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Onemajor focus in forensics is the identification of individuals based on different kinds of evidence found at
a crime scene and in the digital domain. In the present study, we assessed the potential of using in-vehicle
digital data to capture the natural driving behavior of individuals in order to identify them. Freely available
datawas used to classify drivers by their natural driving behavior. We formulated a forensic scenario of a hit
and run car accident with three known suspects. Suggestions are provided for an understandable and useful
reporting of model results in the light of the requirements in digital forensics. Specific aims of this study
were 1) to develop a workflow for driver identification in digital forensics, 2) to apply a simple but sound
method for model validation with time series data and 3) to transfer the model results to answers to the
two forensic questions a) to which suspect does the evidencemost likely belong to and b) how certain is the
evidence claim. Based on freely available data (Kwak et al., 2017) the first question could be answered by
unsupervised classification using a random forest model validated by random block splitting. To answer the
second question we used model accuracy and false detection rate (FDR) which were 93% and 7%, respec-
tively. Furthermore, we reported the randommatch probability (RMP) as well as the opportunity of a visual
interpretation of the prediction on the time series for the evidence data in our hypothetical hit and run
accident.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One major task in forensics is the identification of individuals
based on physical evidence found at a crime scene and also in the
digital domain. We assessed the potential of using in-vehicle digital
data to capture the natural driving behavior of individuals in order
to identify them. As cars become increasingly reliant on sensors to
perform everyday driving operations and companies as well as
users begin to store their data either locally and in their cloud to e.g.
optimize products, acquisition and analysis of these data is more
likely to serve as evidence in court (Singleton et al. 2008; Wahab
et al., 2009). In the field of digital forensics this could help to
solve cases of hit and run accidents and also other activities where
vehicles were involved. Enev et al. (2016), section 3.3 described a
variety of interesting scenarios and thereby show the relevance of
driver identification using data related to the individual's natural
driving behavior. The forensic question to be answered is how likely
one individual was the driver compared to all possible individuals
�s).

Ltd. This is an open access article u
(population). In DNA matching, camera identification or voice
recognition (Goljan et al. 2009; Koehler et al. 1995; Campbell et al.,
2009), relatively large databases are used to compare an observed
pattern (a pattern characterizing the evidence data) to a large set of
patterns and to calculate a likelihood for the individual in question
compared to random individuals from the population. Experts
evaluate matches among suspects and for example crime scene
DNA evidence in terms of the probability of randommatches across
different reference populations. For forensic driver identification an
analogous workflow could be established and analogous measures
of evidence strength could be used (Thompson and Newman 2015).

User identification is also applied in other fields beside forensics
such as e-commerce and insurance sectors (Yang 2010; Fugiglando
et al., 2017; Hallac et al., 2016). This methodology can thus be
transferred to a broader spectrum of digital evidence related to the
behavior of individuals in the digital domain (smart home data,
typing behavior). Most oftenmachine learning is employed for such
classification tasks (Lin et al., 2018; Chen et al. 2019; Fung et al.,
2017). In digital forensics, practitioners can draw from the experi-
ences in other research fields related to classification tasks espe-
cially from those based on structured data (spatially or temporally
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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auto-correlated data, clustered samples). Namely, not yet common
in the machine learning literature on classification of individuals
based on driving behavior is a validation procedure which accounts
for temporal auto-correlation. Further, model results have been
reported addressing preferences and needs of the data science
community but not taking into account the context of forensic use
cases.

In the present study we used freely available data to classify
drivers by their natural driving behavior. We present a forensic
scenario of a hit and run car accident with three known suspects.
Suggestions are provided for an understandable and useful
reporting of model results in the light of the needs in forensics.
Specific aims of this study were 1) to develop a workflow for driver
identification in digital forensics, 2) to apply a simple but sound
method for model validation with time series data and 3) to
transfer the model results to answers to the forensic questions a) to
which suspect does the evidence most likely belong to and b) how
certain is the evidence claim.

