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A B S T R A C T

Many theories of the evolution of the genetic code assume that the genetic code has always evolved in the
direction of increasing the supply of amino acids to be encoded (Barbieri, 2019; Di Giulio, 2005; Wong, 1975).
In order to reduce the risk of the formation of a non-functional protein due to point mutations, nature is said
to have built in control mechanisms. Using graph theory the authors have investigated in Blazej et al. (2019) if
this robustness is optimal in the sense that a different codon–amino acid assignment would not generate a code
that is even more robust. At present, efforts to expand the genetic code are very relevant in biotechnological
applications, for example, for the synthesis of new drugs (Anderson et al., 2004; Chin, 2017; Dien et al., 2018;
Kimoto et al., 2009; Neumann et al., 2010). In this paper we generalize the approach proposed in Blazej et al.
(2019) and will explore hypothetical extensions of the standard genetic code with respect to their optimal
robustness in two ways:

(1) We keep the usual genetic alphabet but move from codons to longer words, such as tetranucleotides.
This increases the supply of coding words and thus makes it possible to encode non-canonical amino acids.

(2) We expand the genetic alphabet by introducing non-canonical base pairs.
In addition, the approach from Blazej et al. (2019) and Blazej et al. (2018) is extended by incorporating the
weights of single point-mutations into the model. The weights can be interpreted as probabilities (appropriately
normalized) or degrees of severity of a single point mutation. In particular, this new approach allows us to take
a closer look at the wobble effects in the translation of codons into amino acids. According to the results from
Blazej et al. (2019) and Blazej et al. (2018), the standard genetic code is not optimal in terms of its robustness
to point mutations if the weights of single point mutations are not taken into account. After incorporation into
the model weights that mimic the wobble effect, the results of the present work show that it is much more
robust, almost optimal in that respect.

We hope, that this theoretical analysis might help to assess extended genetic codes and their abilities to
encode new amino acids.
1. Introduction

The origin of the standard genetic code is the subject of many
theories and is still not conclusively understood. One point on which
almost all theories agree is that its development has followed the
direction of including ever increasing numbers of amino acids to be
encoded (Barbieri, 2019; Di Giulio, 2005; Wong, 1975). This point is
increasingly relevant today because of the development of biotechnol-
ogy and especially the synthesis of new medicines (Anderson et al.,
2004; Chin, 2017; Dien et al., 2018; Kimoto et al., 2009; Neumann
et al., 2010). Graph theoretical methods have proved to be extremely
helpful and fruitful in the study of the structural properties of the
genetic code. Thus, the graph-theoretic approach is ideally suited to
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the study of the error-detecting properties of the genetic code, which
are used, for example, in dealing with the so-called frame-shift problem
due to indels (see Fimmel et al., 2016, 2018, 2020a,b). The main goal
of this work is to investigate the robustness of the genetic code against
point-mutations using graph theory, more specifically as an optimal
clustering problem in a suitably modelled graph.

The so-called clustering or sparsest cut problems in graph theory
have many applications: To Natural Language Processing, in com-
munications engineering and recently especially due to the growing
importance of social media for community detection (Gaertler, 2005;
Alev et al., 2017). There are different methods to measure the "quality"
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of a clustering of a graph. One of them is using the conductance mea-
sure (see, for instance, Gaertler, 2005; Kannan et al., 2004; Lee et al.,
2014). In the paper (Blazej et al., 2018), the conductance approach was
applied to the question of testing different variants of the genetic code
for their robustness against single point mutations: the conductance
measure, a number between 0 and 1, can be seen as a fitness function
for modelling an optimal assignment of the amino acids to be encoded
to the tuples of bases (usually codons) that encode them.

Recently, the approach has been further developed (Blazej et al.,
2019, 2020) and used in particular to assess the robustness of potential
extensions of the genetic code against single point-mutations. In all
cases, however, the unweighted graph was considered, whereas the
term ‘‘conductance’’ in graph theory is defined more generally, for
weighted graphs. Of course, with abandonment of edge weights, some
degrees of freedom were given up in favour of simpler modelling.
This makes the reflection of some biological phenomena, such as the
wobble effect, in mathematical modelling at least more difficult, if not
impossible. The results of the present work show that the incorporation
of weights into the model leads to a better understanding of the origin
of the standard genetic code in its modern form, when the wobble
effects in the translation of codons into amino acids are taken into
account.

An important point in the preceding work is to find the lower
bounds for the conductance measure for a given number of classes.
These results are important because they make it possible to make
statements about the optimality of a partition of the set of codons
into subsets of synonymous codons. With the (Higher-Order) Cheeger
Inequalities (Alev et al., 2017; Gaertler, 2005; Kwok et al., 2013; Lee
et al., 2014), which have received much attention in recent years, such
a lower bound has already been known. However, as shown in this
paper, it is only sharp in very few cases. In this paper, we develop a
more precise method to determine lower bounds.

The paper is structured as follows: In Section 2 we define the
basic graph-theoretic approach with an extension to weighted graphs.
Moreover, we give the definition of conductance. In the next Section 3.1
we show some results on lower bounds for the conductances using
the Higher Order Cheeger Inequalities and improve this by a new
combinatorial method. Finally, in Section 3.2 we explicitly determine a
model using conductance that incorporates the Wobble-effect showing
that the genetic code is almost optimal with respect to its robustness
against point mutations. The paper closes with some conclusions.

2. Graph theory and conductance

In this section we generalize an approach developed in Blazej
et al. (2018) by extending it to weighted graphs. As explained in
the introduction the idea behind this approach and the definition
of conductance is to measure the robustness of partitions of sets of
words against one-point mutations, especially in the case of genetic
information.

Let 𝛴 be a finite alphabet of even cardinality |𝛴| = 2𝑛 for some 𝑛 ∈
N. Actually, almost all the results presented here also hold for alphabets
of odd cardinality but due to the biological motivation of the present
study, we restrict ourselves to alphabets of even cardinality. Moreover,
we will use the notation  = {𝐴,𝐶,𝐺, 𝑇 (𝑈 )} for the particularly
important special case of 𝛴 =  being the standard genetic alphabet.
We first give a generalized version of the approach from Blazej et al.
(2018). Recall that for an integer 𝑙 ∈ N, 𝛴𝑙 denotes the set of all words
over 𝛴 of length 𝑙, i.e. 𝛴𝑙 = {𝑣1 ⋯ 𝑣𝑙 ∶ 𝑣𝑖 ∈ 𝑛𝛴}. For further details on
graph theory we refer the reader to Clark and Holton (1991)

Definition 2.1. Let 𝓁 ∈ N and 𝑃 = {𝑝{𝑁,𝑁 ′}
𝑖 ∣ 𝑖 = 1,… ,𝓁, 𝑁 ≠ 𝑁 ′ ∈ 𝛴}

where 𝑝{𝑁,𝑁 ′}
𝑖 are non-negative weights. We define a weighted graph

𝐺(𝑉 ,𝐸) = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) as follows:

(1) 𝑉 = 𝛴𝓁 is the set of vertices (nodes) representing all possible
𝓁-letter words over 𝛴;
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(2) 𝐸 is the set of edges where (𝑐, 𝑐′) ∈ 𝐸 if and only if 𝑐, 𝑐′ ∈ 𝑉 and
𝑐 differs from 𝑐′ in exactly one position;

(3) The function 𝑤 ∶ 𝐸 → 𝑃 assigns to every edge (𝑐, 𝑐′) ∈ 𝐸 a
weight 𝑝{𝑁,𝑁 ′}

𝑖 by 𝑤((𝑐, 𝑐′)) = 𝑝{𝑁,𝑁 ′}
𝑖 if and only if 𝑐 differs

from 𝑐′ in position 𝑖 ∈ {1,… ,𝓁} and 𝑐𝑖 = 𝑁, 𝑐′𝑖 = 𝑁 ′ where
𝑐𝑖 = (𝑐1,… , 𝑐𝑙) and 𝑐′ = (𝑐′1,… , 𝑐′𝑙 ).

If for all 𝑖 ∈ {1,… , 𝑙} the weights 𝑝{𝑁,𝑁 ′}
𝑖 are independent of the choice

of 𝑁,𝑁 ′ we will simply denote the weights 𝑝{𝑁,𝑁 ′}
𝑖 by 𝑝𝑖.

According to Definition 2.1 the graph 𝐺 is a weighted, undirected
and regular graph, i.e. the degree of each node is equal to 𝓁 ⋅ (2𝑛 −
1). Note that the weight function in (3) of the above Definition 2.1
is well-defined since for any pair 𝑁,𝑁 ′ ∈ 𝛴 the sets {𝑁,𝑁 ′} and
{𝑁 ′, 𝑁} and hence the weights 𝑝{𝑁,𝑁 ′}

𝑖 and 𝑝{𝑁
′ ,𝑁}

𝑖 are identical. From
a biological point of view, i.e. when 𝛴 = , the graph 𝐺 has a nice
interpretation: The set of edges 𝐸 represents all possible single point
mutations, i.e. single nucleotide substitutions, which can occur between
codons in protein-coding sequences. Such point-mutations appear quite
often and might lead to fatal changes in the encoded proteins The
weights 𝑝𝑖 (respectively 𝑝{𝑁,𝑁 ′}

𝑖 ) can be interpreted, correspondingly
standardized, as the probabilities with which a point mutation occurs
at position 𝑖 (respectively occurs at position 𝑖 and changes 𝑁 to 𝑁 ′).
The above Definition 2.1 also takes into account that these mutation
probabilities may depend not only on the position in the tuple, but
also on the base pairs. For example, it is conceivable that the mutation
𝑈 → 𝐺 in the third position of a codon is more likely than the mutation
𝑈 → 𝐴 (see also Section 3.2 for further results related to the Wobble
effect). Before we give some illustrative examples we state a remark for
the convenience of the reader.

Remark 2.2. The mindful reader may have noticed that Definition 2.1
speaks about undirected graphs which implies that the one-point muta-
tions are symmetric in the sense that the probability of e.g. a mutation
𝑈 → 𝐺 has to be the same as that of 𝐺 → 𝑈 but may depend on
the position where the mutation happens. In certain settings this might
not be the case and thus we remark that Definition 2.1 can easily be
turned into a directed version, say

→
𝐺, by replacing the weights 𝑝{𝑁,𝑁 ′}

𝑖
by weights 𝑝(𝑁,𝑁 ′)

𝑖 which then respect the order of the bases 𝑁 and 𝑁 ′.
The definition of conductance and several of our results then also hold
in the directed version. However, the authors wanted to avoid even
more technicalities and have therefore kept the undirected version.

