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Protein synthesis is a crucial process in any cell. Translation, in which mRNA is translated into proteins,
can lead to several errors, notably frame shifts where the ribosome accidentally skips or re-reads one or
more nucleotides. So-called circular codes are capable of discovering frame shifts and their codons can be
found disproportionately often in coding sequences. Here, we analyzed motifs of circular codes, i.e.
sequences only containing codons of circular codes, in biological and artificial sequences. The lengths
of these motifs were compared to a statistical model in order to elucidate if coding sequences contain sig-
nificantly longer motifs than non-coding sequences. Our findings show that coding sequences indeed
show on average greater motif lengths than expected by chance. On the other hand, the motifs are too
short for a possible frame shift recognition to take place within an entire coding sequence. This suggests
that as much as circular codes might have been used in ancient life forms in order to prevent frame shift
errors, it remains to be seen whether they are still functional in current organisms.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The universal genetic code defines the way genetic information
stored in DNA is translated into proteins. It comprises a total of 64
codons; the three positions in a codon can each be occupied by one
of the four bases G, A, T and C. Overall, many factors contribute to
the fidelity of this translation process. The error rate in replicating
genomic DNA is as low as 10�9 to 10�11 errors per base pair (in
E. coli; Fijalkowska et al., 2012). Errors in transcription have been
estimated to occur at a rate of 10�4 to 10�5 per nucleotide in bac-
teria Meyerovich et al., 2010 and 10�5 to 10�6 per nucleotide in
eukaryotic cells (Drummond and Wilke, 2009). More error prone
is the actual translation of codons into a growing amino acid chain
in the ribosome. Here, error rates of 10�3 to 10�4 per codon have
been reported in bacteria (Meyerovich et al., 2010).

During translation, the ribosome must ensure that the mRNA
strand is pushed forward for exactly three nucleotides at a time
in order to keep the reading frame as determined by the start
codon. If something goes wrong here, there is a frame shift result-
ing in very different amino acids. How can the ribosome process
the RNA strand with high accuracy? One possible explanation is
selection of specific tRNA repertoires that may operate to reduce
frame-shifting errors (Warnecke et al., 2010). Other mechanisms
have been described, e.g. avoiding frame shifts during initial stages
of translation in bacteria by EF-P and m1G37 methylation of tRNA
(Gamper et al., 2015). Generally, translation errors like frame shifts
are likely to develop from non-canonical interactions between the
mRNA codon and the tRNA anticodon, whose cognate interactions
are required for accurate tRNA selection and movement of tRNAs
through the ribosome during elongation (Dunkle and Dunham,
2015). One of the oldest theories was proposed by Crick et al.
(1957). It claims that only 20 out of 64 codons are used in coding
RNA sequences and that these 20 codons are unique in each read-
ing frame. Each of these 20 codons would code for one of the 20
amino acids. If a frame shift occurs, the ribosome would immedi-
ately encounter unknown codons and terminate the translation.
Such a code is called a comma-free code. Although this idea seems
to be reasonable, there is no experimental support for those
comma-free codes.

More recently another code was discovered which is supported
by experimental data. Arquès and Michel analyzed 13,686 coding
regions in prokaryotes and 26,757 in eukaryotes (Arquès and
Michel, 1996, repeated with more sequences in Michel (2015))
and counted the frequencies of all 64 codons in these regions in
frame 0, 1 and 2. Frame 0 refers to the reading frame. It turned
out that the frequencies were different in each frame and that each
codon had a clear maximal frequency in exactly one frame. The
codons

X0 ¼ AAC;AAT;ACC;ATC;ATT;CAG;CTC;CTG;GAA;GAC;f
GAG;GAT;GCC;GGC;GGT;GTA;GTC;GTT;TAC; TTCg
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are preferably used in frame 0 and called X0 code (0 like frame 0).
Moreover, this code also contains its self-complementary and
reversed codon for each codon, i.e. as AAC is in X0 so there is GTT.
It was shown by El Soufi and Michel that the coding regions of
eukaryotes indeed contain more codons from X0 than any other
regions in the genome (El Soufi and Michel, 2016). A recent paper
that analyzed motifs of the X0 code in S. cerevisiae and other species
suggests that this X0 code may be an evolutionary relic of a primi-
tive code originally used for gene translation (Gopal Dila et al.,
2019).

Surprisingly, X0 has the properties of a so-called circular code
(Fimmel et al., 2015). Like comma-free codes, circular codes are
capable of detecting a frame shift error. A set of (different) codons
X is called a (trinucleotide) circular code if every sequence of bases
written on a circle, i.e. the next letter after the last letter being the
first letter, has at most one decomposition into codons from X.

The major difference to comma-free codes is that a frame shift
cannot be detected immediately – depending on the circular code a
frame shift is recognized not later than after reading one to four
codons in the wrong frame (see also Michel, 2012). Fig. 1 gives
an example.