2. Methods

2.1. Forensic scenario: A hit and run accident

In order to show driver identification is relevant, we like to
provide a clear use case. In a hypothetical hit and run accident law
enforcement was able to identify the vehicle, which was involved,
but not its driver. Only three known individuals C, E and I had ac-
cess to the car and keys at the relevant time. In-vehicle digital data
was available, e.g. provided by the insurance company as a result of
a pay-as-you-drive car insurance contract. Such data provide in-
formation at high time frequency for vehicle speed, gas pedal po-
sitions, steering wheel positions, and changes of these variables.
Thus, it could be possible to identify the actual driver out of the
three suspects by his/her natural driving behavior calculated from
electronic car data. In this forensic scenario we assume that one out
of three suspects was the actual person of interest. This simplifies
the calculation of the probability for the membership of the evi-
dence pattern to the suspect classes since we know that there was
no additional unknown person involved. For answering the ques-
tion whether it was one of the three or an unknown individual,
other methods need to be applied. In our scenario, driving samples
were recorded after the criminal incident happened for each of the
three suspects analogous to writing samples or voice samples and
also fingerprints, approx. 40 min for each. These data were used to
create a driver profile (usingmodeling, for example a random forest
model). Using this driver profile, the person who drove the car
before and after the point of time the (imagined) accident
happened could be identified.

2.2. Workflow for forensic driver identification

The common workflow applied in machine learning studies
aiming at classification comprises one data set which is split into
training and test data. The training data subset is used for model
calibration (model fitting, parametrization). The test data is
considered statistically independent and is used for prediction
basedmodel quality assessment, the model validation. When this is
done repeatedly (e.g. repeated data splitting, k-fold cross-
validation, bootstrapping, Roberts et al., 2017) several predictions
and model quality measures (e.g. accuracy, sensitivity, specificity)
and their variability (e.g. CV of accuracy) can be calculated. In the
end, there is a point estimate for model quality (e.g. median accu-
racy) and information about its variability. Additionally, for each
data tuple for which a prediction is needed, all fitted models are
applied and thereby a point estimate e.g. for the probability of a
2

class membership as well as confidence intervals or the coefficient
of variation can be provided (Dolos et al. 2016).

In the workflow for forensic driver identification, the machine
learning procedure mentioned above needs to be applied on a
suspect and population sample gathered by the police and/or
stored in a larger database. After model calculation including vali-
dation, the evidence data can be treated as another hold-out
sample and probabilities for the suspect being the individual of
interest can be calculated. This is the quantitative basis for
answering the two forensic questions formulated in the study aims
and addressed in more detail in the following two sections.

2.2.1. To which suspect does the evidence most likely belong to?
In many applications of supervised classification, predicted

probabilities for class memberships are sufficient. This follows the
“best guess” principle and attributes each data tuple to a class based
on similarity. When it comes to forensic interpretation, results are
usually calculated and presented differently. Using machine
learning algorithms and their predictions we can calculate the
probability for the membership of the evidence pattern to the
suspect class(es). This probability can be related to those of the
other classes. This is comparable to a random match probability
(RMP) (Koehler et al. 1995; Thompson and Newman 2015) in a
finite suspect group, not including the use case where an unknown
suspect is involved.

2.2.2. How certain is the claim?
In remote sensing based mapping of landscapes a pixel is clas-

sified as road, forest or grassland according to the class for which
the model provides the highest probability (Lopatin et al., 2019).
The map is usually considered to be useful when the accuracy is
around 0.8. Accuracy is traditionally used although it can be non-
informative in cases of very unbalanced numbers of class mem-
bers (1000 negatives and 2 positives will give a high accuracy
although a model might not be able to find any of the 2 positives).
Additionally to accuracy, in forensics especially the false detection
rate (FDR) could be usefull FDR ¼ FP / (FP þ TP) (FP: false positives,
TP: true positives). Following forensic evidence for which FDR is
high would lead to a high false conviction rate. If there would be
only one single piece of evidence for calculating FDR, the value
could directly be translated into the percentage of persons being
convicted but are in fact innocent. For example a FDR of 0.05 sta-
tistically results in a false conviction rate of 5%.

Under the assumption that the suspect samples and data base
are sufficiently similar to the evidence data, uncertainty can be
transferred by providing confidence intervals for the overall model
quality (e.g. accuracy, FDR) and also for each prediction.

The last step of evaluation of the uncertainty of the evidence
belonging to one of the suspects (or other individuals in the pop-
ulation), is the interpretation of the probability (the model pre-
diction for the evidence data to belong to the suspect) or
probability odds given by themodel, as mentioned above. Themere
class probability is not sufficient since it does not include infor-
mation on the randommatch probability (RMP). Additionally, non-
statisticians are better in interpreting a statement such as “In 1 out
of 20 this match could be positive just by chance” rather than “The
subject class probability is 0.85, the mean probability for all others
is 0.05”. For decisions in a forensic context, it is more appropriate to
use the random match probability together with the classification
results.