It is now time to give some examples of graphs that satisfy Defini-
tion 2.1.

Example 2.3. Let 𝛴 = {0, 1} be the binary alphabet and 𝓁 = 3.
Moreover, choose 𝑝{0,1}1 = 1, 𝑝{0,1}2 = 3 and 𝑝{0,1}3 = 5, then 𝐺 looks
like in Fig. 1:

We have a second example in a biological setting.

Example 2.4. Let 𝛴 = {𝐴,𝐶,𝐺,𝑈, 𝐼,𝐾} be an extended genetic
alphabet and 𝓁 = 2. Moreover, choose all 𝑝{𝑁,𝑁 ′}

𝑖 = 2, then 𝐺 looks
like in Fig. 2.

And a final example in the genetic code setting.

Example 2.5. Let 𝛴 =  = {𝐴,𝐶,𝐺,𝑈} be the genetic alphabet and
𝓁 = 2 respectively 𝑙 = 3. Moreover, choose all 𝑝{𝑁,𝑁 ′}

𝑖 = 1, then 𝐺 looks
like in Figs. 3 and 4.

With the help of the graph defined in Definition 2.1 we want to
tackle the following biological problem:

Question 2.6. How should the set of all available 𝓁-tuples (𝓁-plets)
be partitioned into a given number of disjoint subsets corresponding to
the amino acids to be encoded such that the influence of single point
mutations is minimal?
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Fig. 1. The graph 𝐺 for 𝛴 = {0, 1}, 𝑙 = 3 and weights 𝑝{0,1}1 = 1, 𝑝{0,1}2 = 3 and 𝑝{0,1}3 = 5.
Fig. 2. The graph 𝐺 for 𝛴 = {𝐴,𝐶,𝐺,𝑈, 𝐼,𝐾}, 𝓁 = 2 and all weights 𝑝{𝑁,𝑁 ′}
𝑖 = 2. Note that in the centre there is no vertex.
We approach the problem as an optimal clustering problem in a
graph. First, we will explain what we mean by partitioning 𝑘 the set
𝑉 of nodes of the graph 𝐺 into a fixed number 1 < 𝑘 ≤ (2𝑛)𝓁 of disjoint
non-empty subsets 𝑘, i.e. 𝑘 𝓁-letter-word groups:

𝑘 = {𝑆1, 𝑆2,… , 𝑆𝑘 ∶ 𝑆𝑖 ∩𝑆𝑗 = ∅𝑓𝑜𝑟𝑎𝑙𝑙𝑖 ≠ 𝑗 ≤ 𝑘, 𝑆1 ∪𝑆2 ∪⋯∪𝑆𝑘 = 𝑉 }.

The biological interpretation of such a partition is obvious: 𝓁-tuples of
each subset 𝑆𝑖 in the partition synonymously encode one and the same
amino acid. The way to measure the ‘‘quality’’ of such a partition with
the help of the so-called conductance measure as proposed in Blazej
et al. (2018) seems to fit very naturally to the biological task. However,
there are easily different ways to define conductance for a given
subset of the nodes of a graph.1 Following Alev et al. (2017), we first

1 For example, in a widely used variant of the definition, the conductances
of a subset 𝑆 ⊆ 𝑉 and of its complement 𝑆̄ ⊆ 𝑉 are always equal (Kannan
et al., 2004; Gaertler, 2005). Because of our biological motivation, it would
not make sense to adopt this definition, since in particular conductances for
𝑆 with |𝑆| = 1 or |𝑆| = 2𝑛𝓁 − 1 would be the same.
3

define the conductance for a single subset 𝑆 of 𝑉 and thus adapt the
corresponding definition from Blazej et al. (2019) to the new weighted
situation:

Definition 2.7. For a given weighted graph 𝐺 = 𝐺(𝑉 ,𝐸,𝑤) let 𝑆 be
a subset of 𝑉 = 𝛴𝓁 where 𝓁 ∈ N. We define the conductance of 𝑆 as:

𝜙(𝑆) =
𝑤(𝐸(𝑆, 𝑆))

∑

𝑐∈𝑆,(𝑐,𝑐′)∈𝐸 𝑤((𝑐, 𝑐′))

where 𝑤(𝐸(𝑆, 𝑆̄)) is the sum of the weights of edges of 𝐺 crossing from
𝑆 to its complement 𝑆̄:

𝐸(𝑆, 𝑆̄) ∶= {(𝑐, 𝑐′) ∈ 𝐸 ∶ |{𝑐, 𝑐′} ∩ 𝑆| = 1} 𝑎𝑛𝑑

𝑤(𝐸(𝑆, 𝑆̄)) =
∑

(𝑐,𝑐′)∈𝐸(𝑆,𝑆̄)

𝑤((𝑐, 𝑐′)).

Remark 2.8. It is easy to see that multiplying by a positive constant
𝜆 > 0 of all edge weights does not change the conductance of any subset
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Fig. 3. The graph 𝐺 for 𝛴 = , 𝓁 = 2 and all weights 𝑝{𝑁,𝑁 ′}
𝑖 = 1.
Fig. 4. The graph 𝐺 for 𝛴 = , 𝓁 = 3 and all weights 𝑝{𝑁,𝑁 ′}
𝑖 = 1. Note that in the

centre there is no vertex. The colours of the nodes represent the amino acids..

𝑆 ⊆ 𝑉 , since the numerator and denominator in the expression from
Definition 2.7 are multiplied by the same constant 𝜆 > 0.

Before we give some examples we have a first easy lemma (recall
that |𝛴| = 2𝑛).

Lemma 2.9. Assume that 𝐺 = 𝐺(𝑉 ,𝐸,𝑤) is a weighted graph as in
Definition 2.1 and assume that all weights depend only on the position and
not on the letters, i.e. 𝑝{𝑁,𝑁 ′}

𝑖 = 𝑝𝑖 for all 𝑁 ≠ 𝑁 ′ ∈ 𝛴. Then we have

𝜙(𝑆) =
𝑤(𝐸(𝑆, 𝑆))

(2𝑛 − 1)|𝑆|
∑𝓁

𝑖=1 𝑝𝑖
.

Proof. Easy. □

In the biological setting, 𝜙(𝑆) has a very interesting interpretation.
Assuming that all codons belonging to 𝑆 encode the same label, i.e. the
same amino acid or the stop coding signal, then 𝜙(𝑆) is the ratio of
the total number of non-synonymous single nucleotide substitutions to
4

Fig. 5. The graph of 𝑆 inside the graph of 𝐺 for 𝛴 = {0, 1}, 𝓁 = 3, 𝑆 = {010, 110, 001}
and weights 𝑝{0,1}1 = 1, 𝑝{0,1}2 = 3 and 𝑝{0,1}3 = 5. 𝛷(𝑆) = 25∕27 where 25 is the sum of
the weights of crossing edges and 27 the total sum. Note that the internal edge (blue)
is counted twice by definition.

all possible nucleotide substitutions generated by the codons from 𝑆
together. We now give some examples.

Example 2.10. Let 𝛴 = {0, 1} be the binary alphabet and 𝓁 = 3.
Moreover, choose 𝑝{0,1}1 = 1, 𝑝{0,1}2 = 3 and 𝑝{0,1}3 = 5 (see Example 2.3
and Fig. 5) and 𝑆 = {010, 110, 001}. Then 𝛷(𝑆) = 25∕27 = 0.9259259.

We continue with a second and third example.

Example 2.11. Let 𝛴 = {𝐴,𝐶,𝐺,𝑈, 𝐼,𝐾} be an extended genetic
alphabet, 𝓁 = 3. and all 𝑝{𝑁,𝑁 ′}

𝑖 = 2 (see Example 2.4 and Fig. 6).
Moreover choose 𝑆 = {𝐴𝐶𝐺,𝐴𝐼𝐺,𝐾𝐼𝐺} then 𝛷(𝑆) = 0.9111111.

Example 2.12. Let 𝛴 =  = {𝐴,𝐶,𝐺,𝑈} be the genetic alphabet,
𝓁 = 3 and choose 𝑝{𝑁,𝑁 ′}

1 = 𝑝{𝑁,𝑁 ′}
2 = 1 for all 𝑁,𝑁 ′ ∈ 𝛴 as well

as 𝑝{𝑈,𝐺}
3 = 𝑝{𝐴,𝐶}

3 = 2 and 𝑝{𝑈,𝐶}
3 = 𝑝{𝐴,𝐺}

3 = 4. Moreover, choose
𝑆 = {𝐴𝐶𝑈,𝐴𝐶𝐶,𝐴𝐶𝐴,𝐴𝐶𝐺}, then 𝛷(𝑆) = 0.5333333. See also Fig. 7.

Now that we have clarified what the conductance of a selected
subset of the potential codewords means, the next step is to define the
conductance for an entire partition of the set of all potential codewords.
A reasonable way to do this, which was also adopted in Blazej et al.
(2019) and Blazej et al. (2018), was proposed in Lee et al. (2014).
The conductance of a partition is defined as the conductance of the
‘‘weakest link in the chain’’:
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Fig. 6. The graph of 𝑆 inside the graph of 𝐺 for 𝛴 = {𝐴,𝐶,𝐺,𝑈, 𝐼,𝐾}, 𝑙 = 3, 𝑆 = {𝐴𝐶𝐺,𝐴𝐼𝐺,𝐾𝐼𝐺} and weights 𝑝{𝑁,𝑁 ′}
1 = 2.
Fig. 7. The graph of 𝑆 inside the graph 𝐺 for 𝛴 = , 𝓁 = 3, 𝑝{𝑁,𝑁 ′}
1 = 𝑝{𝑁,𝑁 ′}

2 = 1 for all 𝑁,𝑁 ′ ∈ 𝛴, 𝑝{𝑈,𝐺}
3 = 𝑝{𝐴,𝐶}

3 = 2 and 𝑝{𝑈,𝐶}
3 = 𝑝{𝐴,𝐺}

3 = 4 as well as 𝑆 = {𝐴𝐶𝑈,𝐴𝐶𝐶,𝐴𝐶𝐴,𝐴𝐶𝐺}.
Definition 2.13. For a given weighted graph 𝐺 = 𝐺(𝑉 ,𝐸,𝑤) and an
integer 𝓁 ∈ N the conductance of a partition 𝑘 of 𝑉 = 𝛴𝓁 is defined
as

𝛷(𝑘) = max
𝑆∈𝑘

𝜙(𝑆).