Although codons of the circular code X0 are over-represented in
coding sequences and X0 is capable of detecting a frame shift, the
concept of circular codes also imposes strong restrictions. First of
all, there exist – in theory – many circular codes and any circular
code can consist of maximal 20 codons (Fimmel and
Strüngmann, 2018). Like comma-free codes, they must not contain
the codons AAA, UUU, CCC and GGG and they cannot contain tuple-
wise shifted codons – otherwise a frame shift could never be
detected. For example, if AAC is part of the code, then ACA and
CAA must be omitted. Furthermore, the fact that any circular code
can contain maximally 20 codons is problematic since coding
sequences typically contain all 64 codons.

In order to detect any frame shift a sequence should consist
only of codons of a circular code. A consecutive sequence of codons
from a circular code is called a motif (see Table 3). Previous work
has primarily analyzed the maximal motif lengths which can be
found in coding regions (e.g. El Soufi and Michel, 2016; Gopal
Dila et al., 2019). Average or even minimal motifs were not in
focus. Evidently, it is likely (and we will show) that a coding
sequence is interrupted many times by codons not being part of
a circular code. Thus, a frame shift cannot always be detected in
coding sequences – simply because the sequence does not fully
consist of codons of a circular code. However, the latter might have
been the case in very old sequences of ancient organisms – maybe
in species as old as the genetic code itself. Mutations might have
perforated ancient sequences with codons not being part of circu-
lar codes. If the circular code’s ability to detect frame shifts was (or
still is) applied in the translation process of sequences into pro-
Fig. 1. Two examples for frame shift detection with code X0. The top sequence of
each example consists of codons from X0 in frame 0, the bottom sequence is the
same sequence in frame 1. a) The frame shift is recognized immediately as the
codon ACA in frame 1 is not part of X0. b) The frame shift is detected after reading
the fourth codon in the wrong frame. GTA, ATT and ACC are still part of X0, so the
frame shift is not detected immediately. The next codon, however, does not belong
to X0 as there is no codon starting with TG – the frame shift is recognized. x
represents any base.
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teins, one would expect that the lengths of motifs in nucleotide
sequences of present-day organisms are longer (on average) than
would be expected at random. This paper searches for those traces
of motif lengths in coding sequences of present-day organisms.

The software used in this paper was written in R and the pack-
age ccmotif is available for download at https://github.com/infor
matik-mannheim/ccmotif.
2. Methods

Our analysis consists of the following steps: the coding
sequences for all model organisms (as defined in Section 2.1) are
analyzed. We take a set (C) of selected circular codes (see 2.2)
and calculate the motif length for every model organism and every
code. This is done for every frame. The same is performed with ran-
dom codes (R) and non-coding sequences. The motif lengths are
then compared to a statistical model.

2.1. Sequence compilations

We chose relevant eu- and prokaryotic as well as archaeal
model organisms to cover a broad range of biological diversity.
The coding sequences of the chosen organisms were downloaded
from the resources given below. Details can be found in the online
supplementary material. Those sequences denote in their FASTA
files Uracil (U) as Thymine (T). Our analysis always uses T, no mat-
ter if we process DNA or RNA.

� Human (H. sapiens)
mRNA sequences for Homo sapienswere taken from the Consen-
sus CDS (CCDS) project1.

� Nematode (C. elegans)
mRNA sequences for Caenorhabditis elegans were downloaded
from https://www.ebi.ac.uk/ena.

� Yeast (S. cerevisiae)
mRNA sequences for Saccharomyces cerevisiaewere downloaded
from https://www.yeastgenome.org.

� Plant (A. thaliana)
mRNA sequences for Arabidopsis thaliana were downloaded
from http://plants.ensembl.org/Arabidopsis_thaliana/Info/
Index. Version TAIR10 is used.

� Green alga (C. reinhardtii)
mRNA sequences for Chlamydomonas reinhardtii were down-
loaded from https://www.ebi.ac.uk/ena.

� Bacteria (E. coli)
mRNA sequences for Escheria coliwere downloaded from http://
bacteria.ensembl.org/Escherichia_coli.

� Archaea (P. occultum)
mRNA sequences for Pyrodictium occultum were downloaded
from https://www.ebi.ac.uk/ena/browser/view/Taxon:2309.

� Archaea (T. tenax)
mRNA sequences for Thermoproteus tenax were downloaded
from https://www.ebi.ac.uk/ena/browser/view/Taxon:768679

A summary of the coding sequences is given in Table 1. As the
analysis is computationally intensive, N ¼ 5000 coding sequences
were randomly drawn without repetitions from the complete list
of CDS if an organism had more than 5000 CDS. If not the whole
CDS set was taken.

Additionally, we compare motif lengths in coding sequences
with a) non-coding regions and b) random sequences in order to
get a better understanding of the motif lengths distribution. For
simplicity, 100,000 bases from an arbitrary region on human
1 ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/



Table 1
Overview of coding sequences. The column CDS (coding sequences) counts the
number of CDS and Average codons per CDS shows the average number of codons per
CDS.

