
Iterative and Incremental Development of
Component-Based Software Architectures

Colin Atkinson and Oliver Hummel

Software Engineering Group
University of Mannheim

68131 Mannheim, Germany
Phone: +49 6 21 / 1 81 – 39 29

{atkinson, hummel}@informatik.uni-mannheim.de

ABSTRACT
While the notion of components has had a major positive impact
on the way software architectures are conceptualized and
represented, they have had relatively little impact on the processes
and procedures used to develop software systems. In terms of
software development processes, use case-driven iterative and
incremental development has become the predominant paradigm,
which at best ignores components and at worse is even
antagonistic to them. However, use-case driven, I&I development
(as popularized by agile methods) and component-based develop-
ment have opposite strengths and weaknesses. The former’s
techniques for risk mitigation and prioritization greatly reduce the
risks associated with software engineering, but often give rise to
suboptimal architectures that emerge in a semi-ad hoc fashion
over time. In contrast, the latter gives rise to robust, optimized
architectures, but to date has poor process support. In principle,
therefore, there is a lot to be gained by fundamentally aligning the
core principles of component-based and I&I development into a
single, unified development approach. In this position paper we
discuss the key issues involved in attaining such a synergy and
suggest some core ideas for merging the principles of component-
based and I&I development.

Categories and Subject Descriptors: D.2.11
[Software]: Software Architectures

General Terms: Design

Keywords: Component-based software architectures,
iterative and incremental software development.

1. INTRODUCTION
Software component technologies have come a long way since the
idea of building new applications from prefabricated building
blocks was first proposed in the 1960’s [1], and if one includes
services as special kinds of components, they now form the
backbone of most large-scale enterprise system architectures [8].

However, the value of components in software engineering stems
almost exclusively from their static role as structural artefacts in
software architectures rather than from their contribution to the
processes and procedures of software engineering. The notion of
components [2] has made little practical contribution to the state-
of-the-art in software processes since the idea of software reuse
was en vogue in the 1980’s and all recent process innovations in
software engineering have taken place independently of
component-based architectures. At best, today’s leading software
engineering processes ignore components, and at worst they can
be regarded as being incompatible with them. In other words, the
state-of-the-art in software processes has effectively become
decoupled from the state-of-the-art in software architectures.

Since the turn of the century, two main process innovations have
had a significant impact on mainstream software engineering
practices. One is model driven development and the other is
iterative and incremental (“I&I”) development. Model-driven
development [10] accelerates the development processes by
raising the level of abstraction at which software systems are
represented and by semi-automating the process of generating
executable code. In contrast, I&I developmen (today most widely
applied under the banner of agile development [17]) lowers the
risks and costs associated with software development by
organizing development projects in terms of small mini-projects
rather than a single, “big bang” waterfall project. Although they
are essentially independent, these two paradigms are commonly
used together in a synergetic way to combine their benefits. Well
known examples that integrate I&I and modelling include the
RUP and Agile Modelling [4].

I&I based development and model-driven development are both
fundamentally independent of the notion of components, and
neither support nor discourage their use. In effect, they are both
agnostic to components. Interestingly, several methods have
attempted to integrate model-driven development and component-
based development principles such as KobrA [11], Catalysis [15]
and UML-Components [16], although none of these has taken off
in commercial software development so far. However, to the best
of our knowledge no development methods have been defined
which attempt to combine the advantages of component-based
and I&I based development for mainstream software engineering.
This is perhaps not surprising since at first sight the paradigms
seem to be totally unrelated to one another. It is also unfortunate
because the strengths of one paradigm are weaknesses of the other
and vice versa. Component-based development is strong in terms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CBSE ’12, June 25-28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1345-2/12/06…$10.00.

77

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2304736.2304750&domain=pdf&date_stamp=2012-06-25

of the quality of the software architectures that is supports, but
weak in terms of the sophistication of the processes used to
generate them, while I&I development is strong in terms of the
organization of process steps and activities involved in software
engineering, but weak in terms of the quality of the architectures
that it typically delivers. A method that combines their strengths
and ameliorates their weaknesses could therefore have a big
impact. In this position paper we explore the possibility of
achieving this goal and show how the core concepts of I&I
development could be re-incarnated in the context of component-
based developed to create a new approach whose strengths are the
union of their individual strengths.