Therefore, the 𝛷 measure gives us a characterization of the quality
of a given partition 𝑘 as the set conductance of the worst 𝑙-letter group
in this partition. What is more, 𝛷 measure involves a question about the
structure of the optimal graph partition 𝑘 for a fixed 𝑘. In this context,
the best partition 𝑘 of the graph 𝐺 in terms of 𝛷 follows in a natural
way and is given by the formula:

𝛷min(𝑘) = min
𝑘

𝛷(𝑘),

i.e. we minimize over all possible 𝑘-partitions of 𝑉 with respect to the
conductance measure.
5

It can also be useful in certain cases to take a different conductance
definition for a given partition, namely that of the average partition
conductance. This can make sense, for example, if the partition is to
have some ‘‘inconvenient’’ predefined properties, e.g. that an amino
acid (Met) is to be encoded by exactly one tuple, as in the standard
genetic code. In this case 𝛷(𝑘) = 1 is always true.

Definition 2.14. For a given weighted graph 𝐺 = 𝐺(𝑉 ,𝐸,𝑤) and an
integer 𝓁 ∈ N the average conductance of a partition 𝑘 is defined as

𝛷̄(𝑘) =
1
𝑘

∑

𝑆∈𝑘

𝜙(𝑆).

Just as in the above case, one can search for an optimal partition
of the set 𝛴𝓁 into 𝑘 subsets such that the average conductance of the
partition is smallest among all partitions of 𝛴𝓁 in 𝑘 subsets:

𝛷̄min(𝑘) = min 𝛷̄(𝑘).
𝑘
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Table 1
Code Variants: the average conductance of the partition (𝛷̄(𝐶𝑘)) as well as the range of conductance values of the single subsets of synonymous codons (𝜙(𝑆)) are given for
different dialects of the genetic code with unique assignment of amino acids to codons. The two variants are calculated on the one hand for the unweighted variant of the graph
2.1 (all weights equal 1), and on the other hand for the weighted variant from Section 3.2.

Name Unweighted 𝑝1 = 𝑝2 = 1, 𝑝3 = 2

Average Range min–max Average Range min–max

The Standard Code 0.8113 0.6667 1 0.6395 0.4286 1

The Vertebrate Mitochondrial Code 0.8114 0.6667 0.8889 0.6169 0.4286 0.7143

The Yeast Mitochondrial Code 0.8183 0.6667 0.8889 0.6259 0.4286 0.7143

The Mould, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code 0.8078 0.6667 1 0.6236 0.4286 1

The Invertebrate Mitochondrial Code 0.8042 0.6667 0.8889 0.6077 0.4286 0.7143

The Ciliate, Dasycladacean and Hexamita Nuclear Code 0.8131 0.6667 1 0.6474 0.4286 1

The Echinoderm and Flatworm Mitochondrial Code 0.8042 0.6667 1 0.6259 0.4286 1

The Euplotid Nuclear Code 0.8078 0.6667 1 0.6327 0.4286 1

The Bacterial, Archaeal and Plant Plastid Code 0.8113 0.6667 1 0.6395 0.4286 1

The Alternative Yeast Nuclear Code 0.8183 0.6667 1 0.65 0.4286 1

The Ascidian Mitochondrial Code 0.8078 0.6667 0.8889 0.6145 0.4286 0.7143

The Alternative Flatworm Mitochondrial Code 0.8042 0.6667 1 0.6349 0.4286 1

Ter Chlorophycean Mitochondrial Code 0.8138 0.6667 1 0.65 0.4286 1

Trematode Mitochondrial Code 0.8042 0.6667 1 0.6168 0.4286 1

Scenedesmus obliquus Mitochondrial Code 0.826 0.6667 1 0.672 0.4286 1

Thraustochytrium Mitochondrial Code 0.8113 0.6667 1 0.6395 0.4286 1

Pterobranchia Mitochondrial Code 0.8047 0.6667 1 0.6229 0.4286 1

Candidate Division SR1 and Gracilibacteria Code 0.8141 0.6667 1 0.6413 0.4286 1

Pachysolen tannophilus Nuclear Code 0.8198 0.6667 1 0.6522 0.4286 1

Mesodinium Nuclear 0.8078 0.6667 1 0.6372 0.4286 1

Peritrich Nuclear 0.8131 0.6667 1 0.6474 0.4286 1
|

c
t

It is easy to see that for each partition 𝑘

𝛷̄(𝑘) ≤ 𝛷(𝑘)

applies and, thus, it follows that for every 𝑘 ∈ {1,… , |𝑉 | = (2𝑛)𝓁}

𝛷̄min(𝑘) ≤ 𝛷min(𝑘)

takes place.
In Table 1 the average conductance of the partition as well as

the range of conductance values of the single subsets of synonymous
codons are given for different dialects of the genetic code with unique
assignment of amino acids to codons. The two variants are calculated
on the one hand for the unweighted variant of the graph 2.1 (all
weights equal 1), and on the other hand for the weighted variant taking
into account the wobble effect as will be considered in Section 3.2 of
this article.

3. Results and discussion

3.1. Calculating lower bounds for conductances

One of the most important goals of the work is to find optimal
partitions of the set of all available coding tuples into a given number
of subsets for which the maximum conductance of subsets or the
average of their conductances is minimal (compare Question 2.6). For
this purpose, it is very useful to have lower bounds on the minimum
or average conductance possible for a partition. In order to simplify
statements we will assume in this subsection that all the weights of the
graphs from Definition 2.1 are independent of the letters, i.e. 𝑝{𝑁,𝑁 ′}

𝑖 =
𝑝𝑖 for all 𝑖 and 𝑁 ≠ 𝑁 ′.

One of the most important results presented in Lee et al. (2014)
s a generalization of the much noted Cheeger’s inequality (see, for
xample, Alev et al., 2017; Gaertler, 2005; Kwok et al., 2013) to Higher-
rder Cheeger Inequalities. Applied to our case using the definitions
iven above (the authors of Lee et al., 2014 partly use other terms
nd notations) it reads as follows. Again we refer to Clark and Holton
1991) for details on graph theory:
6

c

Higher-Order Cheeger Inequalities 3.1. Let 𝐺 = (𝑉 ,𝐸) be an undi-
rected, 𝑑-regular graph, with positive weights 𝑤 ∶ 𝐸 → (0,∞) on the edges.
Consider the normalized Laplacian matrix of 𝐺 defined by

𝐿 = 𝐼 − 1
𝑑
𝐴,

where 𝐴 is the adjacency matrix of 𝐺2 and 𝑑 is the common node degree,
and its eigenvalues in ascending order

0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆
|𝑉 |

.

Then for all 𝑘 ∈ {1,… , |𝑉 |} the following inequality holds:
𝜆𝑘
2

≤ 𝛷𝑚𝑖𝑛(𝑘) ≤ 𝑂(𝑘2)
√

𝜆𝑘. (3.1)

The question that naturally arises is whether the lower bound
presented is tight. Unfortunately, it turns out that it is not:

Proposition 3.2. The lower bound in the Higher-Order Cheeger Inequali-
ties 3.1 is not tight.

Proof. Consider the following example:
Let 𝑛 = 2 and 𝛴 =  = {𝐴,𝐶,𝐺,𝑈} be the genetic alphabet, 𝓁 = 3

and 𝑝𝑖 = 1 for all 𝑖 ∈ {1,… ,𝓁}. Then the adjacency matrix of 𝐺 is
displayed in Fig. 8 (see Table 2).

In this case we have:

𝜆1 = 0

𝜆𝑘 = 4
9

𝑘 = 2,… , 10

2 The adjacency matrix of a weighted graph 𝐺 = (𝑉 ,𝐸) is a square
𝑉 | × |𝑉 |-matrix which is used to represent edges of a graph. We put the
orresponding weight as the value at the intersection of the column and
he row corresponding to the vertices connected or 0 if the vertices are not
onnected.
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Fig. 8. The adjacency matrix of 𝐺.
Table 2
Lower bounds for 𝛷𝑚𝑖𝑛(𝑘) in dependence on the number of classes 𝑘 (𝑛 = 2,𝓁 = 3, see
Blazej et al. (2019)) where the numbers marked in red were proved to be tight lower
bounds.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lower bound 0 2
9

73
207

1
3

4
9

8
15

5
9

5
9

13
21

2
3

31
45

31
45

2
3

2
3

2
3

2
3

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Lower bound 7
9

7
9

7
9

7
9

7
9

8
9

8
9

8
9

8
9

8
9

8
9

8
9

8
9

8
9

8
9

8
9

𝜆𝑘 = 8
9

𝑘 = 11,… , 38

𝜆𝑘 = 4
3

𝑘 = 39,… , 64

and, thus, on the one hand, according to the Higher-Order Cheeger
Inequalities 3.1

𝛷𝑚𝑖𝑛(1) ≥ 0

𝛷𝑚𝑖𝑛(𝑘) ≥
2
9

𝑘 = 2,… , 10

𝛷𝑚𝑖𝑛(𝑘) ≥
4
9

𝑘 = 11,… , 38

𝛷𝑚𝑖𝑛(𝑘) ≥
2
3

𝑘 = 39,… , 64

On the other hand, according to the results from Blazej et al. (2019)
we have the following lower bounds where the numbers marked in red
were proved to be tight lower bounds:

For 𝑘 ≥ 33, there must always be at least one one-element subset
among the subsets of a partition and thus for this case 𝛷𝑚𝑖𝑛(𝑘) = 1
applies. A look at the table above shows that the lower bound in
Higher-Order Cheeger’s Inequalities is tight only for the two trivial
cases 𝑘 = 1, 2. □

The approach from Blazej et al. (2019) for calculating lower bounds
for 𝛷𝑚𝑖𝑛(𝑘) obviously yields better results than the Higher-Order
Cheeger’s Inequalities. Therefore, we will now generalize the corre-
sponding result from Blazej et al. (2019) and adapt it for the case of
the weighted graph and arbitrary alphabet and tuple sizes.