Species CDS Average codons per CDS

H. sapiens 32554 569.3
C. elegans 33111 472.4
S. cerevisiae 5917 501.4
A. thaliana 48321 432.1

C. reinhardtii 36626 601.8
E. coli 5494 288.9

P. occultum 1612 286.7
T. tenax 2049 271.3
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chromosome 1 were extracted. H. sapiens is just an example, in the
supplementary material we also created sequences for other
organisms. Please note that properties of the DNA – like GC content
– in different species is not crucial as the X0 code is the best aver-
age code for all organisms. Our analysis is about code usage and
not codon usage (see Eq. (1)). Such a sequence might contain genes
but this is not intended and it does not matter if so. An artificial
representative RNA sequence, however, is difficult to obtain. It is
known that the likelihood for the next nucleotide in a sequence
depends on the current nucleotide. Table 2 shows those transition
probabilities which were estimated in human chromosome 1
(Fimmel et al., April 2019). Based on these numbers we have cre-
ated an artificial DNA sequence of 100,000 nucleotides in a
Markovian-like way.

2.2. Codes

2.2.1. Circular codes
As mentioned before, the circular code X0 plays an important

role as it was identified to be the most common code in all species.
X0 is a maximal circular code which means it contains 20 codons.
On the other hand, those 20 codons of X0 encode only 13 different
amino acids. Any circular code can code at most for 18 amino acids
(Michel, 2014). There are 12,964,440 maximal circular codes and
only 10 of them have codons for 18 different amino acids
(Arquès and Michel, 1996). Among all maximal circular codes there
are 216 codes which are also self-complementary (Michel et al.,
2008). This list is denoted as M and the order of the list is alpha-
betical according to the codons; X0 belongs to this set and is in
position 23 – it gets the label C23. As X0 is the best average code
in coding sequences, we have extended our analysis to all struc-
turally similar codes. Within this paper, we have tested the coding
sequences with the following codes:

� The set C0 which is a subset ofM such that a code does not have
stop codons. Codes with a stop codon would not have any bio-
logical meaning. There are 70 of those codes (jC0j ¼ 70).

� The tuple-wise shifted version of C0 : C1 consists of codons with
one shift and C2 with two shifts (b1; b2; b3 ! b2; b3; b1 and
b1; b2; b3 ! b3; b1; b2). It is known that these shifted codes are
very frequent in frames 1 and 2 (Michel, 2015).
Table 2
Transition probabilities as measured in human chromosome 1. x is a base and y the
next base in sequence. For instance, the chance that a G follows a C is rather low
(4.9%).

y

P x ! yð Þ A T C G

x A 0.327 0.255 0.173 0.245
T 0.216 0.328 0.206 0.250
C 0.349 0.342 0.259 0.049
G 0.288 0.242 0.211 0.260
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All codes together are denoted as C ¼ C0 [ C1 [ C2. In total there are
210 codes. As we have cyclic-shifted codons, there are 3 � 20 ¼ 60
(different) codons out of 64 used in C – only AAA, TTT, CCC and
GGG are missing.

2.2.2. Random codes
We would like to compare these circular codes with random

codes. A random code in this context is a set of 20 different codons
randomly drawn from the set of all 64 codons. In particular, a ran-
dom code might contain AAA, UUU, CCC, GGG and cyclic variants of
a codon. Similar to the circular codes a set R of 210 random codes
is generated.

2.2.3. Code usage
The code usage u is defined as the relative frequency of codons

that belong to a code X in relation to all 64 codons.

2.3. Motif lengths

The length of a motif is defined by the maximal number of con-
secutive codons from the same code (see Table 3). Note that a motif
in Gopal Dila et al. (2019) was defined differently: here motifs
which consist of less than four codons or contain less than four dif-
ferent bases were omitted. This definition cannot be used in our
approach as we would get many regions on a CDS which are blank.
As we want to quantify the frame shift recognition capabilities by
means of circular codes in CDS, every motif – no matter how long
or what codons it consists of – has to be considered.

Let m X;sð Þ
ij be a motif length for motifs of a code X (X 2 C) in spe-

cies s where i indicates the coding sequence (1iN;N ¼ 5000) and j
the motif within the coding sequence (1jni;ni is the number of
motifs in the i-th CDS). For simplicity we write mij if the code
and organism is known. Note that ni is in general not a constant.
The set of all motif lengths for a code X and an organism s is

m X;sð Þ ¼ m X;sð Þ
ij j1iN;1jni

n o

Again, we simply write m if the code and organism is known. mk

refers to an individual motif length (1kjmj) and �m is the arithmetical
mean of all lengths in m.