In the following section we briefly discuss the current state of
component technologies before we contrast them with
architectural practices in today’s I&I (mainly agile) approaches in
section 3. Section 4 then introduces our approach for reconciling
the two in order to achieve component-oriented increments that
may significantly reduce architectural refactoring effort. We
continue our paper with a discussion of our proposal in section 5
and conclude it with a summary of our contribution and our
findings in section 6.

2. DISTINCT COMPONENT MODELS
Early so-called component technologies, such as EJBs, COM
resp. COM+ and CORBA, that – from today’s point of view – can
be seen as essentially object-oriented middleware frameworks for
distributed systems, distinguished between the process of
developing components and the process of assembling them into
new applications. They assumed a “flat” component architecture
in which a flat (i.e. non-nested) set of fine-granular “components”
is glued together to create a system, but this system is not itself
regarded as a component that can form part of a larger system. In
such “flat” component models, components are effectively little
applications in their own right that can be implemented using any
mainstream development technology such as Java or C#. From the
perspective of the “glue code” orchestrating the interaction of the
building blocks, components are black-boxes that can be brought
together in certain limited ways to deliver the desired properties
of the system as a whole. This view is illustrated schematically in
Figure 1.

Figure 1. Exemplary flat component model.

The system (outer shape) is composed of three black box
components held together by some special “glue code”. The
operations of the system have no functionality themselves (hence
they are dashed) but present an aggregated interface to the
collective functionality of the components.

More recent component models such as SOFA or Fractal [9]
allow components to be nested in arbitrary ways across an
unlimited number of levels. However, they still allow only the
primitive components at the leaves of the resulting composition
trees to contain rich functionality of their own. All the other
components in the hierarchy, up to the system itself, are regarded
as assemblies of lower-level components without any real

functionality of their own. Their role is to combine lower level
components together and present an aggregated interface to their
functionality. These component approaches therefore retain the
strict distinction between glue code and normal implementation
code, with the latter still being used to implement the black box
components at the leaves of composition trees, and glue code
being used at the other levels to connect components together. We
refer to such component models as non-uniform, hierarchic
component models. This is illustrated in Figure 2.

Figure 2. Non-uniform, but hierarchic component model.

The system is still composed of components, plugged together
using special glue code, but these components may internally
contain other components of their own. However, all the
components except those at the leaves of the tree have “virtual”
operations with no direct functionality of their own (and thus are
still dashed in Figure 2).

Service technologies and standards [8] also generally treat
primitive components (i.e. services) as black boxes that are
implemented using mainstream programming technologies. For
example, the web service standards only define the interface to
services, and say nothing at all about their internal implemen-
tation. However, languages for composing services (such as
BPEL) usually provide algorithm-definition features akin to those
in programming languages and often allow the resulting
functionality (or so called orchestrations) to be regarded as higher
level services in their own right. General service models therefore
allow services to be nested in arbitrary ways, and allow all
services in a composition tree to have non-trivial functionality of
their own, not just the primitive components at the leaves of the
tree. We call such component models uniform, hierarchic
component models. This is illustrated in Figure 3 where all
components in the hierarchy, including the system itself, can have
concrete methods with their own functionality.

Figure 3. Uniform and hierarchic component model.

The differences between the various component models
essentially revolve around the way they distribute functionality
between components and allow them to be composed rather than
on the organizational and procedural concepts used to develop
systems. In other words, traditional component-technologies focus
on the architectural aspects of software engineering rather than
on the process of their development.

The only major process innovation offered by components is the
notion of development by assembly [1] where systems are

78

developed by assembling existing parts rather than by traditional
implementation techniques. However, this is still a far off vision.
Although component discovery technologies have significantly
improved in recent years [5] there are still significant barriers to
software reuse such as the “not invented here syndrome” and
licensing constraints. Thus, the effort / risks involved in finding
and evaluating reusable components still usually outweighs the
potential advantages [14].

3. MODEL-DRIVEN, COMPONENT-
BASED DEVELOPMENT
As mentioned in section 1, several methods have attempted to
merge the benefits of component-based development with model-
driven development. Two of the earliest were the Catalysis [15]
and UML components [16] methods which essentially defined
approaches for describing systems and components using the
UML. In effect, therefore, they combined a flat component model
with the UML’s concrete syntax. The most comprehensive merger
of the two paradigms has been achieved by the KobrA method
[11] which integrates the notion of uniform hierarchic component
architectures with the three characteristic abstraction levels of
model-driven development (i.e. Computation Independent,
Platform Independent and Platform Specific [10]). Once again the
UML was used as the concrete syntax for the CIM and PIM view
of a composition hierarchy, but this is not important for the
remainder of this paper.