In Bezrukov (1999) it was proved that for the unweighted graphs
(all weights equal to 1) and a given subset size, the subsets that are
lexicographically ordered according to a freely chosen order in the
alphabet have the smallest conductance among all subsets of the same
cardinality. When weights come into play, this property no longer
applies, as the following example shows:
7

Example 3.3. Let 𝓁 = 3, 𝑝1 = 3, 𝑝2 = 2, 𝑝3 = 1, and the order
of  be defined as 𝐴 < 𝐶 < 𝐺 < 𝑇 . If we now consider 𝑆 =
{𝐴𝐴𝐴,𝐴𝐴𝐶,𝐴𝐴𝐺}𝑎𝑛𝑑 𝑆′ = {𝐴𝐴𝐴,𝐶𝐴𝐴,𝐺𝐴𝐴}, it is clear that 𝑆 is
lexicographically ordered with respect to the chosen order, while 𝑆′

is not. Nevertheless, we have

𝜙(𝑆′) =
3 ⋅ (3 ⋅ 1 + 3 ⋅ 2 + 3)

3 ⋅ (3 ⋅ 1 + 3 ⋅ 2 + 3 ⋅ 3)
= 2

3
< 𝜙(𝑆) =

3 ⋅ (3 ⋅ 2 + 3 ⋅ 3 + 1)
3 ⋅ (3 ⋅ 1 + 3 ⋅ 2 + 3 ⋅ 3)

= 8
9

However, in the case where the weights depend only on the posi-
tion, one can arrange the positions so that the weights are ascending.
Then the above property applies again. For the convenience of the
reader we state the result without proof (see Propositions 1 and 2
in Blazej et al., 2018 and Theorem 1 in Bezrukov and Elsässer).

Theorem 3.4. Let 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected weighted graph as

in Definition 2.1. Let 𝑁1 < ⋯ < 𝑁2𝑛 be an ordering of the alphabet 𝛴 and
let 𝑃 = {𝑝𝑖 ∶ 𝑖 = 1,… ,𝓁} be the set of weights. Then there is a permutation
𝜋 ∶ {1,… ,𝓁} → {1,⋯ ,𝓁} such that the weights

⟨

𝑝𝜋(𝑖) ∶ 𝑖 = 1,… ,𝓁
⟩

are
increasing. Let 𝜋 also denote the induced mapping 𝛴𝓁 → 𝛴𝓁 sending a word
𝑎1 ⋯ 𝑎𝓁 ∈ 𝛴𝓁 to 𝑎𝜋(1) ⋯ 𝑎𝜋(𝓁). Then for any 𝑚 the set 𝑆𝑚 has the smallest
conductance 𝛷(𝑆) among all subsets 𝑆 ⊆ 𝛴𝓁 of size 𝑚 where 𝜋(𝑆𝑚) is the
set of the first 𝑚 words in the lexicographic order induced by < on 𝛴𝓁

Just to illustrate Theorem 3.4 we note that in Example 3.3 one can
choose 𝜋 to be 𝜋 ∶ {1, 2, 3} → {1, 2, 3} with 𝜋(1) = 3, 𝜋(2) = 2, 𝜋(3) = 1.
Then 𝜋(𝑆′) = 𝑆 which contains the first three codons in lexicographical
order.

It is worth mentioning that the above Theorem 3.4 justifies to
restrict ourselves in general to the case when the weights are ascending.
The following theorem is helpful, since it offers the possibility of
recursively determining the minimum possible conductances for subsets
of 𝛴𝓁 of arbitrary size. The following result generalizes Theorem 3.2.
from Blazej et al. (2019) to our weighted situation.

Theorem 3.5. Let 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected and weighted graph

as in Definition 2.1, 𝑝𝑖 ≥ 0, 𝑖 = 1,… ,𝓁 the corresponding edge weights,
𝑁1 < 𝑁2 < 𝑁3 < ⋯ < 𝑁2𝑛 a linear order on the alphabet 𝛴 and 𝑆𝑚 ⊆ 𝑉
the collection of the first 𝑚 = 1, 2,… , (2𝑛)𝓁 vertices of the graph 𝐺 in the
lexicographic order induced by <. Then the following recursive formula for
the sum of the weights of edges of 𝐺 crossing from 𝑆𝑚 to its complement 𝑆̄𝑚
holds:

𝑤(𝐸(𝑆𝑚+1, 𝑆𝑚+1)) = 𝑤(𝐸(𝑆𝑚, 𝑆𝑚)) +
𝓁
∑

𝑝𝑖(2(𝑛 − 𝑚𝑖) − 1),

𝑖=1
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𝑤(𝐸(𝑆1, 𝑆1)) = (2𝑛 − 1)
𝓁
∑

𝑖=1
𝑝𝑖

where (𝑚1, 𝑚2,… , 𝑚𝓁)2𝑛, 𝑚𝑖 ∈ {0, 1, 2,… , (2𝑛−1)}3 is the 2𝑛-adic represen-
tation of 𝑚 to base 2𝑛, i.e.

𝑚 = 𝑚1 ⋅ (2𝑛)𝓁−1 + 𝑚2 ⋅ (2𝑛)𝓁−2 +⋯ + 𝑚𝓁 ⋅ (2𝑛)0.

The conductance of 𝑆𝑚 is accordingly equal to

(𝑆𝑚) =
𝑤(𝐸(𝑆𝑚, 𝑆𝑚))

(2𝑛 − 1) ⋅ 𝑚 ⋅
∑𝓁

𝑖=1 𝑝𝑖
.

Proof. It is clear that 𝑤(𝐸(𝑆1, 𝑆1)) = (2𝑛− 1)
∑𝓁

𝑖=1 𝑝𝑖 since the graph 𝐺
rom Definition 2.1 is 𝓁(2𝑛−1)-regular and for every 𝑖 = 1,… ,𝓁, (2𝑛−1)
dges are assigned the weight 𝑝𝑖 respectively.

Let us assume now that we already have calculated 𝑤(𝐸(𝑆𝑚, 𝑆𝑚))
for 𝑚 ≥ 1 and we are inserting now the next 𝓁-letter word 𝑐 ∈ 𝛴𝓁 in
he lexicographic order. It is easy to see that all 𝓁-letter words over

ordered in lexicographic order can be rewritten as a sequence of
onsecutive 𝓁-digits numbers to the base 2𝑛 if we assign, for example,
𝑁1 → 0, 𝑁2 → 1, 𝑁3 → 2, 𝑁4 → 3..., 𝑁2𝑛 → 2𝑛 − 1. Therefore,
ewly included 𝓁-letter word 𝑐 has a numeric representation 𝑐 =
𝑚1, 𝑚2,… , 𝑚𝓁)2𝑛, where 𝑚𝑖 = 0, 1, 2,… , 2𝑛 − 1. What is more, 𝑚𝑖, 𝑖 =
, 2,… ,𝓁 is the number of 𝓁-letter words over 𝛴 that differ from 𝑐 at
he position 𝑖 which are smaller than 𝑐 in the lexicographic order and
he total weight of edges crossing 𝑆𝑚 and 𝑐 is, consequently, equal to
(𝐸(𝑆𝑚, {𝑐})) =

∑𝓁
𝑖=1 𝑚𝑖𝑝𝑖. As a result, the total sum of the weights of

dges between 𝑆𝑚+1 to its complement fulfils the equation:

(𝐸(𝑆𝑚+1, 𝑆𝑚+1)) = 𝑤(𝐸(𝑆𝑚, 𝑆𝑚)) −𝑤(𝐸(𝑆𝑚, {𝑐}))

+ (2𝑛 − 1)
𝓁
∑

𝑖=1
𝑝𝑖 −𝑤(𝐸(𝑆𝑚, {𝑐})) =

𝑤(𝐸(𝑆𝑚, 𝑆𝑚)) +
𝓁
∑

𝑖=1
𝑝𝑖(2(𝑛 − 𝑚𝑖) − 1).

hat completes the proof. □

orollary 3.6. Let 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected and weighted graph

s in Definition 2.1, 𝑝𝑖 = 1 for all 𝑖 = 1,… ,𝓁, 𝑁1 < 𝑁2 < 𝑁3 < ⋯ < 𝑁2𝑛
a linear order on the alphabet 𝛴 and 𝑆𝑚 ⊆ 𝑉 the collection of the first
𝑚 = 1, 2,… , (2𝑛)𝓁 vertices of the graph 𝐺 in the lexicographic order induced
by <. Then the following recursive formula for the number of edges of 𝐺
crossing from 𝑆𝑚 to its complement 𝑆̄𝑚 holds:

𝑤(𝐸(𝑆𝑚+1, 𝑆𝑚+1)) = 𝑤(𝐸(𝑆𝑚, 𝑆𝑚)) + 𝓁 ⋅ (2𝑛 − 1) − 2 ⋅ (𝑚1 + 𝑚2 +⋯ + 𝑚𝓁),

(𝐸(𝑆1, 𝑆1)) = 𝓁 ⋅ (2𝑛 − 1)

here (𝑚1, 𝑚2,… , 𝑚𝓁)2𝑛, 𝑚𝑖 ∈ {0, 1, 2,… , (2𝑛 − 1)} is the representation of
to base 2𝑛, i.e.

= 𝑚1 ⋅ (2𝑛)𝓁−1 + 𝑚2 ⋅ (2𝑛)𝓁−2 +⋯ + 𝑚𝓁 ⋅ (2𝑛)0.

The conductance of 𝑆𝑚 is accordingly equal to4

𝜙(𝑆𝑚) =
𝑤(𝐸(𝑆𝑚, 𝑆𝑚))
𝓁 ⋅ (2𝑛 − 1) ⋅ 𝑚

.

We now derive an explicit presentation of 𝑤(𝐸(𝑆𝑚, 𝑆𝑚))

3 In the formula, we need for calculations always the ‘previous’ 𝑚. For
instance, for calculation of 𝑤(𝐸(𝑆(2𝑛)𝓁 , 𝑆̄(2𝑛)𝓁 )) we need 𝑚 = (2𝑛)𝓁 − 1. This is
why we can always represent 𝑚 as a 𝓁-digit number to base 2𝑛.

4 It suffices if we calculate minimal conductances for 1 ≤ 𝑚 ≤ (2𝑛)𝓁

2
since in

the case of at least one partitioning of 𝛴𝓁 into at least 2 subsets the size of
ne of them will be at most (2𝑛)𝓁 .
8

2

Proposition 3.7. Let 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected and weighted

graph as in Definition 2.1, 𝑝𝑖 ≥ 0, 𝑖 = 1,… ,𝓁 the corresponding edge
weights, 𝑁1 < 𝑁2 < 𝑁3 < ⋯ < 𝑁2𝑛 a linear order on the alphabet 𝛴 and
𝑆𝑚 ⊆ 𝑉 the collection of the first 𝑚 = 1, 2,… , (2𝑛)𝓁 vertices of the graph 𝐺
in the lexicographic order induced by <. Then

𝑤(𝐸(𝑆𝑚, 𝑆𝑚)) ∶= 𝑚 ⋅
𝓁
∑

𝑖=1
𝑝𝑖 ⋅ 𝜆𝑖

with

𝜆𝑖 ∶=
𝑚𝑖 ⋅ (2𝑛)𝓁−𝑖

𝑚
(2𝑛 − 𝑚𝑖) +

(𝑚 𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)
𝑚

(2(𝑛 − 𝑚𝑖) − 1)

here (𝑚1, 𝑚2,… , 𝑚𝓁)2𝑛, 𝑚𝑖 ∈ {0, 1, 2,… , (2𝑛 − 1)} is the representation of
𝑚 to base 2𝑛, i.e.