Next we show that the geometric distribution (with random
variable G) can be used as a motif length distribution. Let us recall
the geometric distribution: it has the distribution

P G ¼ lð Þ ¼ p 1� pð Þl and shows how many times (l ¼ 1;2; . . .) it
takes until an event happens when the probability for that event
is p. There is a critical assumption: the codons are uniformly dis-
tributed over the sequence according to their code usage. If the
sequence contains any kind of pattern, e.g. repetitions, this
assumption is questionable. On the other hand, what kind of pat-
tern could we assume? We do not expect repetitions in coding
sequences – other than in non-coding DNA. Let C represent the
event where a codon of the code X is chosen and N ¼ �C where a
codon not in X is chosen. The likelihoods are P Cð Þ ¼ u (the code
usage) and P �C

� � ¼ 1� u ¼:. If we assume a perfect sequence with
uniform codon distribution, we get u ¼ 20=64 and ¼ 44=64 (as
the code X or any other maximal self-complementary circular code
consists of 20 codons). The codon usage in biological sequences
usually differs and so there will be different values for u and v.
Table 3
Example for motif lengths. C represents a codon of X and N a codon not part of X. The
list of motifs is m ¼ 3;1;2ð Þ.

codon sequence NN CCC N C N CC N

motif lengths 2 3 1 1 1 2 1
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Let us assume we encounter exactly one codon from X. The
chance that the motif will end after one codon is v, since this is
the likelihood that a non X code codon follows. Accordingly, a motif
has the length of two with a chance of u� and so on. The length of a
motif is the sequence where codons of X are read (events C) with a
chance of u until the event �C with a chance of v occurs. Thus, the
probabilities need to be flipped in the geometric distribution, and
with M as the random variable for motif lengths we get:

P M ¼ lð Þ ¼ � 1�ð Þl�1

where l ¼ 1;2; . . . indicates the length of a motif.
The expectation value for a geometric distribution is E Gð Þ ¼ 1=u

and the variance Var Gð Þ ¼ 1� uð Þ=u2. The expected motif length
for a given code usage u is then

E Mð Þ ¼ 1 ¼ 1
1� u

ð1Þ

and the variance

Var Mð Þ ¼ 1�
2 ¼ u

1� uð Þ2
: ð2Þ

Therefore, once we know the code usage uwe also know what aver-
age motif lengths to expect. Please note that the codon bias (see for
Table 4
Overview of code usage and motif lengths for eight model organisms. This table is continu
ranked and sorted by the code usage u (in percent). The remaining columns are the averag
percent). Column p lists the p-values for average motif lengths to be greater than the expect
Codes in C. reinhardtii ending with _2 are codes which are cyclic shifted two times.

Rank H. sapiens u (%) �m ��m (%) p C. elegans u (%)

1 C25 44.6 1.82 0.6 0.0000 C122 * 40.4
2 C117 44.1 1.82 1.4 0.0000 C24 40.2
3 C173 44.1 1.79 0.1 0.1539 C171 40.0
4 C98 43.7 1.79 0.7 0.0000 C97 39.9
5 C166 43.7 1.80 1.4 0.0000 C25 39.7
6 C20 43.3 1.77 0.4 0.0000 C26 39.7
7 C111 42.8 1.76 0.8 0.0000 C20 39.6
8 C23 (X0) 42.8 1.75 �0.1 0.7767 C123 39.6
9 C4 42.4 1.75 0.9 0.0000 C98 39.4
10 C27 41.7 1.70 �0.7 1.0000 C172 39.3
11 C24 41.1 1.68 �1.0 1.0000 C137 39.3
12 C115 40.7 1.67 �0.9 1.0000 C27 39.2
13 C172 40.7 1.65 �2.0 1.0000 C21 39.2
14 C22 40.4 1.67 �0.5 1.0000 C22 39.1
15 C97 40.2 1.65 �1.2 1.0000 C173 38.9
16 C165 40.2 1.65 �1.3 1.0000 C23 (X0) 38.7
17 C118 40.1 1.71 2.6 0.0000 C115 38.5
18 C171 39.8 1.65 �0.9 1.0000 C161 38.3
19 C76 39.6 1.70 2.6 0.0000 C117 38.0
20 C161 39.4 1.63 �1.1 1.0000 C111 37.8

Rank A. thaliana u (%) �m ��m (%) p C. reinhardtii u (%)