As illustrated in Figure 4, in KobrA all architectural elements are
modeled using the same set of views regardless of their size or
location in the composition hierarchy. Figure 4 shows a system, S,
composed of three components, A, B and C. A and B are direct
subcomponents of S while C is a direct subcomponent of A. Each
component (and the system, which is also regarded as a
component), is represented by a cuboid surrounded by a
collection of “views”.

A

B

C

S

Figure 4. PIM Level, hierarchic component model.

Each component has a set of specification models and a set of
realization models. The views around the top of each cuboid are
the “specification” views that describe what services the
component offers to its clients (i.e. other components that call its
operations) and take the form of UML class diagrams, state
diagrams and OCL pre- and post-conditions. The views around
the bottom of each cuboid are the “realization” views that
describe how the component realizes the specified functionality
and what services it uses from other components in the system.
They take the form of UML class, activity and collaboration
diagrams. The key idea is that all components in the system,

including the system itself, are treated uniformly (i.e. they are
modeled in the same way) and they can all possess functionality
of their own. In other words, all operations of S, A and B can
contain rich algorithmic content. Amongst other component
modeling approaches, KobrA has recently been applied to the
Common Component Modeling Example (CoCoME) so that more
details on its application are available [12].

4. I&I DEVELOPMENT
The top innovations in software engineering processes in recent
years have mainly come from the agile development community
in the form of lean, iterative and incremental development
methods [17]. Iterative and incremental development also forms
the backbone of more heavyweight methods such as the Unified
Process [4] and is thus used in the majority of modern industrial
software development projects. The reason is clear - by dividing a
project into multiple mini projects, each adding a new increment
of completed software to the code base over time, incremental
development avoids the “big bang” integration and rigidity found
in traditional waterfall processes. In agile projects, software
applications can evolve gradually over time and all stakeholders
can receive continual feedback on a project’s status.

However, the enhanced leanness and flexibility of I&I
development approaches comes at a price. Their emphasis on
implementation and early delivery of working [17] code is in
tension with the need to design a comprehensive, well-thought
out, loosely-coupled architecture that takes all requirements into
account. This results in software systems that in the worst case
essentially have no architecture [6], or in the best case have a
simplistic architecture in which software implementation elements
are grouped into “layers” focused on technological aspects (e.g.
GUI, business logic and persistence [4]). Genuine responsibility-
oriented components of the kind making up component- and
service-based systems are not recognized in mainstream I&I
development approaches. Moreover, whenever an architecture
eventually does emerge, it is often introduced post hoc in a series
of expensive “refactoring” steps [13].

The problem with today’s mainstream agile methods in this
regard is that they are fundamentally function-oriented. They
basically use functional criteria (based on the notion of use cases
or user stories) to divide a software development project into
multiple mini-projects that can be tackled incrementally.
However, increments defined by functional slices through a
system are usually orthogonal to the increments encapsulated by
responsibility-oriented components1 or technology-oriented
layers. This phenomenon is illustrated schematically in Figure 5,
which shows a system with a set of eight operations (small
rectangles) invoked in various ways from three different use
cases.

1 By responsibility-oriented components we mean components

that are focused on delivering a cohesive service or managing a
specific sub-responsibility such as CRM, currency conversion,
inventory etc.

79

System

Figure 5. Use-case based system specification.

Figure 5 depicts the kind of system specification typically
resulting from a model-driven, use-case-centric analysis of a
system as e.g. proposed by the widespread RUP and Agile
Modeling approaches [4]. Figure 6 shows how a layered
implementation of such a system might evolve via the use-case-
based increments typically applied in agile methods today.

System

GUI Domain Persistence

Figure 6. Implementation with layered architecture.

The elements in the lower level of Figure 6 are meant to represent
software implementation units (e.g. classes) organized in a typical
layering scheme (e.g. GUI layer, domain layer, persistence layer)
[4]. For example, the first increment, driven by the striped use
case, elaborates the striped units, the second increment, driven by
the green solid use case, elaborates the solid units and so on. The
problem is that the functionality encapsulated by use-case-driven
increments is scattered among the units of the system in arbitrary
ways (usually as objects) that do not match a component-oriented
architecture. In other words, the currently most widely used
approaches for systematic software development still lack support
for a systematic definition of components.