𝑚 = 𝑚1 ⋅ (2𝑛)𝓁−1 + 𝑚2 ⋅ (2𝑛)𝓁−2 +⋯ + 𝑚𝓁 ⋅ (2𝑛)0.

nd hence

(𝑆𝑚) =
∑𝓁

𝑖=1 𝑝𝑖 ⋅ 𝜆𝑖
(2𝑛 − 1) ⋅

∑𝓁
𝑖=1 𝑝𝑖

.

Proof. See in Appendix A.1 □

The above results and formulas can be used to determine conduc-
tances algorithmically using computer programmes. We will give some
optimization algorithms applied to the genetic code setting in a sequel
paper (Fimmel et al., 2021). However, we here deal with a special
weight distribution for the genetic code setting that sheds some light
on the Wobble-effect in the next Section 3.2.

The conductance values tend to decrease as a function of 𝑘, i.e. the
larger the subset cardinality, the smaller its conductance value. There-
fore in the following proposition 𝛷𝑚𝑖𝑛(𝑘) can be estimated downwards
as follows:

Proposition 3.8. Let 𝑘 be a partition of a graph 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) as in

Definition 2.1 where 𝑘 ∈ N, i.e. with 𝑘 classes and 0 < 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝓁 .
Moreover, let 𝑁1 < 𝑁2 < 𝑁3 < ⋯ < 𝑁2𝑛 be a linear order on the alphabet
𝛴 and 𝑆𝑚 ⊆ 𝑉 the collection of the first 𝑚 = 1, 2,… , (2𝑛)𝓁 vertices of the
graph 𝐺 in the lexicographic order induced by <. Then we have the following
lower boundary for the conductance of the partition 𝑘 :

𝛷(𝑘) ≥ 𝜙(𝑆𝑚𝑘
) with 𝑚𝑘 = (2𝑛)⌊log2𝑛(

(2𝑛)𝓁
𝑘 )⌋ ⋅

⎡

⎢

⎢

⎢

(2𝑛)𝓁

𝑘(2𝑛)⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋

⎤

⎥

⎥

⎥

Proof. See in Appendix A.2 □

The lower bounds for 𝛷(𝑘) given by the proposal 3.8 are not tight.
This is clear from the results from Blazej et al. (2019). However, the
results are generally tighter than the bounds from the Higher-Order
Cheeger Inequalities 3.1

3.2. Mirrowing the Wobble effect

In this section we are interested in modelling the Wobble-effect by
our weighted graph approach from Definition 2.1 and therefore let
𝛴 =  = {𝐴,𝐶,𝐺,𝑈} be the genetic alphabet for the rest of this section.

It is well known that the translation of each codon requires a
corresponding tRNA molecule with which it can complement via the
canonical Watson–Crick pairings 𝐴 and 𝑈 or 𝐶 and 𝐺. However, most
organisms have only a few more than 40 tRNA types, so some tRNA
types must necessarily match several codons that all encode the same
amino acid. In 1966, Francis Crick therefore proposed the Wobble
hypothesis as a possible solution to this problem. He suggested that the
5’ base on the anticodon, which binds to the 3’ base on the mRNA, is
less spatially restricted than the other two bases are. This, he believed,
affected the pairing geometry of the tRNA, allowing for non-standard
base pairing. So according to Crick, the first two bases form strong
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Fig. 9. The standard RNA codon table organized in a wheel.
Source: https://commons.wikimedia.org/wiki/File:
Codons_aminoacids_table.png.

Watson–Crick bonds and therefore bind strongly with the anticodon
on the tRNA. However, the third position also allows bonds of the
form uracil and guanine. In addition, there is the base hypoxanthine (I,
named after the associated nucleoside inosine), which does not occur
in mRNA or DNA, but can be incorporated into tRNAs at the wobble
position (Alseth et al., 2014). It allows binding to adenine, uracil and
cytosine.

According to the above it is visible in the standard genetic code (see
the codon wheel in Fig. 9) that mostly amino acids that have a degener-
acy of four are encoded by codons of the form 𝑋𝑌𝐴,𝑋𝑌 𝐶,𝑋𝑌 𝐺,𝑋𝑌 𝑈
and those of degeneracy two are encoded by codons that differ in the
third base only and are grouped NOT according to the Wobble base
pairs, i.e. 𝑋𝑌𝑈 and 𝑋𝑌𝐶 together as well as 𝑋𝑌𝐴 and 𝑋𝑌𝐺 together.
This aspect has not been considered in the conductance approach so
far. In fact, it was shown in Blazej et al. (2019) that the best model of
a codon amino-acid assignment with respect to maximal conductance
and average conductance at the same time consists of groups of size
three mostly. It is displayed in Fig. 10.

The optimality with respect to average conductance is surprising
since if one remembers that the first 𝑘 codons in the lexicographic
order provide a set with minimal 𝑘-conductance (see Theorem 3.4), it
might be expected that a set of two codons and a set of four codons (in
the lexicographic order) instead of two sets of size three have a better
average conductance. (Recall that degeneracy two and four appear
much more often in the standard genetic code than degeneracy three).
However, we prove next that indeed the average conductance is the
same even in the weighted approach.

Proposition 3.9. Let  be the standard genetic alphabet, 𝐺 =
𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected weighted graph as in Definition 2.1 and

𝑝𝑖 ≥ 0, 𝑖 = 1,… , 3 the corresponding edge weights in ascending order. Let
𝑆𝑚 be the collection of the first 𝑚 vertices of 𝐺 in the lexicographic order.
Then the average conductance of 𝑆2 and 𝑆4 is the same as the conductance
of 𝑆3, i.e.
1
2
(𝜙(𝑆2) + 𝜙(𝑆4)) = 𝜙(𝑆3)
9

Fig. 10. A model of the genetic code that has the minimal possible maximal
conductance 𝛷𝑚𝑖𝑛(21) = 0.6667 and at the same time the best average conductance
𝛷̄𝑚𝑖𝑛(21) = 0.7724868 - see Blazej et al. (2019). The 21 classes corresponding to the 20
canonical amino acids and a stop signal are distributed into 20 classes of size three
and one of size four.

Proof. According to the recursive formula for the conductance (see
Theorem 3.5) it is readily seen that we have

𝜙(𝑆2) =
2 ⋅ (3 ⋅ 𝑝1 + 3 ⋅ 𝑝2 + 2 ⋅ 𝑝3)

6 ⋅ (𝑝1 + 𝑝2 + 𝑝3)
=

(3 ⋅ 𝑝1 + 3 ⋅ 𝑝2 + 2 ⋅ 𝑝3)
3 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

𝜙(𝑆3) =
3 ⋅ (3 ⋅ 𝑝1 + 3 ⋅ 𝑝2 + 𝑝3)

9 ⋅ (𝑝1 + 𝑝2 + 𝑝3)
=

(3 ⋅ 𝑝1 + 3 ⋅ 𝑝2 + 𝑝3)
3 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

𝜙(𝑆4) =
4 ⋅ (3 ⋅ 𝑝1 + 3 ⋅ 𝑝2)
12 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

=
(3 ⋅ 𝑝1 + 3 ⋅ 𝑝2)
3 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

Thus it follows that
1
2
(𝜙(𝑆2) + 𝜙(𝑆4)) =

1
2

(

(3 ⋅ 𝑝1 + 3 ⋅ 𝑝2 + 2 ⋅ 𝑝3)
3 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

+
(3 ⋅ 𝑝1 + 3 ⋅ 𝑝2)
3 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

)

=

= 1
2

(

(3 ⋅ 𝑝1 + 3 ⋅ 𝑝2 + 2 ⋅ 𝑝3) + (3 ⋅ 𝑝1 + 3 ⋅ 𝑝2)
3 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

)

=

= 1
2

(

2 ⋅ (3 ⋅ 𝑝1 + 3 ⋅ 𝑝2 + 𝑝3)
3 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

)

=

=
(3 ⋅ 𝑝1 + 3 ⋅ 𝑝2 + 𝑝3)
3 ⋅ (𝑝1 + 𝑝2 + 𝑝3)

= 𝜙(𝑆3) □

The above result explains why the standard genetic code looses
against the code from Fig. 10 in the following sense. One could wonder
if the model from Fig. 10 could be improved by replacing two classes
of size three by one of size two and one of size four since it might
be the case that the average conductance then gets better because
although the set of size two has a worse conductance, the set of size
four might compensate this. Proposition 3.9 shows that this is not the
case. However, as we can see the model from Fig. 10 does not respect
the Wobble hypothesis (However, if we allow 𝐼 to be in the game, then
the model is quite good since it groups codons with third bases 𝑈,𝐶,𝐴).

Hence we will now consider graphs as in Definition 2.1 fixing two
weights 𝑝1 and 𝑝2 and a third constant 𝑝̃3 and defining the weight
function 𝑤 as follows:

Definition 3.10.

(1) 𝑝{𝑁,𝑁 ′}
1 = 𝑝1 for all 𝑁 ≠ 𝑁 ′ ∈ ;

(2) 𝑝{𝑁,𝑁 ′}
2 = 𝑝2 for all 𝑁 ≠ 𝑁 ′ ∈ ;

(3) 𝑝{𝐴,𝐶}
3 = 𝑝{𝐴,𝑈}

3 = 𝑝{𝐶,𝐺}
3 = 𝑝{𝐺,𝑈}

3 = 𝑝̃3;
(4) 𝑝{𝐴,𝐺}

3 = 𝑝{𝐶,𝑈}
3 = 2𝑝̃3.