2.3. Electronic car data

For this study we used freely available data (http://ocslab.
hksecurity.net/Datasets/driving-dataset) (Kwak et al. 2017;

http://ocslab.hksecurity.net/Datasets/driving-dataset
http://ocslab.hksecurity.net/Datasets/driving-dataset


Fig. 1. Cross-correlation among features used in the model based on the time series
data calculated as the maximum of all correlations for time lags up to 30 s. Some of the
features were highly correlated, e.g. those related to vehicle speed (wheel velocity).
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Martinelli et al., 2018). In total 10 drivers traveled between Korea
University and the SANGAM World Cup Stadium in the surround-
ings of Seoul (South Korea) on three different road types. The
number of features recorded was 51 in 1 s time intervals. Total
driving time per individuals was between 121 and 184 min.

2.3.1. Driver subsets

The ten drivers were labeled from “A” to “J”. For the presented
forensic scenario three drivers were considered as suspects. In or-
der to get information on the variability of accuracy of driver
identification we created data subsets for all combinations of three
drivers. We completed the whole workflow for each of these 120
subsets of three out of ten drivers. Thereby it was possible to pro-
vide numbers on the variability of model quality depending on the
variability of similarity among driver combinations (i.e. model
quality will be lower for drivers with similar natural driving
behavior than for a set with markedly different behavior).

2.3.2. Features

From all features gathered in the data (Kwak et al. 2017) some
could be excluded prior to the actual feature selection due to their
dependency on other factors than the driver himself, such as air
temperature and the type of the car. After this step, 8 features
remained for use in this study (Fig. 1).

In addition to the features in the data set that could be directly
used in the model, we calculated three meta-features from the data
that seemed to be related to driver behavior. Roughness was
calculated from vehicle speed, namely the international roughness
index (IRI, R-package rroad, IRI_COEF_250) (Simko and Laubis
2018). Analogously, we calculated the international roughness in-
dex for the features Accelerator_Pedal_value and
Steering_wheel_speed.

The data was recorded in 1 s time intervals. This is very short
compared to human reaction time and thus this time series data was
highly auto-correlated. We expected that a reduction of the data to
3

e.g. 3 s time intervals or even less by using median values could
speed up model fitting and at the same time reduce the noise in the
data. In order to test this, we created 8 data sets with 1 s intervals
(the original), 2, 3, 4, 5, 10, 30, 60 s and compared model quality.

In order to characterize correlations among features, cross-
correlations among all features where calculated (Fig. 1). Since
this is a time series with auto-correlation, strongest correlation can
occur not only at the same time but also with a time lag. We
calculated the correlation among feature pairs for time lags 1 up to
30 s (cross-correlogram) and displayed the maximum.

2.4. Modeling & validation

The random forest classification method from the R-package
randomForest (Liaw and Wiener 2002) was used. Random forest is
a supervised learning algorithm which is used for both classifica-
tion as well as regression. This algorithm can be used to classify
entities such as drivers depending on recorded features charac-
terizing them. Once a relation is established for features and clas-
ses, for each data tuple class memberships can be calculated. This is
also possible for data that the algorithm has not see before. These
are considered as “predictions” which is a reason why this type of
modeling is also called “predictive modeling” in contrast to
descriptive statistics and exploratory analysis.

In order to decide for the number of trees necessary, we plotted
the error against the number of trees. This showed that 20 to 50
trees were sufficient for our study. Since we did not check on every
single model of the 120 driver subsets we used 100 trees to yield a
safety margin. The models were evaluated by their accuracy and
false detection rate (FDR). We showed both training and test data
accuracies to demonstrate the relevance of a well designed vali-
dation strategy. We also compare these numbers for different
temporal aggregation of the original time series data.

Variable importance was calculated for the non-aggregated data
(1 s time intervals). This value shows the contribution of the feature
to the classification of the drivers compared to other features. High
values mean that including the feature in the model improves the
separability of classes. Importance given by the function random-
Forest (R-package randomForest) was used. For each of the 120
models, decrease of accuracy was ranked. For each feature, the rank
sum over all models was calculated. These sums of ranks were then
divided by the maximum to standardize the values between zero
and one.

Each time a model was calculated, it was trained with a training
data set and accuracy was calculated based on a hold-out sample. In
this study, we did not repeat this step using bootstrapping or
similar methods to the advantage of calculating all possible com-
binations of 3 drivers out of 10.We assume that aggregating the test
data accuracy from these 120 models provides a good measure on
variability of model accuracy.

It is particularly important to consider the strong auto-
correlation and redundancy in the time series data (Bergmeir
et al. 2018) caused by high frequency of measurement (1 s time
intervals) compared to human reaction time and frequency of
changes in the traffic and road properties. To account for the
temporal auto-correlation in the time series data, first the time
series for each driver was split into 8 sequences of length 5 � 60 s
(length in time, not data points, same time for all time-aggregated
data sets). From these starting points a stratified random sample
was drawn (4 starting points for each of the three drivers). All other
data remained in the test data set. We did not do any repetitions at
this point, because we did this for each driver combination and
assume that this will provide us with information on variability
already. We referred to the forensic scenario, thus the training data
set was not the larger one as usual, but restricted to a realistic



Fig. 2. Predictions on the validation data for class memberships. On the top the true
class is given in the corresponding color (Data). On the bottom the predicted classes for
each data point is provided (Model prediction). For most of the time series the attri-
bution to one of the suspects is very clear. Note that the similarity between driver E
and I appeared to be higher than for other pairs. Smoothed by running median with
dt ¼ 11 s. (For interpretation of the references to colour in this figure legend, the reader
is referred to the Web version of this article.)
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40 min driving sample which could be gathered from a known
suspect. The data split was 25% training and 75% test data (þ/- 1%).

2.4.1. Forensic scenario

Predictions (as probabilities for class memberships) for one
random example (drivers C, E and I) were provided for each driver
for test data representing the forensic data (the evidence data).
Additionally the random match probability RMP ¼ mean(p(s2),
p(s3))/p(s1) for each suspect being the individual of interest was
calculated. In words, RMP represents the probability that the sus-
pect was classified as driver during the accident just by chance.

In order to demonstrate the limitations of the presented
approach, we also show model predictions on test data in which
there were only drivers which were not present in the training data
for the corresponding model.

Response curves for one example 3-driver subset (again drivers
C, E and I) were calculated and displayed in decreasing order of
importance. This helps to understand the impact of the variables on
model quality. It also is a way to visualize differences of natural
driving behavior of individuals represented by a random forest.
Note that no interactions among features were displayed and dis-
cussed for now but are certainly present in the model.

3. Results

3.1. Model quality

Median train accuracy and median test data accuracy differed
strongly as expected (Table 2). Realistic validation accuracy was
around 0.78 and false detection rate (FDR) was 0.1 calculated on
independent test data over all 120 models.

The effect of using no validation at all (columns “Accuracy train”,
“FDR train” in Table 2) and using random split validation (columns
“Accuracy random split”, “FDP random split”) compared to a simple
but statistically sound random block-wise validation on model
quality measures became obvious. The difference in this time series
for accuracywas about 0.1 to 0.2. For the FDR the differencewas even
higher with 0.2.

3.2. Features

Correlations among variables were high for e.g. vehicle speed and
current gear as well as fuel consumption and accel-
erator_pedal_value, as expected (Fig. 1). Variable importance sum-
marized over all 120 models was high for all three roughness-
features. Out of the original variables vehicle speed followed by
accelerator pedal value and master cylinder pressure were most
important.
Table 1
Importance of features summarized over all 120 models as described in the methods se
drivers.

Feature Importance Description

Accelerator_Pedal_value_IRI 0.155 International roughness in
Vehicle_speed_IRI 0.152 International roughness in
Steering_wheel_speed_IRI 0.148 International roughness in
Vehicle_speed 0.112 Speed of the vehicle
Accelerator_Pedal_value 0.106 The degree to which the d
Master_cylinder_pressure 0.095 The master cylinder press
Fuel_consumption 0.073 The fuel efficiency of the e
Acceleration_speed_._Longitudinal 0.053 Longitudinal acceleration
Steering_wheel_angle 0.049 Angle up to which the ste
Acceleration_speed_._Lateral 0.041 Lateral acceleration of the
Steering_wheel_speed 0.017 Speed at which the steerin
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3.3. Forensic scenario