5. COMPONENT-ORIENTED
INCREMENTS
Although today’s iterative methods almost always use functional
criteria (e.g. use cases or user stories) to determine functionality
increments to be implemented in individual cycles, this is not a
fundamental requirement of incremental development. The
defining characteristic of incremental development is the delivery
of a functional and tested part of the system in each cycle. And
for a method to be iterative all the main software engineering
activities (analysis, design, implementation and validation) need
to be performed in each cycle. How the increments and iterations
are determined is basically immaterial. Therefore, provided a
suitable hierarchical component model such as KobrA is available

that supports platform independent descriptions of nested
component architectures, it also becomes possible to define
increments in a component-oriented way. While function-oriented
increments tend to visit the classes making up the final software
implementation tree in a depth-first way, component-oriented
increments tend to visit them in a more breadth-first way.

This idea is illustrated schematically in Figure 7, which realizes
the same system as Figure 6, but using a breadth-first
implementation strategy with component-driven increments
targeting a service-oriented implementation instead of the
common depth-first, function-oriented approach. The same
analysis models of the system appear on the left hand side of the
upper level, but now these have been elaborated into a complete
component-based system model in which the sub-components and
sub-subcomponents of the system can be also modeled in a
uniform and platform independent way (in the spirit of the
OMG’s Model-Driven Architecture [10]).

System

PIM

A

B

C

PSM

A

S

B

C

GUI Domain Persistence

Figure 7. Elaboration of component-based increments.

Again the patterns show the increments of functionality that are
implemented in each cycle. This time the first, striped increment
is not driven by a use case but by the functionality implemented
by the operations of the component providing the interface to the
system. Once the requirements and realization of this “striped”
functionality have been described at the platform independent
(PIM) level (akin to analysis and design) the first development
iteration is completed on the platform specific (PSM) level where
it elaborates the striped implementation code. This might typically
be based on some kind of service technology, internally organized
using the common layered approach described before in which the
functionality encapsulated by the system’s operations is mapped
to some kind of “orchestration” code. The next increment, the
dotted increment, is then elaborated in exactly the same way, but
this time driven by the functionality directly encapsulated by the
operations of component B. Again, once the specification and
realization models of the component (and its operations) have
been completed, the corresponding implementation can be
elaborated at the platform specific level. The solid and tiled
increments are then elaborated in the same way.

Since all the key steps in software engineering are performed in
each development cycle the approach is genuinely iterative. And
since the delivered functionality is a complete, working piece of
the final system the approach is genuinely incremental. The
central difference to traditional iterative approaches is the way in

80

which the functionality addressed in increments is organized.
Instead of driving the implementation based on functional
considerations, the implementation is driven by the component-
based architecture. Figure 8 shows the key artifacts involved in a
typical increment when the approach is applied using the KobrA
method.

S

test specifications
for A stub

test specifications
for B stub

test specifications
for S

A stub

B stub

Figure 8. Artifacts (views) involved in a typical increment.

At the PIM level, the main artifacts generated in a component-
oriented increment are the standard KobrA specification and
realization views of the component under consideration (the so-
called subject) as well as test specifications reflecting them.
Component-based increments therefore also support the agile
mantra of writing tests for an element before implementing it (i.e.
test-first development [3]). The PIM level of a component
increment also includes partial test specifications for the
subcomponents used by the subject of the increment. These are
not (yet) full tests for the components – they are specifications of
the behaviour the subcomponents are expected to exhibit when
invoked as part of the tests of the component.

The PSM level of a component increment contains
implementations of –

1) the tests of the components, based on the test
specifications

2) the component’s functionality based on the realization
models

3) stubs for each of the subcomponents based on their
partial tests specifications.

Once all of these have been implemented, the functional code on
this level (2) can be fully tested before being added to the
delivered code base. Moreover, when the lower level
subcomponents are implemented in subsequent increments, the
component tests (1) can be reapplied with the real components
rather than the stubs. The approach therefore also provides
inherent support for integration testing.

6. DISCUSSION
For systems that lend themselves to a uniform, hierarchic
component model, component-based incremental development
appears to offer numerous benefits over standard feature-oriented
agile development. It retains all the advantages of agile
development (incremental evolution, iterations, test-driven
development etc.) but addresses some of its core problems,
namely –

First, it restores proper consideration of architecture into agile
processes. Rather than being an afterthought that often emerges in
a post hoc way, architecture plays a fundamental upfront role in
the development process. Furthermore, (de-)composition
decisions at a given level in the component hierarchy are made
with a full knowledge of the requirements that the higher level
components are required to satisfy.