The idea here is that now mutations in positions 1 and 2 have a
probability that depends on the position only. However, some of the

https://commons.wikimedia.org/wiki/File:Codons_aminoacids_table.png
https://commons.wikimedia.org/wiki/File:Codons_aminoacids_table.png
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Fig. 11. An example of a subgraph of 𝐺 from Definition 2.1 with weights 𝑝1 = 𝑝2 = 1
and 𝑝̃3 = 2 and 𝛴 = .

edges coming from the third base position that match the Wobble
hypothesis get a double weight compared to the other mutations in
position 3. An example with 𝑝1 = 𝑝2 = 1 and 𝑝̃3 = 2 is illustrated in
Fig. 11.

We now calculate the conductance of several sets of codons of sizes
at most 6 that correspond to groups of codons that encode the same
amino acid in the standard genetic code (see the Codon Wheel in
Fig. 9). As remarked above for weights not being in ascending order
also here it will turn out that now the first 𝑘 codons in the lexicographic
order do not any longer provide sets with the smallest conductance.

Proposition 3.11. 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected weighted graph as

in Definition 2.1 and the corresponding weights 𝑝1 = 𝑝2 = 1 and 𝑝̃3 = 2.
Moreover, let 𝑋, 𝑌 ∈ . Then

(1) If 𝑆 = {𝑋𝑌𝑍} for some 𝑍 ∈ , then 𝜙(𝑆) = 1
(2) If 𝑆 = {𝑋𝑌𝑈,𝑋𝑌 𝐶} or 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐺}, then 𝜙(𝑆) = 15

21
(3) If 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐶} or 𝑆 = {𝑋𝑌𝑈,𝑋𝑌 𝐺} or {𝑋𝑌𝐴,𝑋𝑌 𝑈} or

{𝑋𝑌𝐶,𝑋𝑌 𝐺}, then 𝜙(𝑆) = 18
21

(4) If 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐶,𝑋𝑌 𝑈}, then 𝜙(𝑆) = 13
21

(5) If 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐶,𝑋𝑌 𝐺,𝑋𝑌 𝑈}, then 𝜙(𝑆) = 9
21

Moreover,

(1) If 𝑆 = {𝑈𝐴𝐴,𝑈𝐴𝐺,𝑈𝐺𝐴}, then 𝜙(𝑆) = 16
21 (this set corresponds to

the Stop signal)
(2) If 𝑆 = {𝐶𝑈𝐴,𝐶𝑈𝐶,𝐶𝑈𝐺,𝐶𝑈𝑈,𝑈𝑈𝐴,𝑈𝑈𝐺}, then 𝜙(𝑆) = 10

21
(this set corresponds to Leucine)

(3) If 𝑆 = {𝑈𝐶𝑈,𝑈𝐶𝐺,𝑈𝐶𝐴,𝑈𝐶𝐶,𝐴𝐺𝑈,𝐴𝐺𝐶}, then 𝜙(𝑆) = 11
21

(this corresponds to Serine)
(4) If 𝑆 = {𝐶𝐺𝐴,𝐶𝐺𝐶,𝐶𝐺𝐺,𝐶𝐺𝑈,𝐴𝐺𝐴,𝐴𝐺𝐺}, then 𝜙(𝑆) = 10

21 (this
set corresponds to Arginine)

Proof. For the proof we give the detailed calculation of edges in
the nominator and denominators and illustrate it. The value of the
denominator is always the size of the set times (3 + 3 + (2 + 2 + 4)).

(1) If 𝑆 = {𝑋𝑌𝑍} for some 𝑍 ∈ , then 𝜙(𝑆) = 3+3+(2+2+4)
3+3+(2+2+4) = 1

(2) If 𝑆 = {𝑋𝑌𝑈,𝑋𝑌 𝐶} or 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐺}, then 𝜙(𝑆) =
2⋅3+2⋅3+(2+2)+(2+2)
2⋅3+2⋅3+2⋅(2+2+4) = 15

21
10
(3) If 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐶} or 𝑆 = {𝑋𝑌𝑈,𝑋𝑌 𝐺} or {𝑋𝑌𝐴,𝑋𝑌 𝑈} or

{𝑋𝑌𝐶,𝑋𝑌 𝐺}, then 𝜙(𝑆) = 2⋅3+2⋅3+2⋅(2+4)
2⋅3+2⋅3+2⋅(2+2+4) =

18
21

(4) If 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐶,𝑋𝑌 𝑈}, then 𝜙(𝑆) = 3⋅3+3⋅3+(2+2+4)
3⋅3+3⋅3+3⋅(2+2+4) =

13
21

(5) If 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐶,𝑋𝑌 𝐺,𝑋𝑌 𝑈}, then 𝜙(𝑆) = 4⋅3+4⋅3
4⋅3+4⋅3+4⋅(2+2+4) =

9
21

Moreover,

(a) If 𝑆 = {𝑈𝐴𝐴,𝑈𝐴𝐺,𝑈𝐺𝐴}, then 𝜙(𝑆) =
3⋅3+2⋅2+3+(2+2)+(2+2)+(2+2+4)

3⋅3+3⋅3+3⋅(2+2+4) = 16
21

(b) If 𝑆 = {𝐶𝑈𝐴,𝐶𝑈𝐶,𝐶𝑈𝐺,𝐶𝑈𝑈,𝑈𝑈𝐴,𝑈𝑈𝐺}, then 𝜙(𝑆) =
(2+2+3+3+2+2)+6⋅3+(2⋅2+2⋅2) = 10 (this corresponds to Leucine)
6⋅(3+3+8) 21
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(c) If 𝑆 = {𝑈𝐶𝑈,𝑈𝐶𝐺,𝑈𝐶𝐴,𝑈𝐶𝑈,𝐴𝐺𝑈,𝐴𝐺𝐶}, then 𝜙(𝑆) =
(6⋅3+6⋅3)+(2⋅2+2⋅2)

6⋅(3+3+8) = 11
21 (this corresponds to Serine)

(d) If 𝑆 = {𝐶𝐺𝐴,𝐶𝐺𝐶,𝐶𝐺𝐺,𝐶𝐺𝑈,𝐴𝐺𝐴,𝐴𝐺𝐺}, then 𝜙(𝑆) =
(2+2+3+3+2+2)+6⋅3+(2⋅2+2⋅2)

6(3+3+8) = 10
21 (this corresponds to Arginine) □

As an immediate corollary we have that now the minimal average
conductance of a set of size two and a set of size four is now smaller
than that of a set of size three.

Corollary 3.12. 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected weighted graph as in

Definition 2.1 and the corresponding weights 𝑝1 = 𝑝2 = 1 and 𝑝̃3 = 2. Then
the minimal average conductance of a set of size two and a set of size four
is 1

2 (
15
21 + 9

21 ) =
12
21 while the minimal conductance of a set of size three is

13
21 .

A more interesting corollary is the total average conductance of the
genetic code using this weighted approach.

Corollary 3.13. 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected weighted graph as in

Definition 2.1 and the corresponding weights 𝑝 = 𝑝 = 1 and 𝑝̃ = 2. Then
11

1 2 3
the total average conductance of the standard genetic code is
1
24

( 13
21

+ 16
21

+ 12 ⋅ 15
21

+ 8 ⋅ 9
21

+ 1 + 1) = 323
504

= 0, 6408

if we separate amino acids of degeneracy 6 into two of degeneracy 2 and 4.
Moreover, the total average conductance of the standard genetic code is

1
21

( 13
21

+ 16
21

+ 9 ⋅ 15
21

+ 5 ⋅ 9
21

+ 1 + 1 + 2 ⋅ 10
21

+ 11
21

) = 237
441

= 0.5374

if we allow degeneracy 6.

To conclude this section we now turn back to the model from Fig. 10
and calculate again the conductance of the sets of size three and four
that appear there.

Proposition 3.14. 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected weighted graph as

in Definition 2.1 and the corresponding weights 𝑝1 = 𝑝2 = 1 and 𝑝̃3 = 2.
Moreover, let 𝑋, 𝑌 ∈ . then

(1) If 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐶,𝑋𝑌 𝐺} or 𝑆 = {𝑋𝑌𝐴,𝑋𝑌 𝐶,𝑋𝑌 𝑈}, then
𝜙(𝑆) = 3⋅3+3⋅3+(2+2+4)

3⋅3+3⋅3+3⋅(2+2+4) =
13
21

(2) If 𝑆 = {𝐴𝑋𝑌 ,𝐶𝑋𝑌 ,𝑈𝑋𝑌 }, then 𝜙(𝑆) = 3+3⋅3+3⋅(2+2+4)
3⋅3+3⋅3+3⋅(2+2+4) =

18
21

(3) If 𝑆 = {𝐺𝐴𝐺,𝐺𝐶𝐺,𝐺𝐺𝐺,𝐺𝑈𝐺}, then 𝜙(𝑆) = 4⋅3+4⋅8
4⋅3+4⋅3+4⋅(2+2+4) =

11
14

Again we have the average conductance of the model from Fig. 10.

Corollary 3.15. 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected weighted graph as in

Definition 2.1 and the corresponding weights 𝑝1 = 𝑝2 = 1 and 𝑝̃3 = 2. Then
the total average conductance of the model from Fig. 10 is
1
21

(16 ⋅ 13
21

+ 11
14

+ 4 ⋅ 8
21

) = 513
882

= 0, 5816

Finally we see that the genetic code now performs better than the
model from Fig. 10.

Corollary 3.16. 𝐺 = 𝐺𝑃
𝑙 (𝑉 ,𝐸,𝑤) be an undirected weighted graph as in

Definition 2.1 and the corresponding weights 𝑝1 = 𝑝2 = 1 and 𝑝̃3 = 2. Then
the total average conductance of the standard genetic code is smaller than
the average conductance of the model from Fig. 10 since 237

441 < 513
882 .

As we can see once we incorporate the Wobble hypothesis in our
graph model, the standard genetic code performs better and it is almost
optimal as we will be shown in the sequel paper (Fimmel et al.,
2021). In fact, our results in Fimmel et al. (2021) using optimization
algorithms will show that the particular choice of weights (𝑝1 = 𝑝2 = 1
and 𝑝3 = 2) is not important for the genetic code to be almost optimal.

4. Conclusions

In the present work, the graph-theoretical approach of Blazej et al.
(2019, 2018, 2020) was adopted and further developed to investigate
the robustness of different variants of the genetic code to single point
mutations. The generalization of the graph-theoretic model took place
in several different directions.

First, the model now allows (genetic) alphabets of arbitrary (even)
cardinality and, correspondingly, words of arbitrary length to be con-
sidered over it. Thus, the graph theoretic approach now enables to
consider arbitrary extensions of the genetic code, be it by extending
the genetic alphabet or the tuple length of the codons.

