap(bk+1; bic)2.2. Solve kPi=1 ai;j;jaijri = cj;jcj for 1 � j � k in K2.3. c0  c� kPi=1 riX jcj�jaij � ai2.4. IF jc0j = jcj THEN2.4.a1 ak+1  c2.4.a2 Permute the coordinates (k + 1; : : : ; n) such that jak+1;k+1j =jak+1j2.4.a3 k  k + 1ELSE /* We have found a shorter vector, possibly 0 */2.4.b1 IF c0 = 0 THEN2.4.b1.a1 eliminate bk+12.4.b1.a2 l  l � 1ELSE /* Insert the new vector at the right place and restart fromthere */2.4.b1.b1 p maxf0; : : : ; k : jalj � jc0jg2.4.b1.b2 FOR j = k + 1 DOWNTO p+ 2 DO bj  aj�12.4.b1.b3 bp+1  c02.4.b1.b4 k  p 5



Remark: We have denoted the vectors which are assumed to be correct duringthe computation with a and those which are assumed to be reviewed with b.Some assignments have been done in the case where these sets are subject tochange (2.4.a1, 2.4.b1.b2-3). Those are clearly not to be done in an implemen-tation: an easy pointer arithmetic can produce the same e�ect very fast.Correctness: The following invariants are easy to check to hold before step2.1:I1 jaij � jaj j for 1 � i < j � kI2 jakj � bj j for k < j � lI3 jai;j j < jai;ij � jai;hj for 1 � j < i � k and i < h � nI4 ai;i;jaij 6= 0 for 1 � i � kI5 ai;j;jaij = 0 for 1 � j < i � kNote that I4 and I5 imply that the linear system to be solved in step 2.2. is infact triangular with non-zero entries on the diagonal. Thus there exists a uniquesolution.The algorithm terminates, since in step 2.4. either Pki=1 jaij+Pli=k+1 jbij be-comes smaller, where k becomes also smaller, or stays unchanged, in whichcase k is increased by 1. The algorithm terminates if k = l, so exactly whenPki=1 jaij equals the determinant of the lattice. Thus only a �nite number ofpasses through 2.4. is possible.If the algorithm terminates, then the vectors a1; : : : ; ak ful�ll I1,I2,I3 with k = l,thus with proposition 2.4 they form a reduced basis of the lattice. 2We will express the complexity of the algorithm in terms of arithmetical opera-tions in K. By an arithmetical operation in K, we mean addition, subtraction,multiplication or division of two elements of K. We will �rst study the casewhere the input of the algorithm is a basis b1; : : : ; bl. In that case, the numberof passes of step 2.4. of the algorithm is bounded by (l+1) �(OD(b1; � � � ; bl)+1),since either Pli=1 jbij decreases by at least 1 or stays unchanged, in which caseat most l + 1 passes are possible, since then k is increased by 1. Now ev-ery pass of the main loop consists of O(k2) operations in K for step 2.2. andO(k �n �max jbij) operations in K for step 2.3. Thus we get the following result:Proposition 3.2 Algorithm 3.1 takes O(l2 �n �max jbij �OD(b1; : : : ; bk)) arith-metical operations inK to compute a reduced basis starting from a basis b1; : : : ; bl.6



Now if the input of the algorithm is not a basis, the analysis stays unchanged,but the upper bound given by OD(b1; : : : ; bl) makes no longer sense. In thatcase, we use as upper bound for the number of passes trough the main loop(l + 1) � (Pli=1 jbij � d(L) + 1). We get the followingProposition 3.3 Algorithm 3.1 takes O(l3 � n � (max jbij)2) arithmetical op-erations in K to compute a reduced basis starting from a generating systemb1; : : : ; bl.If the lattice is \real"-valued and has an integral determinant, then given asu�cient accurate precision p, the algorithm above can be used without changes.The complexity of the algorithm is then O(l �(l+p) �n �max jbij �OD(b1; : : : ; bk)).If the determinant is not integral, then the termination of the algorithm is notas easy.4 An application in divisor class groupsThere exist several applications for this algorithm. E.g. A.K. Lenstra used itfor factoring multivariate polynomials over �nite �elds. It can also be used forthe presentation of large simple groups. We will give a new application in thecontext of divisor class groups.As described in [6], the (degree zero) divisor class group of a hyperelliptic curvecan be uniquely represented by reduced ideals in an imaginary quadratic func-tion �eld. In the composition algorithm of reduced ideals, the reduction processof non-reduced ideals plays an important role.It is a major goal in function �eld theory to have a reasonably fast arithmeticfor the divisor class group of function �elds of degree > 2. One hopes that thisarithmetic also works with \reduced" ideals. In contrast to the number �eldcase, there may exist a better analogy to imaginary quadratic function �elds,namely function �elds where the (chosen) in�nite prime is totally rami�ed. Inthis situation, �rst results concerning uniqueness of representation of divisorclasses are obtained (see [2]). In that model, one needs an algorithm whichcomputes for a given ideal an equivalent ideal of smallest degree. This canbe achieved by the puiseux expansions version of the algorithm proposed inthis paper analogously to the integral basis reduction in [8]. One applies thealgorithm to the image of the ideal basis in the puiseux expansions �eld andtransports the modi�cations done on the original basis. The �rst vector of theresulting basis will be the shortest vector of the ideal. Thus dividing the idealbasis elements by this vector will yield a reduced basis.7
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