In order to provide not only summary statistics which are too
abstract for a forensic interpretation, we present results for one
example 3-driver combination, suspects C, E and I. The model was
used to predict the probability for all three suspects for the test data
(block-wise hold-out sample) which can be considered as the evi-
dence data (Fig. 2). Most of the time there is a very clear attribution
to one of the three classes. A comparison with the classes in the
validation data, i.e. the truth (“Data” at top of Fig. 2) showed that
this attribution was mainly correct. Model accuracy for this driver
combination was 0.93, FDR was 0.07. FDRs for each suspect indi-
vidually differed strongly. It was highest for C with (FDR ¼ 0.13),
and lower for E (FDR ¼ 0.05) and I (FDR < 0.01). For E this means
that 1 out of 20 data points classified as class E actually was a
member of one of the other two classes.

At the time of the hypothetical accident around 6000 s, clearly
driver E could be identified. This was not that clear at later points in
time, e.g. from 11,000 s to 13,000 s. The model prediction on the
evidence data did not allow the model for a clear and continuous
separation of classes E and I during that time period. This also
applied for drivers C and I around time period 3000 s.

Interpretation of the random match probability needed to be
conducted together with the class prediction. When the evidence
ction. Clearly, roughness-features (IRI) were most important for separability of the

dex (IRI) calculated based on the feature Accelerator_Pedal_value
dex (IRI) calculated based on Vehicle_speed
dex (IRI) calculated based on speed at which the driver turns the steering wheel

river is depressing the accelerator pedal
ure is related to the degree to which the driver is depressing the brake pedal
ngine
of the vehicle
ering wheel is turned
vehicle
g wheel is turned



Fig. 3. Random match probability for each driver for our 3-known suspect example.
The random match probability for one out of the suspect group can be calculated by
the odds of the mean of probabilities predicted for the target class and each of the
other classes mean(p(s2), p(s3))/p(s1). Numbers close to zero indicate a high certainty
that the class attribution is not due to a random similarity between the data tuple at
this point in time to the class characteristics. Smoothed by running median with
dt ¼ 11 s.

Fig. 4. Prediction with the model calibrated on C, E, I for three unknown individuals B,
F, J. Random forest provides a class attribution for each data tuple to one of the classes
used for calibration. This method cannot be used if the target individual is not in a
group of known suspects. Smoothed by running median with dt ¼ 11.
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data at the time of the accident at time 6000 s is attributed to class
E the RMP for E should be close to zero (Fig. 3) which was the case.

When the model was applied on data with drivers which were
not in the calibration data (Caution: violation of model assump-
tions!), still high probabilities for class memberships were given by
the model (but they are nonsense, c.f. discussion) (Fig. 4).

3.4. Response curves

For the same example (Drivers C, E, I) the response curves
showed the natural driving behavior of the suspects (Fig. 5). For a
classification of a data tuple as driver C, the probability was higher
when vehicle speed roughness (Vehicle_speed_IRI) was higher.
Also low values of the accelerator pedal value roughness (Accel-
erator_Pedal_value_IRI) increased the probability for class C. For
class E it was the other way around. Low vehicle speed roughness
combined with higher values of accelerator pedal value roughness
increased the class probability for driver E.

For each feature interactions could be interpreted when aiming
at describing the natural driving behavior. In this study, there was a
focus on the identification, therefore we remain with this rather
superficial interpretation of response curves for now.

4. Discussion

The aim of the study was to assess the possibility to identify
drivers based on their natural driving behavior in the forensic
context. The first question, “To which suspect does the evidence
most likely belong to?“, could be answered by a supervised clas-
sification using a random forest model with 12 features (in our hit
and run accident at time ¼ 6000 s suspect E was identified as the
driver). To answer the second question, “How certain is the claim?”
we used model accuracy and false detection rate (FDR) which were
93% and 7%, respectively. Furthermore, we provided additional in-
formation, the random match probability (RMP), and the oppor-
tunity of a visual interpretation of the prediction on the time series
hold-out sample which can be considered as the evidence data in
our hypothetical hit and run accident. In the following, results are
discussed in more detail and some limitations and thus interesting
future research fields are identified.
5

4.1. Feature selection

From the 11 features we used, all three calculated roughness-
features (international roughness index, IRI) were found to be
most important for separability among classes over all 120 models.
The roughness index considered that we dealt with time series data
and that we could use not only the current value of a feature but
also its change during time. Actually, changes of feature values
during time appeared to better characterize natural driving
behavior than absolute values. This indicated that there is still high
potential to improve predictive ability of models by searching for
suitable features representing the natural driving behavior not only
in forensics but also in the field of individual based pricing in car
insurance. Furthermore, machine learning methods especially
suitable for time series or spatial data need to be developed and
deployed in an easy to use manner (similar to random forest, SVMs
etc.).

In contrast to other studies using the same data, we excluded
clearly environment-dependent features in advance. Instead, we
focused on features for which we could assume a relation to the
driving behavior (see Supplement 1). Most of the features in the
original data were strongly influenced by the car model and were
also environment dependent due to the sampling design (for a full
list of features see Martinelli et al. (2018), and Supplement 1 of our
study). An example for features that were strongly related to
weather conditions, i.e. outside air temperature, is intake air tem-
perature. Another example for a feature we did not use was Engi-
ne_soacking_time, which is the duration a vehicle's engine is at rest
prior to being started. Such features will not contribute to the
classification of the drivers and a characterization of their natural
driving behavior.

Good examples for rather person than environment related
features are lateral acceleration and steering wheel speed (Table 1).
There are persons with “faster” driving styles negotiating curves
with higher lateral acceleration and less security margin than
others (Van Winsum and Godthelp 1996; Reymond et al., 2001).
The feature Master_cylinder_pressure (related to the force applied
to the brake pedal) can be assumed to be strongly related to indi-
vidual reaction time (the earlier the need for speed reduction is
seen, the less force needs to be applied to the brake pedal) and also
physical strength of the driver.

One can still argue, that weather conditions (wet/dry road)



Fig. 5. Response curves calculated using partialPlot (R-package randomForest) for the example subset characterizing the natural driving behavior. Features are ordered by
decreasing importance. The curves show the relative contribution of each feature to each of the three class probabilities. Note, that no figures for interactions are shown.
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influence the driving style. In order to trust our model, we need to
assume that a wet road compared to a dry road changes the drivers
reaction time and security margin less than in comparison to
another driver. Under extreme weather conditions this is maybe
not the case. With a mere statistical approach it is not possible to
solve these issues completely with the existing data. But it can be
minimized by selecting presumably driver-dependent explaining
features and a sound sampling design for the training data. Coming
back to forensics, the weather conditions during the incident will
be mostly known and could therefore be considered when gath-
ering the training data.

However, why exactly did we decide to use only a small number
6

of available feature? To understand our reasoning, three main is-
sues need to be discussedwhen it comes to statistical modeling and
feature selection: spurious correlation, over-fitting and multi-
colinearity (Chandrashekar and Sahin 2014). All these three issues
are related to the nature and the number of features chosen to
remain in the model.

Using too many features and especially also environment
dependent features, result in a spurious correlation problemwhich is
augmented by the presence of multi-colinearity (Dormann et al.,
2013). Under such circumstances instead of the causal explaining
feature (independent variable) another correlated feature is used in
the model to separate classes. This might result in seemingly good



Table 2
Overview on model accuracy at different aggregation levels (rolling mean). Accuracy/FDR train: Accuracy/FDR calculated on the training data; accuracy/FDR random split:
Accuracy/FDR calculated on random split test data; accuracy/FDR random blocks: Accuracy/FDR considering temporal auto-correlation in the time series data. We decided to
proceed with the non-aggregated original data because aggregation did not enhance results significantly.

dt
for rolling
mean (in s)

Accuracy train Accuracy random split Accuracy random blocks FDR train FDR random split FDR random blocks

1 1 0.99 0.78 0 0.22 0.01
2 1 0.98 0.8 0 0.2 0.02
3 1 0.98 0.785 0 0.215 0.02
4 1 0.98 0.785 0 0.215 0.02
5 0.995 0.97 0.8 0.005 0.2 0.03
8 0.93 0.88 0.78 0.07 0.22 0.12
10 0.99 0.96 0.8 0.01 0.2 0.04
30 0.96 0.92 0.8 0.04 0.2 0.08
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predictions as long as the correlation structure within training and
test data remains the same. For example, for the training data,
driver A samples were always taken at sunny and warm days
whereas driver B samples were taken at rainy and cold days, just by
chance. As long as the test data (incidence/evidence data) also
remain with this pattern, the spurious correlation between e.g.
intake air temperature and the driver will provide good results.

Furthermore, using too many features inevitably result in model
over-fitting (Hawkins 2004) especially when using a flexible algo-
rithm such as random forest (shapes of response curves are not
restricted). A model is over-fitted, if its prediction corresponds very
closely or even exactly to particular data. Therefore, it will fail to
predict on independent test data. Since in realworld studies there are
often no completely independent test data available (data splitting
procedures do usually not result in independent training and test
data), it is sometimes hard to detect over-fitting directly. Therefore it
is useful to define that a model is over-fitted if its predictions are no
better than those of another simpler model (principle of parsimony).
Still 11 features which are not completely statistically independent
(shown by their correlation), potentially cause over-fitting.

The model could be improved regarding spurious correlation,
over-fitting and issues with multi-colinearity, by applying a feature
selection on the remaining 11 driver related features (e.g. full
factorial design or forward/backward selection) (Chandrashekar
and Sahin 2014). At the same time, such a study could analyze to
which degree digital vehicle features are related to the driver
compared to the environment (e.g. using multivariate variance
partitioning). However, for this study we focused on the transfer of
model results in the forensic context considering validation and
model quality measures and thereby neglected this step. In a final
routine on how to apply machine learning models on digital time-
series user data, we recommend to include this step.
4.2. Validation

Other studies on driver classification (Martinelli et al., 2018;
Chen et al. 2019) seemed to find better model accuracy up to values
as high as 0.99. Unlike their work, we accounted for auto-
correlation in the data and calculated the validation accuracy on
test data from random block-splitting and not on random split data
to account for temporal auto-correlation (Bergmeir and Benítez
2012). Accuracy and FDR need to be calculated on statistically in-
dependent validation (or “test”) data (Roberts et al., 2017; Bergmeir
et al. 2018). This is mostly done by data splitting techniques, i.e.
using a larger part of the data for model training and a hold-out
sample for the calculation of model quality measures. In the field
of driver identification a simple random data splitting is inappro-
priate. Non-independence of hold-out data from the training data
7

erroneously makes models appear more reliable than they are. This
is of high practical relevance when model accuracy and related
model quality measures are to be used to estimate the reliability of
digital forensic evidence because an over-estimation of the reli-
ability of the model will lead to a higher rate of false convictions.

It was suggested to aggregate the data to a 3 s time period
because model accuracy increased at this aggregation level. We
found no indication for this. These results could still be interesting
when developing methods to monitor CAN-BUS data and to save
storage as well as computation time. We suggest that if computing
resources are scarce data for 3 s time intervals could be sufficient
for the purpose of forensic driver identification.
4.3. Forensic scenario

For the application of classification in the context of forensics, we
suggested to use the false detection rate (FDR, also called fall-out) as
model quality measure in addition to accuracy because it can be
directly translated into the false conviction rate. Especially the indi-
vidual FDR for the suspect in question (e.g. suspect E) could provide
valuable information for the decision makers on the risk of false
conviction. Providing this measure for each suspect individually and
not a single number for the entire model, helps forensic staff without
a background in statistics to evaluate the degree of uncertainty of the
classification.

Furthermore, we presented the results of driver identification in
terms of a time series of predicted class probabilities. We added the
random match probability because it is an established way of
presenting e.g. matching DNA, shoe print evidences and finger print
pattern (Thompson and Newman 2015), thus decision makers
might already be familiar with its interpretation. By presenting the
time series prediction, we made use of the nature of the data to
improve our ability to evaluate the reliability of the class prediction
for a certain point in time. It is highly unlikely that the driver
changed when there is a clear attribution during 10 min. In
contrast, when the predicted probability and the class with highest
probabilities changes every 2 min or even randomly with high
frequency, the model should not be considered reliable.