Second, weights have now been assigned to the edges of the graph
under consideration, allowing the probabilities or severities of individ-
ual point mutations to be modelled. In particular, this change in the
model now allows the inclusion of the wobble effect in the translation
of codons into amino acids.

This second change proved particularly fruitful in the analysis of
the structure of the standard genetic code. This analysis showed that
the standard genetic code, which according to the results of Blazej
et al. (2018) (without the weights of single point-mutations) is not
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optimal in terms of robustness to point-mutations, performs better
than the optimal variant of it found in Blazej et al. (2018) when the
wobble effects are taken into account. Biologists may be interested
in Table 1 in which, for all known dialects of the genetic code with
a unique assignment of amino acids, their conductances without and
with consideration of the wobble effect are brought together.

A large part of the work is devoted to finding the lower bounds for
the conductance of a partition for a given number of amino acids to be
encoded. This part of the work is important for assessing the optimality
of the found partitions of the genetic code into synonymous codons and
may be useful in further investigations. Among other things, it was
shown that the lower bounds obtained with Higher Order Cheeger’s
Inequalities (see Lee et al., 2014) are not tight, and another method,
which is, however, tailored to the graph under consideration, was
demonstrated for this purpose.

In summary, the authors have further developed and extended the
graph-theoretical approach initiated in Blazej et al. (2019) in several
ways in order to be applicable to a wider (biological) setting that sheds
light on the robustness of the genetic code. The authors hope that their
work will also open up new possibilities for research into the structure
and origin of the genetic code.
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Appendix

A.1. Proof of Proposition 3.7

roof. Let 𝑤̃(𝐸(𝑆𝑚, 𝑆𝑚)) =
∑𝓁

𝑖=1 𝑝𝑖 ⋅ 𝜆𝑖 with 𝜆𝑖 and 𝑝𝑖 as stated in the
roposition, i.e.

𝑖 ∶=
𝑚𝑖 ⋅ (2𝑛)𝓁−𝑖

𝑚
(2𝑛 − 𝑚𝑖) +

(𝑚 𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)
𝑚

(2(𝑛 − 𝑚𝑖) − 1)

here (𝑚1, 𝑚2,… , 𝑚𝓁)2𝑛, 𝑚𝑖 ∈ {0, 1, 2,… , (2𝑛 − 1)} is the representation
f 𝑚 to base 2𝑛, i.e.

= 𝑚1 ⋅ (2𝑛)𝓁−1 + 𝑚2 ⋅ (2𝑛)𝓁−2 +⋯ + 𝑚𝓁 ⋅ (2𝑛)0.

e will show by induction that the sequence

⋅ 𝑤̃(𝐸(𝑆𝑚, 𝑆𝑚)) 1 ≤ 𝑚 ≤ (2𝑛)𝑙

satisfies the recursion from Theorem 3.5, i.e. we will show that

𝑚 ⋅ 𝑤̃(𝐸(𝑆𝑚, 𝑆𝑚)) +
𝓁
∑

𝑖=1
𝑝𝑖(2(𝑛−𝑚𝑖) − 1) = (𝑚+ 1) ⋅ 𝑤̃(𝐸(𝑆𝑚+1, 𝑆𝑚+1)) (A.1)

and

𝑤̃(𝐸(𝑆1, 𝑆1)) = (2𝑛 − 1)
𝓁
∑

𝑖=1
𝑝𝑖.

It then immediately follows that 𝑤(𝐸(𝑆𝑚, 𝑆𝑚)) = 𝑚 ⋅
∑𝓁

𝑖=1 𝑝𝑖 ⋅ 𝜆𝑖 as
claimed.

Assume that 𝑚 = 1, then 𝑚1 = ⋯ = 𝑚𝑙−1 = 0 and 𝑚𝑙 = 1 in the
(2𝑛)-adic presentation of 𝑚. Moreover, we easily see that 𝜆1 = ⋯ =
𝜆𝑙−1 = 𝜆𝑙 = (2𝑛 − 1). Hence

𝑤̃(𝐸(𝑆1, 𝑆1)) = (2𝑛 − 1)
𝓁
∑

𝑖=1
𝑝𝑖

as claimed.
Now assume that 𝑚 > 1. We need to show Eq. (A.1)
12
This will be done in two steps by calculating the left and the right
sides of the above equation separately. We start with the left side and
calculate the term

𝑚 ⋅ 𝑤̃(𝐸(𝑆𝑚, 𝑆𝑚)) +
𝓁
∑

𝑖=1
𝑝𝑖(2(𝑛 − 𝑚𝑖) − 1)

𝑚 ⋅ 𝑤̃(𝐸(𝑆𝑚, 𝑆𝑚)) +
𝓁
∑

𝑖=1
𝑝𝑖(2(𝑛 − 𝑚𝑖) − 1)

= 𝑚 ⋅
𝓁
∑

𝑖=1
𝑝𝑖 ⋅ 𝜆𝑖 +

𝓁
∑

𝑖=1
𝑝𝑖(2(𝑛 − 𝑚𝑖) − 1) =

𝓁
∑

𝑖=1
𝑝𝑖 ⋅ (𝑚 ⋅ 𝜆𝑖 + 2(𝑛 − 𝑚𝑖) − 1)

=
𝓁
∑

𝑖=1
𝑝𝑖 ⋅ (𝑚 ⋅ (

𝑚𝑖 ⋅ (2𝑛)𝓁−𝑖

𝑚
(2𝑛 − 𝑚𝑖) +

𝑚 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)
𝑚

× (2(𝑛 − 𝑚𝑖) − 1)) + 2(𝑛 − 𝑚𝑖) − 1)

=
𝓁
∑

𝑖=1
𝑝𝑖 ⋅ (𝑚𝑖 ⋅ (2𝑛)𝓁−𝑖(2𝑛 − 𝑚𝑖) + 𝑚 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)(2(𝑛 − 𝑚𝑖) − 1))

+ (2(𝑛 − 𝑚𝑖) − 1)

=
𝓁
∑

𝑖=1
𝑝𝑖 ⋅ (𝑚𝑖 ⋅ (2𝑛)𝓁−𝑖(2𝑛 − 𝑚𝑖) + (𝑚 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) + 1)(2(𝑛 − 𝑚𝑖) − 1)

(A.2)

ext we calculate the term (𝑚+1)⋅𝑤̃(𝐸(𝑆𝑚+1), 𝑆𝑚+1) and let ((𝑚+1)1, (𝑚+
)2,… , (𝑚 + 1)𝓁)2𝑛, (𝑚 + 1)𝑖 ∈ {0, 1, 2,… , (2𝑛 − 1)} be the representation
f (𝑚 + 1) to base 2𝑛, i.e.

+ 1 = (𝑚 + 1)1 ⋅ (2𝑛)𝓁−1 + (𝑚 + 1)2 ⋅ (2𝑛)𝓁−2 +⋯ + (𝑚 + 1)𝓁 ⋅ (2𝑛)0.

t the follows that
(𝑚 + 1) ⋅ 𝑤̃(𝐸(𝑆𝑚+1), 𝑆𝑚+1)

=
𝓁
∑

𝑖=1
𝑝𝑖 ⋅ (𝑚 + 1) ⋅ (

(𝑚 + 1)𝑖 ⋅ (2𝑛)𝓁−𝑖

(𝑚 + 1)
(2𝑛 − (𝑚 + 1)𝑖)

+
((𝑚 + 1) 𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)

(𝑚 + 1)
(2(𝑛 − (𝑚 + 1)𝑖) − 1))

=
𝓁
∑

𝑖=1
𝑝𝑖 ⋅ ((𝑚 + 1)𝑖 ⋅ (2𝑛)𝓁−𝑖(2𝑛 − (𝑚 + 1)𝑖)

+ ((𝑚 + 1) 𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)(2(𝑛 − (𝑚 + 1)𝑖) − 1))

(A.3)

o prove Eq. (A.1) we will show that the differences of the coefficients
n Eq. (A.2) and Eq. (A.3) of the 𝑝𝑖s is always zero, i.e. for each 𝑖 we
how that

(𝑚𝑖 ⋅ (2𝑛)𝓁−𝑖(2𝑛 − 𝑚𝑖) + (𝑚 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) + 1)(2(𝑛 − 𝑚𝑖) − 1)) =

((𝑚 + 1)𝑖 ⋅ (2𝑛)𝓁−𝑖(2𝑛 − (𝑚 + 1)𝑖) + (𝑚 + 1) (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)(2(𝑛 − (𝑚 + 1)𝑖) − 1))

(A.4)

We have to distinguish three cases that might occur if one passes
rom 𝑚 to 𝑚 + 1 in the (2𝑛)-adic presentation: The case (i) where
𝑖−(𝑚+1)𝑖 = 0, (ii) where 𝑚𝑖−(𝑚+1)𝑖 = −1 and (iii) 𝑚𝑖−(𝑚+1)𝑖 = 2𝑛−1.
e start with case (i).
ase (i) Assume that 𝑚𝑖 − (𝑚 + 1)𝑖 = 0. It then follows that

(𝑚 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) + 1) = (𝑚 + 1) (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)

and hence we see immediately that in Eq. (A.4) equality holds.
ase (ii) Assume that 𝑚𝑖 − (𝑚 + 1)𝑖 = −1. It then follows that

(𝑚 + 1) (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) = 0

and

(𝑚 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) + 1) = (2𝑛)𝓁−𝑖

which shows that the term in Eq. (A.2) can be rewritten as:

(2𝑛)𝑙−𝑖 ⋅ ((2(𝑛 − 𝑚 ) − 1) + 𝑚 ⋅ (2𝑛 − 𝑚 ))
𝑖 𝑖 𝑖
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Fig. 12. The graph shows the conductance for 𝜙(𝑆𝑚) for all 𝑚 ∈ 1,… , 64 where 𝑛 = 2 and 𝓁 = 3. The local minimums are at 𝑚 ∈ {1, 2, 3, 4, 8, 12, 16, 32, 48, 64}.
and the term in Eq. (A.3) reduces to:

(2𝑛)𝑙−𝑖 ⋅ (𝑚𝑖 + 1) ⋅ (2𝑛 − 𝑚𝑖 − 1)

It is now an easy exercise to see that this implies that the equality
in Eq. (A.2) holds.

Case (iii) Assume that 𝑚𝑖 − (𝑚 + 1)𝑖 = 2𝑛 − 1. Consequently we have
𝑚𝑖 = 2𝑛 − 1 and (𝑚 + 1)𝑖 = 0. As in Case (ii) we conclude

(𝑚 + 1) (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) = 0

and

(𝑚 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) + 1) = (2𝑛)𝓁−𝑖

which shows that the terms in Eq. (A.2) and Eq. (A.3) are equal
to zero. This can be seen from the reduced forms from above:

(2𝑛)𝑙−𝑖 ⋅ ((2(𝑛 − 𝑚𝑖) − 1) + 𝑚𝑖 ⋅ (2𝑛 − 𝑚𝑖)) = 0

(2𝑛)𝑙−𝑖 ⋅ (𝑚 + 1)𝑖 ⋅ (2𝑛 − 𝑚𝑖 − 1) = 0.

Again it follows that the equality in Eq. (A.2) holds.

This finishes the proof. □

A.2. Proof of Proposition 3.8

Proof. For any 𝑘 ∈ N we define

𝑚𝑘 = (2𝑛)⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋ ⋅

⎡

⎢

⎢

⎢

(2𝑛)𝓁

𝑘(2𝑛)⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋

⎤

⎥

⎥

⎥

.

First note that the quotient (2𝑛)𝓁
𝑘 is the average size of a set in any parti-

tion 𝑘 of the graph 𝐺 into 𝑘 classes. Thus the integer 𝑚𝑘 represents up
to a coefficient the highest (2𝑛)-power that is below (2𝑛)𝓁

𝑘 . In the special
case that 𝑘 is a (2𝑛)-power itself, say 𝑘 = (2𝑛)𝑠, then ⌊log2𝑛(

(2𝑛)𝓁
𝑘 )⌋ = 𝑙−𝑠

and 𝑚𝑘 = (2𝑛)𝓁
𝑘 . However, in general 𝑚𝑘 ≥ (2𝑛)𝓁

𝑘 .
Recall from Proposition 3.7 that

𝑤(𝐸(𝑆𝑚𝑘
, 𝑆𝑚𝑘

)) = 𝑚𝑘 ⋅ 𝑤̃(𝐸(𝑆𝑚𝑘
, 𝑆𝑚𝑘

)) ∶= 𝑚𝑘 ⋅
𝓁
∑

𝑖=1
𝑝𝑖 ⋅ 𝜆𝑘,𝑖

with

𝜆𝑘,𝑖 ∶=
𝑚𝑘,𝑖 ⋅ (2𝑛)𝓁−𝑖

𝑚𝑘
(2𝑛 − 𝑚𝑘,𝑖) +

𝑚𝑘 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖)
𝑚𝑘

(2(𝑛 − 𝑚𝑘,𝑖) − 1)

where (𝑚𝑘,1, 𝑚𝑘,2,… , 𝑚𝑘,𝓁)2𝑛, 𝑚𝑘,𝑖 ∈ {0, 1, 2,… , (2𝑛 − 1)} is the represen-
tation of 𝑚𝑘 to base 2𝑛, i.e.

𝑚 = 𝑚 ⋅ (2𝑛)𝓁−1 + 𝑚 ⋅ (2𝑛)𝓁−2 +⋯ + 𝑚 ⋅ (2𝑛)0.
13

𝑘 𝑘,1 𝑘,2 𝑘,𝓁
It is easy to see that the value of
⌈

(2𝑛)𝓁

𝑘(2𝑛)⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋

⌉

is a natural num-

ber less than or equal to (2𝑛). Without loss of generality we may assume

that
⌈

(2𝑛)𝓁

𝑘(2𝑛)⌊log2𝑛 (
(2𝑛)𝓁
𝑘 )⌋

⌉

< (2𝑛) - the case of equality uses a similar argu-

ments. Let 𝑗𝑘 = 𝓁−⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋. In the case where

⌈

(2𝑛)𝓁

𝑘(2𝑛)⌊log2𝑛 (
(2𝑛)𝓁
𝑘 )⌋

⌉

=

(2𝑛) we have to increase 𝑗𝑘 by one 𝑗𝑘 = 1 + 𝓁 − ⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋. Then it

immediately follows that in the above presentation of 𝑚𝑘 we have

𝑚𝑘,1 = ⋯ = 𝑚𝑘,𝑗𝑘−1 = 𝑚𝑘,𝑗𝑘+1 = ⋯ = 𝑚𝑘,𝑙 = 0.

Note that 𝑚𝑘,𝑠 is the coefficient of (2𝑛)𝑙−𝑠 which is the reason why we
had to define 𝑗𝑘 as 𝓁 − ⌊log2𝑛(

(2𝑛)𝓁
𝑘 )⌋. Moreover, we also easily see that

𝑚𝑘 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) = 𝑚𝑘

for 𝑖 ∈ {1,… , 𝑗𝑘 − 1} and similarly

𝑚𝑘 (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) = 0

for 𝑖 ∈ {𝑗𝑘 + 1,… ,𝓁}. Consequently, the coefficients 𝜆𝑘,𝑠 satisfy

𝜆𝑘,1 = ⋯ = 𝜆𝑘,𝑗𝑘−1 = 2𝑛 − 1

and

𝜆𝑘,𝑗𝑘+1 = ⋯ = 𝜆𝑘,𝓁 = 0.

Thus

𝑤̃(𝐸(𝑆𝑚𝑘
, 𝑆𝑚𝑘

)) =
𝑗𝑘−1
∑

𝑖=1
𝑝𝑖(2𝑛 − 1) + 𝜆𝑘,𝑗𝑘𝑝𝑗𝑘 = (2𝑛 − 1) ⋅

𝑗𝑘−1
∑

𝑖=1
𝑝𝑖 + 𝜆𝑘,𝑗𝑘𝑝𝑗𝑘 .

It is now immediate that the values of 𝑤̃(𝐸(𝑆𝑚𝑘
, 𝑆𝑚𝑘

)) for 𝑘 = 1,… , (2𝑛)𝑙
form a decreasing sequence. Note that for increasing 𝑘, either the value
of 𝑗𝑘 decreases or the value of 𝜆𝑘,𝑗𝑘 decreases (in the cases that the value
of 𝑗𝑘 remains the same).

We finally claim that (I) the 𝑤̃(𝐸(𝑆𝑚𝑘
, 𝑆𝑚𝑘

)) for 𝑘 = 1,… , (2𝑛)𝑙 also
form local minima of the function 𝑤̃(⋅), i.e. that for any 𝑘 = 1,… , (2𝑛)𝑙
we have 𝑤̃(𝐸(𝑆𝑚𝑘

, 𝑆𝑚𝑘
)) < 𝑤̃(𝐸(𝑆𝑚̄, 𝑆𝑚̄)) for any 0 < 𝑚̄ < 𝑚𝑘 and (II) for

any 𝑘 = 1,… , (2𝑛)𝑙 there is at least one 𝑆 ∈ 𝑘 so that |𝑆| ≤ 𝑚.

claim (I) For 𝑘 ∈ N choose any 0 < 𝑚̄ < 𝑚𝑘 and let

𝑚̄ = 𝑚̄1 ⋅ (2𝑛)𝓁−1 + 𝑚̄2 ⋅ (2𝑛)𝓁−2 +⋯ + 𝑚̄𝑗𝑘 ⋅ (2𝑛)
𝓁−𝑗𝑘 +⋯ + 𝑚̄𝓁 ⋅ (2𝑛)0

be the 2𝑛-adic presentation of 𝑚̄. Since 𝑚̄ < 𝑚𝑘 it immediately
follows as above that 𝑚̄1 = ⋯ = 𝑚̄𝑗𝑘−1 = 0 and that the term
𝑚̄ (𝑚𝑜𝑑 (2𝑛)𝓁−𝑖) = 𝑚̄ for 𝑖 ∈ {1,… , 𝑗𝑘 − 1}. Consequently, the
coefficients

𝜆̄ = ⋯ = 𝜆̄ = 2𝑛 − 1.
1 𝑗𝑘−1
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s

R

A

A

A

B

B

B

as above. It follows that

𝑤̃(𝐸(𝑆𝑚̄, 𝑆𝑚̄)) = (2𝑛 − 1) ⋅
𝑗𝑘−1
∑

𝑖=1
𝑝𝑖 +

𝑙
∑

𝑖=𝑗𝑘

𝜆̄𝑖𝑝𝑖.

Since the coefficient 𝜆̄𝑠 cannot be negative (see Theorem 3.5),
we can surmise that these points must be local minimums,
i.e. 𝑤̃(𝐸(𝑆𝑚𝑘

, 𝑆𝑚𝑘
)) < 𝑤̃(𝐸(𝑆𝑚̄, 𝑆𝑚̄)). Fig. 12 illustrates the graph

of 𝜙(𝑆) for 𝓁 = 3 and 𝑛 = 2.

claim (II) To complete the proof we must show that there is at least
one 𝑆 ∈ 𝑘 so that |𝑆| ≤ 𝑚𝑘. To confirm this claim, we use the
expression

(2𝑛)𝓁

𝑘
= (2𝑛)⌊log2𝑛(

(2𝑛)𝓁
𝑘 )⌋ ⋅

(2𝑛)𝓁

𝑘(2𝑛)⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋

≤ (2𝑛)⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋ ⋅

⎡

⎢

⎢

⎢

(2𝑛)𝓁

𝑘(2𝑛)⌊log2𝑛(
(2𝑛)𝓁
𝑘 )⌋

⎤

⎥

⎥

⎥

= 𝑚𝑘.

Thus, |𝑆| > 𝑚𝑘 for all 𝑆 ∈ 𝑘 would imply that the union of all
𝑆 ∈ 𝑘 has size greater than 𝑘⋅𝑚𝑘 ≥ (2𝑛)𝑙 - a contradiction. Hence
there must be one 𝑆 ∈ 𝑘 so that |𝑆| ≤ 𝑚𝑘.

To complete the proof we note that for 𝑆 from claim (II) we have

𝛷(𝑘) ≥ 𝛷(𝑆) ≥ 𝛷(𝑆𝑚𝑘
) =

𝑤(𝐸(𝑆𝑚𝑘
, 𝑆𝑚𝑘

))
𝓁 ⋅ (2𝑛 − 1) ⋅ 𝑚𝑘

=
𝑤̃(𝐸(𝑆𝑚𝑘

, 𝑆𝑚𝑘
))

𝓁 ⋅ (2𝑛 − 1)

ince 𝑤̃(𝐸(𝑆𝑚𝑘
, 𝑆𝑚𝑘

)) ≤ 𝑤̃(𝐸(𝑆, 𝑆)) by claim (I). □
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