1 C161 40.0 1.67 0.3 0.0014 C166 48.9
2 C171 39.9 1.68 1.3 0.0000 C173 48.2
3 C115 39.4 1.66 0.5 0.0000 C117 48.1
4 C24 39.3 1.66 0.9 0.0000 C25 47.4
5 C3 39.1 1.65 0.7 0.0000 C98 47.1
6 C21 39.0 1.66 1.2 0.0000 C4 46.1
7 C111 38.7 1.66 1.5 0.0000 C23 (X0) 45.5
8 C107 38.7 1.64 0.3 0.0001 C111 45.3
9 C122 * 38.6 1.68 2.9 0.0000 C27 44.8
10 C20 38.6 1.66 1.8 0.0000 C20 44.6
11 C165 38.5 1.64 0.9 0.0000 C188_2 44.0
12 C172 38.4 1.64 0.8 0.0000 C165 44.0
13 C110 38.3 1.61 �0.3 0.9999 C172 43.3
14 C117 38.1 1.65 2.0 0.0000 C132_2 43.2
15 C41 38.0 1.62 0.2 0.0307 C115 43.1
16 C25 38.0 1.64 1.6 0.0000 C24 42.5
17 C97 37.9 1.64 1.6 0.0000 C97 42.2
18 C4 37.8 1.64 1.8 0.0000 C22 42.0
19 C123 37.7 1.65 2.7 0.0000 C144_2 41.9
20 C23 (X0) 37.7 1.63 1.6 0.0000 C3 41.2

4

example Athey et al., 2017) does affect the expected motif length
E Mð Þ as the code usage u depends on the codon usage. If there are
species with a low code usage we can expect shorter motif lengths.
However, as we compare expected motif lengths with observed
motif lengths based on the same code usage this does not matter.
If we presume a geometric distribution, we can estimate a confi-
dence interval and a p-value for the mean value of motif lengths
to be greater than the expectation value. Using the estimator
�M ¼ 1=n

Pn
k¼1mk with n as the number of motif lengths and Eqs.

(1) and (2),

Q ¼
�M � 1

1�uffiffiffiffiffiffiffiffiffiffiffiffi
u

n 1�uð Þ2
q

will be asymptotically standard normal. This will later be used in
Section 3.2.2.
3. Results and discussion

This sections presents the results. The code usage is briefly
shown and then the motif lengths are discussed in more detail.
ed on Table 5. These tables shows the first 20 codes out of 210 codes (column Rank)
e motif lengths �m and the difference in percent to the expected motif length (��m, in
ed mean motif length (99%). X0 or C23 is highlighted in bold, C122 is marked with an *.

�m ��m (%) p S. cerevisiae u (%) �m ��m (%) p

1.75 4.4 0.0000 C122 * 40.5 1.77 5.0 0.0000
1.71 2.5 0.0000 C171 40.5 1.76 5.0 0.0000
1.71 2.8 0.0000 C20 39.8 1.72 3.7 0.0000
1.71 2.6 0.0000 C123 39.7 1.72 3.6 0.0000
1.70 2.6 0.0000 C21 39.7 1.72 4.0 0.0000
1.71 2.9 0.0000 C22 39.1 1.69 2.6 0.0000
1.70 2.7 0.0000 C23 (X0) 39.0 1.69 3.3 0.0000
1.72 4.1 0.0000 C97 38.9 1.68 2.5 0.0000
1.70 2.8 0.0000 C24 38.9 1.70 3.8 0.0000
1.70 3.0 0.0000 C168 38.7 1.71 4.8 0.0000
1.71 4.0 0.0000 C137 38.6 1.69 4.0 0.0000
1.68 2.3 0.0000 C161 38.4 1.68 3.5 0.0000
1.70 3.2 0.0000 C167 38.4 1.68 3.7 0.0000
1.70 3.4 0.0000 C110 38.3 1.67 3.0 0.0000
1.69 3.2 0.0000 C98 38.2 1.66 2.8 0.0000
1.69 3.4 0.0000 C25 38.2 1.67 3.0 0.0000
1.65 1.8 0.0000 C26 38.2 1.66 2.6 0.0000
1.65 1.9 0.0000 C172 38.1 1.67 3.1 0.0000
1.65 2.4 0.0000 C120 37.9 1.67 3.5 0.0000
1.65 2.3 0.0000 C111 37.8 1.64 2.2 0.0000

�m ��m (%) p E. coli u (%) �m ��m (%) p

2.07 6.0 0.0000 C23 (X0) 46.9 1.92 2.1 0.0000
2.02 4.7 0.0000 C20 46.5 1.92 3.0 0.0000
2.03 5.4 0.0000 C22 45.8 1.88 1.9 0.0000
1.98 4.2 0.0000 C173 45.7 1.86 1.1 0.0000
1.97 3.9 0.0000 C25 45.3 1.87 2.1 0.0000
1.98 6.8 0.0000 C27 44.6 1.81 0.4 0.0001
1.93 5.4 0.0000 C98 44.6 1.78 �1.4 1.0000
1.95 6.4 0.0000 C4 43.6 1.79 1.2 0.0000
1.89 4.3 0.0000 C111 43.1 1.79 1.7 0.0000
1.90 5.2 0.0000 C166 42.4 1.75 0.6 0.0000
1.89 6.0 0.0000 C117 41.9 1.74 1.3 0.0000
1.94 8.9 0.0000 C21 41.9 1.88 9.1 0.0000
1.90 7.7 0.0000 C171 41.5 1.88 10.2 0.0000
1.90 8.2 0.0000 C123 40.8 1.85 9.7 0.0000
1.93 9.6 0.0000 C172 40.7 1.79 6.2 0.0000
1.89 8.5 0.0000 C122 * 40.3 1.86 10.8 0.0000
1.83 5.7 0.0000 C24 40.3 1.80 7.4 0.0000
1.84 6.6 0.0000 C26 39.6 1.76 6.3 0.0000
1.87 8.8 0.0000 C97 39.5 1.68 1.8 0.0000
1.94 14.1 0.0000 C109 39.1 1.62 �1.3 1.0000
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3.1. Code usages