Second, the improved, upfront consideration of architectural
concerns is likely to significantly reduce the level of refactoring
[13] that has to be performed in a development project. This is a
major “Achilles heel” of traditional, function-oriented agile
methods, and not only increases immediate development effort, it
can have a residual impact on the quality of the final code, and
thus ultimately on subsequent maintenance activities.

Third, the incremental development of component specifications
and tests at the PIM level can significantly boost the chances of
finding suitable pre-existing components before they are self-
implemented, and thus could finally start to deliver on the
promise of software reuse [1]. Since a full specification of a
component is created before its design and implementation, this
can be used as the basis for searching for existing components
that already fulfill those requirements. Finding reusable
implementation units at the PSM level is much more difficult
because many more design decisions have been made and the
room for flexibility is significantly reduced. In fact, even the test
specifications developed to describe the required properties of
subcomponent stubs are useful for attempting to find reusable
components since they provide exactly the kind of input used by
the recent generation of test-driven search engines such as
Merobase [5] (i.e. they serve as representative descriptions for the
expected behavior of the desired component [18]).

One apparent disadvantage of the component-based incremental
development approach is the extra overhead involved in writing
test specifications and stubs for subcomponents. It is certainly true
that traditional agile methods do not involve such artifacts as they
are not aware of components. However, they do require the
development of other forms of stubs and test drivers to stand in
for parts of the system that have not yet been built. Moreover, the
effort involved in defining the subcomponent stubs has to be
offset against the significant reductions in refactoring effort that
can be expected from the requirements-aware architectural design
just described.

Another disadvantage, inherent to all component- and service-
oriented approaches, is the risk of duplicating functionality in
various components. Suppose, for example that the green (A) and
the blue (B) component in Figure 7 share some common
functionality. Since A and B are supposed to be deployable
independently of each other any common data structures or
functionality need to be implemented in both. The natural way of
dealing with this challenge in component-based development is to
identify such elements and make them available as an additional

81

required component of A and B alike. However, to our
knowledge, no component-based development method currently
provides a systematic approach for performing this task. Only the
techniques available in KobrA [11] for identifying the
commonalities within software product lines seem to have
potential for this purpose.

7. CONCLUSION
In this article we have proposed a way of reconciling component-
driven development approaches with modern, I&I development
methods that creates a powerful synergy between them.
Components primarily focus on architecture, and have
traditionally been neglected in mainstream development
approaches, especially in agile methods. I&I methods, on the
other hand, primarily focus on implementing function-oriented
(i.e. use case or feature-oriented) slices of functionality and have
so far generally neglected responsibility-oriented components of
the kind used in component- and service-oriented architectures. In
other words, the architectural “Achilles heel” of agile methods is
the main strength of component technologies, while the process
“Achilles heel” of component technologies is the main strength of
agile methods.

The key to the synergy discussed in this article is to introduce a
platform-independent model of the architecture based on a
uniform, hierarchic component model that allows the functionality
in the system to be distributed among all the components in a
system, not just those at the leaves of the component hierarchy.
This in turn allows increments of functionality to be elaborated in
a component-oriented rather than a function-oriented way.
Although this radically departs from accepted ways of organizing
agile development projects it remains faithful to the key tenets of
incremental and iterative development. Furthermore, the approach
is able to retain all other key aspects of agile development such as
the up-front development of tests before implementation.

The problem of finding the optimal component-based architecture
for a system (i.e. of identifying the right components and
component configurations) is a challenging one. We make no
claim that the approach described in this position paper helps in
this regard, except that it allows decisions about subcomponents
to be made in full knowledge of higher level requirements. In
domains where traditional agile methods are currently used, it is
difficult to say whether the domain-oriented, hierarchical
component architectures advocated in our approach are better than
the layered architecture and “no architecture” approaches usually
associated with agile methods today. But in domains where
responsibility-driven components are a natural way of
(de)composing systems, organizing the development process in
terms of component-oriented increments appears to offer many
advantages. And in domains where the use of components and/or
services is well established, the ability to leverage agile principles
in their development is likely to significantly enhance the way
such systems are engineered and evolved.

8. REFERENCES
[1] McIlroy, D.: Mass-Produced Software Components,

Software Engineering: Report of a conference sponsored by
the NATO Science Committee, