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Abstract. We present a fully automated method based on an evolu-
tionary algorithm, a statistical shape model (SSM), and a deformable
mesh to tackle the liver segmentation task of the MICCAI Grand Chal-
lenge workshop. To model the expected shape and appearance, the SSM
is trained on the 20 provided training datasets. Segmentation is started
by a global search with the evolutionary algorithm, which provides the
initial parameters for the SSM. Subsequently, a local search similar to
the Active Shape method is used to refine the detected parameters. The
resulting model is used to initialize the main component of our approach:
a deformable mesh that strives for an equilibrium between internal and
external forces. The internal forces describe the deviation of the mesh
from the underlying SSM, while the external forces model the fit to the
image data. To constrain the allowed deformation, we employ a graph-
based optimal surface detection during calculation of the external forces.
Applied to the ten test datasets of the workshop, our method delivers
comparable results to the human second rater in six cases and scores an
average of 59 points.

1 Introduction

The automated segmentation of the liver from clinical CT images is a challenging
undertaking: Contrast to neighboring structures as stomach or kidney is often
low to non-existent, large variations in shape make an accurate modeling of
the population difficult and, last but not least, existing lesions (e.g. tumors)
considerably change the appearance of the organ. In this study, we tackle the task
using a shape-guided deformable model that we recently published in [1]. The
backbone of our method is a statistical model of shape and appearance, similar
to the Active Shape Model (ASM) introduced by Cootes et al. [2]. In contrast
to ASMs, we allow additional deformations of the model – i.e. which have not
been captured during the training phase – by employing a deformable surface
framework. For details of the method, we refer the reader to the comprehensive
publication [1]; below, we will only briefly outline the employed techniques.
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2 Method

2.1 Construction of the Statistical Model

To construct an SSM from the 20 provided training volumes, the binary segmen-
tations first had to be converted to surfaces. Since all surfaces have to be of the
same topology (genus zero in our case), the small tunnels present in some training
datasets were closed using a morphological closing operation with an ellipsoidal
kernel approximating a sphere of 4mm radius. After running the Marching Cubes
algorithm [3] for surface extraction, 2500 landmarks were spread equally on each
training surface. The required point correspondences between all shapes were
determined automatically using an optimization approach based on the descrip-
tion length of the model [4]. As in most shape modeling approaches, a principal
component analysis on the covariance matrix of landmark positions yielded the
main modes of variation for the training set, which are used to constrain the
deformation of the model during segmentation.

To model the gray-value appearance of the liver, we employed a kNN-classifier
trained on intensity profiles as suggested in [5]. At each landmark, profiles per-
pendicular to the surface were sampled from all training volumes and stored as
boundary samples. Shifting the profiles towards the inside and outside of the liver
yielded additional non-boundary samples. Using a moderated kNN-classifier, the
probability of a profile g lying on the boundary can then be estimated by the
number of nearby boundary samples bk(g) relative to k:

p(b|g) =
bk(g) + 1

k + 2
(1)

In order to improve the performance of the classifier, similar profile models
were clustered. While we used the k-Means algorithm in our previous publica-
tion [1], we opted for the Mean Shift algorithm [6] this time, mainly due to its
ability to determine the optimal number of clusters automatically.

To support a multi-resolution approach during search, appearance models
were built for the native image resolution R0 and for four down-sampled versions
(R1 to R4). All profiles consisted of seven intensity samples, spaced at 1mm in
R0 (distance doubled with each down-sampling step).

2.2 Global Search Using Evolutionary Algorithm

When analyzing an unseen image, the first step is to determine suitable initial
parameters for the SSM. We use an evolutionary algorithm for that purpose,
which optimizes a population of 1000 solutions over 40 iterations. A solution
consists of three translation values, a scale factor, a rotation angle around the
z-axis (to cope with the rotated images) and ten shape parameters. In each
iteration, all solutions are evaluated by combining probabilities from relevant
appearance models in R4:

ws = exp

(
v

n

∑
i

log pi(b|gi)

)
(2)
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Here, n holds the number of employed appearance models and v = 5 is a constant
that determines the speed of convergence of the search process (see below).
After all solutions have been evaluated, random sampling with the weights ws

is used to assemble the population for the next iteration. Note that chosing
larger values for v amplifies the probability differences between different solutions
and thus influences the amount of well-fitting solutions which is selected in this
step. Each chosen solution is mutated by adding Gaussian noise with specific
standard deviation to all parameters. The standard deviation is reduced in each
optimization step, which makes the search exploit a large space at the beginning
and more local regions towards the end.

In order to improve the runtime of the global search, we do not evaluate all
appearance models in Eq. 2, but only a subset containing the most reliable ones
(approximately 200). Appearance model reliability is estimated by an evaluation
on the training data. Mesh decimation techniques ensure that the liver is still
adequately sampled by the reduced landmark set.

2.3 Local Search Using Deformable Mesh

The local search is initialized with the best-rated solution from the global search.
To improve the initialization, this solution is optimized locally using an ASM
search [2] in R4 until the maximum vertex movement Dmax is less than 4mm
and subsequently in R3 until Dmax < 2mm. The ASM search determines the
optimal position for each landmark (according to the corresponding appearance
model) and projects the resulting coordinates into the shape space, so that the
result always is a valid model instance.

Once this local initialization has converged, the deformable mesh is initialized
with the geometry of the current shape model and a forces-equilibrium evolution
is started. In each iteration, all vertices are updated according to the Lagrangian
equation of motion, which in our case means the application of regularizing
internal forces and data-fitting external forces.

The internal forces strive to keep the deformable mesh close to the best-fitting
SSM. They are based on the concepts of tension and rigidity, which have been
introduced by Kass et al. [7] for the popular Snakes algorithm. In our case of a
two-manifold surface, tension forces push or pull the edges in the mesh towards
the length of the corresponding edge in the SSM. Since an edge is defined as
the line connecting two neighboring vertices, its length is simply the distance
between these two points. Rigidity forces act on the angles between neighboring
faces, and rotate adjacent faces in the direction to reach the same value as the
corresponding angle in the SSM.

The external forces try to move all vertices to the locations where their
local appearance model predicts the highest boundary probability. Similar as
in the ASM search, only a number of locations perpendicular to the surface
are evaluated in each step (alltogether 13 locations spaced at 0.5mm in R0). In
order to improve robustness against outliers, an optimal surface detection [8] is
conducted to find the solution with the minimum costs under the hard constraint
that neighboring points are not allowed to shift more than a a given distance ∆
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Dataset Overlap Error Volume Diff. Avg. Dist. RMS Dist. Max. Dist. Total
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

1 7.0 73 1.0 95 1.2 70 2.3 69 20.8 73 76
2 10.8 58 -0.7 97 1.8 54 4.1 43 33.6 56 61
3 28.4 0 -24.9 0 8.1 0 16.9 0 75.7 0 0
4 7.4 71 0.5 97 1.3 67 2.8 61 28.6 62 72
5 5.2 80 -1.2 93 0.9 77 2.0 73 24.2 68 78
6 16.3 36 -1.0 95 4.6 0 10.7 0 72.9 4 27
7 11.7 54 5.2 72 2.0 49 4.7 35 34.4 55 53
8 5.8 77 3.1 83 0.9 76 1.7 76 17.0 78 78
9 8.7 66 1.3 93 1.3 69 2.6 64 22.5 70 72

10 8.7 66 -0.5 97 1.4 65 2.9 60 22.7 70 72
Average 11.0 58 -1.7 82 2.4 53 5.1 48 35.2 54 59

Table 1. Results of the comparison metrics and scores for all ten test cases.

against each other (∆ = 1 sample point for R3 and 2 points for R2 to R0). The
optimal surface detection efficiently solves this task by converting it to a graph
problem, in which the maximum flow has to be determined.

Starting in R3, the deformable surface is evolved until the average landmark
movement falls below a given threshold, subsequently the search continues in
R2 etc. Over the different resolutions, the weight between internal and external
forces is shifted, so that the latter ones continuously gain more influence. For a
listing of all involved parameters we refer the reader to [1].

3 Results

The construction of the shape and appearance model using the provided 20
training datasets ran fully automated and took approximately twelve hours on
a standard PC, mainly for the optimization of point correspondences. The pre-
sented segmentation approach was evaluated on the ten test images of the Grand
Challenge workshop. On a standard PC, the algorithm ran for approximately ten
minutes per image, with the evolutionary algorithm taking the major part of
around six minutes. The resulting error metrics and scores are listed in Table 1.
Figure 1 shows the obtained segmentations for three cases.

4 Discussion and Conclusion

The average performance of the algorithm and final score is seriously declined by
the two poor results of images 3 and 6. We attribute these failed segmentations
to the low number of training samples used to build the statistical model. In
former experiments [1], we used 32 training samples and reached significantly
better results (1.6mm average surface distance instead of 2.4mm). Although the
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Fig. 1. From left to right, a sagittal, coronal and transversal slice from a relatively easy
case (1, top), an average case (4, middle), and a relatively difficult case (3, bottom). The
outline of the reference standard segmentation is in red, the outline of the segmentation
of the method described in this paper is in blue. Slices are displayed with a window of
400 and a level of 70.

deformable mesh relaxes the strict contraints of the SSM and theoretically allows
the adoption to arbitrary shapes, the experiments in this paper demonstrate that
in practice, this works only if the SSM is able to at least roughly represent the
shape in question. If this is not the case, the deformable mesh may even self-
intersect (as it happened for image 6), which makes the resulting segmentation
practically unusable. An additional problem for image 3 was the dark intensity
of the large tumor: This type of boundary appearance was not present in the
training data, thus the appearance model could not locate the boundary correctly
(see Fig. 1, lower row).

On the positive side, our method reached results comparable to a human
second rater (i.e. around 75 points) on six out of ten images. By enlarging the
size of the training set, we hope to be able to increase the number of successful
segmentations. The time of ten minutes required to segment one dataset is com-
pletely acceptable for the application of surgery planning, which is our current
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focus. In case of other applications with less time available, the method could
be sped up by e.g. using a different approach for initialization. In the future,
we plan to implement a method for intersection detection and prevention, which
should improve the performance for cases where even an expanded SSM (based
on more samples) cannot approximate the true shape. All in all, we are optimistic
that given enough training samples and some technical tweaks, our method will
be able to segment 90 percent of clinical cases with an accuracy comparable to
manual raters. Computer-based diagnosis and operation planning would highly
benefit from these advances.
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