Tables 4 and 5 show the 20 best circular codes for frame 0
ranked by their code usage (column u) as well as their average
motif lengths and the difference to the expected motif length
which we will discuss later. More data is shown in the online sup-
plementary material. X0 (or C23) is always in the top 20 and has a
code usage ranging from 46% in C. reinhardtii (rank 7) to 39% in S.
cerevisiae (rank 7). In E. coli X0 is on position 1 with u ¼ 47%. Sim-
ilar figures are valid for the code usages in frame 1 and frame 2
where the tuple-wise cyclic codes were dominant (data not shown,
see online supplementary material). The code usages of X0 in dif-
ferent species are definitely higher than expected for circular
codes. One would expect 20=64 or about 31%. Thus, the results of
Arquès and Michel (1996) and Michel (2015) could be confirmed.
Not only X0 has a good code coverage. Also some other circular
codes with similar properties (in C) are significant. The random
codes (R) show a maximal code usage of about 32–45% for differ-
ent species in frame 0 and slightly smaller values for frame 1 and 2
(see online supplementary material).
Fig. 2. Code usage u and average motif lengths �m in a) artificial sequence and b) a
region of human chromosome 1 (both 100,000 bases long). Filled blue samples ( )
indicate the 210 circular codes (C) and red diamonds ( ) show 210 random codes
(R). The black line ( ) shows the expectation value E Mð Þ. The gray area indicates
the confidence interval of E Mð Þ (� ¼ 0:01).
3.2. Motif lengths

3.2.1. Motif lengths in relationship to code usage
Let us start with the results of random sequences. Fig. 2a) shows

the code usage (x-axis) plotted against the average motif length (y-
axis). Filled blue samples indicate the 210 circular codes (C) and
red diamonds show 210 random codes (R). Evidently, the motif
lengths of circular codes are not decisively longer than any random
code (of 20 codons). Some of the circular codes even have shorter
motif lengths than expected. The code usage of the circular codes is
close to 31% (20=64) whereas the code usage of the random codes
has a higher variance. The dots lie on the line that indicates the
expectation value E Mð Þ (see Eq. (1)). Fig. 2b) shows the situation
in the DNA section of human chromosome 1 which is quite similar
with one exception: many of the random codes have a slightly
higher average motif length than expected. We think this is
because of repetitive patterns in the DNA sequence. In particular,
the random codes may have codons like AAA that consist of the
same nucleotide. If a sequence has repetitions of such a nucleotide,
the average motif length will increase.

The biological coding sequences show a slightly different pic-
ture. The average motif lengths were in all organisms surprisingly
Table 5
Table 4 continued.

Rank P. occultum u (%) �m ��m (%) p

1 C166 52.7 2.13 0.7 0.000
2 C165 51.4 2.03 �1.1 1.000
3 C173 51.2 2.07 0.9 0.000
4 C172 49.8 1.98 �0.6 0.998
5 C4 49.4 1.99 0.5 0.013
6 C117 49.1 1.96 �0.3 0.903
7 C98 49.1 1.98 0.8 0.000
8 C3 48.1 1.91 �0.9 1.000
9 C23 (X0) 47.9 1.93 0.6 0.001
10 C115 47.8 1.87 �2.3 1.000
11 C97 47.7 1.90 �0.9 1.000
12 C25 47.6 1.90 �0.4 0.981
13 C21 46.5 1.86 �0.5 0.994
14 C24 46.2 1.82 �2.2 1.000
15 C111 45.8 1.83 �0.8 1.000
16 C161 44.5 1.76 �2.5 1.000
17 C20 44.3 1.77 �1.1 1.000
18 C171 42.9 1.71 �2.5 1.000
19 C118 42.8 1.81 3.2 0.000
20 C41 42.7 1.70 �2.6 1.000

5

short, too. As seen in Table 4 (column �m) they lie in a range of 1.8
(C. elegans) to 2.1 (C. reinhardtii). X0 is – like in the case of code
usage – not the best code per species codons and its average motif
length is slightly shorter than the best in the respective organism.
T. tenax u (%) �m ��m (%) p