However, it is still necessary to develop a sound method for
combining model uncertainty of different levels. The overall model
accuracy and FDR need to be considered when interpreting point
estimates of probabilities together with the point estimate of the
randommatch probability. Additionally, there is a need to calculate
confidence intervals for each point estimate which could be
calculated using bootstrapping. Our study represents a groundwork
for developing a quantitative workflow for the application of ma-
chine learning and the interpretation of results in digital forensics.
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4.4. Natural driving behavior

Models used to characterize the natural driving behavior of a
person should also be evaluated based on the plausibility of the
response curves, which represent the individual's driving styles.
These response curves also reveal limitations of the model
approach. In this study, the way of data splitting (separation of
training and test data) needed to be considered. Each full time se-
ries was split into blocks. From these blocks, four were randomly
drawn and used as training, others as test data. If for one driver
highway was missing in the training set, this driver would be
characterized as a slow driver compared to the others. Thus,
response curves in this particular study design needed to be
interpreted together with the distribution of speed limits during
the journey (which we did not have). This effect could be reduced
by a statistically informed study design. Since this is not feasible in
the field, additional information on e.g. speed limits (e.g. using geo-
data), could be recorded to avoid such artifacts caused by unbal-
anced data.

Response curves could also be used together with the evidence
data to further describe why the data of a the time period of the
accident was attributed to a certain class, for example which fea-
tures were important. This could strengthen the credibility of the
method.

4.5. Limitations in the forensic context

Except all typical limitations of data driven modeling, two main
limitations for application of predictive modeling in the forensic
context need to be mentioned. First, predictions of a random forest
algorithm are only meaningful when all suspects were represented
in the training data. Otherwise the random forest classifier will
predict high probabilities for class memberships because of its
nature. Each tree will still suggest one class. Probabilities for each
class memberships are then calculated by the odds of votes for all
trees. Methods for use cases with unknown suspect need to be
developed (Kang et al. 2019).

Secondly, in forensics training data might not be valid. The
driver could be in a different physical or mental state during
recording the training data compared to the time the accident
happened. This could be caused by an agitated mental state, a
medical incident, fatigue or alcohol as well as deliberate pretend-
ing. Especially stressed drivers could be over-represented in acci-
dents, since their mental state may be the cause of the accident.
Thereby, more aggressive drivers are in danger of having to stand in
for “normal” drivers who were agitated and therefore caused the
accident.

Variation in driving behavior of one person in different mental
states is a serious challenge for the application of driver classifi-
cation in the forensic context. Therefore, we think that a study on
the influence of confounding conditions on the behavior and
driving style of one person is a necessary next step. One could re-
cord in-vehicle digital data together with e.g. data provided by a
fitness watch. The drivers could be “stressed” by noise during
driving or physical exercises before the driving sample is taken.
Although this can only approximate reality such experiment could
be used to learn more about the variability in specific features and
driving maneuvers such as turning and stopping (Fung et al., 2017).
There is the chance that the way a person takes curves can be
recognized also under exceptional conditions.

5. Conclusion

As the amount of digital evidence related to behavior is likely to
increase in future, methods for processing this data need to be
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developed. On the one hand, forensic methods which lack sound
statistical foundation are not acceptable (Arshad, Jantan, and
Abiodun 2018). Therefore, we need to test suggested methods
systematically. On the other hand, we need to acknowledge that
digital forensic science is a very young discipline compared to other
natural science disciplines.

In this study we developed a workflow analogous to established
practices for identification of individuals based on evidences such
as DNA and finger prints for driver identification. We used an
appropriate model quality measure to represent the false convic-
tion rate (false detection rate, FDR) and made the effort to calculate
the random match probability (RMP) already used in the forensic
expert community. We also pointed out, that a statistically sound
validation procedure, especially when it comes to the evaluation of
evidence, needs to be employed. A block-wise random sampling of
training and test data accounting for auto-correlation in the time
series data is highly recommended. This study has shown that it is
possible to adjust the reporting of model results and their quanti-
tative evaluation to the special needs of forensics.

When we discussed our results we still found some obstacles in
the way of using statistical driver identification directly as evidence
in court such as the physical-mental state of the individual during
the accident and within-subject variability in driving style. These
two factors need to be studied before a final decision on how to use
driver identification in the forensic context. Furthermore, the pre-
sented model clearly pointed to the need to assess the contribution
of available features to the classification. Without a deeper under-
standing of the influence of the driving behavior on each feature it
will not be possible to build trustworthy models. With a smart
experimental design, data could be generated which could help to
separate the effect of the environment (traffic, weather) and the
driver and at the same time assess the within-subject variability in
natural driving behavior.

Despite of all these challenges typical for a young science and
the development of novel methodology, we see the chances in the
field of identification of subjects using time series data on digital
behavior in using vehicles, smart homes and computer keyboards.
Especially in light of increasing numbers of crimes in the digital
domain, we need to develop methods that enable prosecution.
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