7 C166 47.5 1.93 1.5 0.0000
0 C98 46.8 1.93 2.6 0.0000
0 C173 46.6 1.92 2.7 0.0000
8 C165 46.6 1.92 2.7 0.0000
3 C97 45.9 1.93 4.3 0.0000
0 C172 45.7 1.92 4.3 0.0000
1 C117 44.9 1.81 �0.5 0.9986
0 C4 44.6 1.84 1.9 0.0000
5 C25 44.0 1.79 0.2 0.1322
0 C115 44.0 1.78 �0.2 0.8898
0 C23 (X0) 43.7 1.83 3.0 0.0000
9 C3 43.7 1.82 2.2 0.0000
7 C24 43.1 1.77 0.9 0.0000
0 C21 42.8 1.81 3.6 0.0000
0 C132_2 42.3 1.74 0.4 0.0097
0 C111 42.0 1.72 �0.3 0.9388
0 C188_2 41.4 1.70 �0.3 0.9734
0 C20 41.1 1.70 0.4 0.0184
0 C161 41.1 1.68 �0.9 1.0000
0 C27 40.6 1.73 3.0 0.0000
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The differences (in percent) relative to the expectation value of the
motif lengths (E Mð Þ, see Eq. (1)) are not very high within the best
codes (compare Table 4) but they are visible. Some average motif
lengths in H. sapiens are even smaller for codes with good code cov-
erage. X0 is an example (��m ¼ �0:1 %). There are, however, motifs
which are rather long: In S. cerevisiae code X0 has motifs up to a
length of 210 codons. In H. sapiens and C. elegans the maximal motif
lengths are 44 and 39 codons, respectively, for code C122 (data not
shown). This, again, confirms the finding in El Soufi and Michel
(2016) where long motifs in coding sequences were identified.

Fig. 4 shows as an example the code usage plotted against the
motif lengths in S. cerevisiae for frame 0 and 1. The best 20 circular
Fig. 3. Differences ��m in % for average motif length relative to expected motif
length for codes X0 (white) and C122 (gray).

Fig. 4. Code usage u and average motif lengths �m for S. cerevisiae in frame 0 (a) and
frame 1 (b). Filled blue samples ( ) indicate the 210 circular codes (C) and red
diamonds ( ) show 210 random codes (R). The black line ( ) shows the
expectation value E Mð Þ.

6

codes clearly have a greater average motif length than the best ran-
dom codes have – the curve has a sickle shape. This is true for
frame 0 (cf Fig. 4a) but surprisingly also for frame 1 (cf Fig. 4b)
and frame 2 (see online supplementary material). X0 (or C23) is
on position 7 and has a 3% higher average motif length than
expected (see Table 4). The winner is a self-complementary circu-
lar code labeled as C122 which is also in position 1 in C. elegans.
This code has the highest code usage and the highest increase of
the average motif length relative to the expectation value. C122
is in the top 20 in Table 4 except for green alga C. reinhardtii and
Fig. 5. Code usage u and average motif lengths �m for E. coli, C. reinhardtii and T.
tenax. Filled blue samples ( ) indicate the 210 circular codes (C) and red diamonds
( ) show 210 random codes (R). The black line ( ) shows the expectation value
E Mð Þ.
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the two archaea. The alga’s code usage is not very high but the dif-
ference to the expectation value ��m is about 20% (details see
online supplementary material). Fig. 3 shows all organisms in an
overview. C122 contains these codons:

C122 ¼ AAC;AAT;ACC;ACT;AGC;AGT;ATC;ATT;GAA;GAC;f
GAT;GCC;GCT;GGA;GGC;GGT;GTC;GTT;TCC; TTCg

The differences between X0 (or C23) and C122 are six codons (out of
20):

� CAG, CTC, TAC, CTG, GAG, GTA only in C23 ¼ X0

� AGC, TCC, ACT, GCT, GGA, AGT only in C122

All different codons are cyclic shifted versions: Three of them are
shifted for one and the other three for two positions. This is
because of the way maximal self-complementary codes are
constructed.

Besides S. cerevisiae, the organisms E. coli and C. reinhardtii show
interesting patterns as depicted in Fig. 5. E. coli shows the most
striking increase of the average motif lengths relative to random
codes. Again code C122 has the highest increase of about 11%
whereas X0 only has about 2% though this code is in position 1
according to the code usage u (see Table 4). C. reinhardtii shows
an exceptional pattern: many circular codes including X0 have a
higher average motif length than expected but also random codes
show higher than expected motif lengths in this organism –
although less explicit. This suggests that coding sequences of C.
reinhardtii have many repetitive regions, similar to plain DNA
found on chromosomes (as shown in Fig. 2b).
Fig. 6. Motif length histograms in E. coli for circular (transparent blue) and random cod
motif lengths histogram. c) Average motif length histogram in a E. coli-like random s
expectation value (��m). d) Same for a E. coli-like random sequence. Many circular codes e
even stronger when the differences to the expected motif length (��m) are considered (b
differences to the expectation value (d).
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We observed that many circular codes in general have longer
motifs than random codes in coding sequences. Fig. 6 shows an
example for E. coli. A similar pattern could be observed in all
eight model organisms with the weakest effect in H. sapiens and
the strongest in E. coli (as in Fig. 6) and C. reinhardtii (see also
Fig. 5). Overall, all circular codes in all eight model organisms
show a positive difference to the expectation value of in average
2.4%. Surprisingly, also the random codes have a positive differ-
ence of 1.2%, on average. Again, we think that this is caused by
repetitive patterns in the coding sequences (see also above). Note
that there are also circular codes which have motif lengths below
average. This is to some extend to be expected, as the 210 circular
codes contain 140 tuple-wise shifted codes which will not per-
form well in frame 0. With respect to recognizing frame shifts,
it is nevertheless sufficient that there is at least one circular code
with long motifs.
3.2.2. Test for geometric distribution and statistical significance
The motif lengthsmwere tested by a �2 test to see if they follow

a geometric distribution. The null-hypothesis H0 is: all motif
lengths are distributed according to the geometric distribution.
The p-values for every code and every organism are very close to
1 indicating a strong relationship to a geometric distribution – at
least H0 cannot be rejected (see online supplementary material
for details). Thus, we can assume that the motif lengths are geo-
metrically distributed. Fig. 7 shows the histogram of motif lengths
for E. coli in frame 0 for code C122. In relation to the statistical
motif length distribution it has less motifs of length 1 and more
of length 2 or greater.
es (transparent red). A ruby color shows overlapping bars. Left column: a) Average
equence. Right column: b) Histogram of motif length differences relative to the
xceed the motif lengths of random codes in E. coli coding sequences (a). The effect is
). There is no such effect for random sequences, neither for motif lengths (c) nor for



Fig. 7. Motif lengths distribution in E. coli in frame 0. Transparent blue bars indicate
circular code C122, transparent red bars represent the theoretical geometric
distribution with the same code usage u that C122 has (40.3 %). A ruby color shows
overlapping bars. All motif lengths greater than or equal to 8 are summarized in one
bar (labeled as 8). Evidently, C122 has less motifs of length 1 and more of length 2
or greater.
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If we can presume a geometric distribution and starting from
Eq. (2.3) we can estimate a confidence interval and a p-value for
the mean value of motif lengths being greater than E Mð Þ. The sam-
ple size, i.e. the number of motif lengths jmj per organism, is very
high (about 300,000). The confidence interval for the estimator M
(� ¼ 0:01) is very close to the expectation value and almost invis-
ible in Figs. 2, 4, and 5. Also, many p-values for P M > E Mð Þ� �

in
Table 4 (column p) are close to 0. This indicates that the average
lengths of circular codes motifs are statistically significant longer
than expected by chance.

4. Conclusions

Circular codes are over-represented in coding regions. It is an
open question why these specific codons are used. As we have
shown, there is little evidence that circular codes are used for
frame shift recognition throughout the total length of a coding
sequence. However, there are regions in transcribed sequences
which possess very long motifs, although there are not many of
them in all the sequences assessed. Also, the average motif lengths
are significantly higher than expected for many codes, though the
difference (��m) is not large enough to imply long motifs in all cod-
ing sequences. X0 is the best average circular code over all species
tested here. Our analysis suggests that other maximal self-
complementary codes like C122 might be the best code for a speci-
fic organism. C122 is a variation of X0 and differs only in six codons.
In particular, in comparatively older organisms like C. reinhardtii
and comparatively simpler organisms like E. coli the motif lengths
are, on average, much longer than would be expected. Neverthe-
less, this was not the case in the two archaea.

We have analyzed eight model organisms. Although the overall
course of the scatter plots (motif lengths over code usage) is simi-
lar, there are distinct differences between the species. Surprisingly,
the coding sequences in the green alga C. reinhardtii seems to have
many repetitive sequences, even in coding regions.

As we have shown, the average or expected motif lengths
depend on the code usage. If, however, the code usage was fixed
but the codons were resorted to build clusters of motifs, then the
motif lengths can be increased. Our work showed that random
codes can lead to long motifs on average, as well. As these results
do not differ much from those of circular codes, a more compre-
hensive statistical analysis should be performed in this respect.

Lastly, if we assume that a biological entity like the ribosome
could, while progressing on the mRNA, distinguish codons of a cir-
cular code from other codons, one important point needs to be
8

addressed: as long as there is no frame shift and the ribosome
reads through a motif, there is no issue. If, nevertheless, the ribo-
some encounters a stretch of codons not from a circular code, there
is an ambiguous situation: either there was a frame shift and trans-
lation should be aborted or the ribosome just reads a non-motif
region and translation should be continued. Since in this study
we always found coding sequence with gaps of non-motifs
between circular code motifs, we speculate that frame shift pre-
vention by means of circular codes is not an important mechanism
in present day organisms. Since, on the other hand, we do find
above average motifs in coding sequences, our assumption is that
circular codes could have been a means to control frame shifts in
organisms more ancient than the ones we assessed.
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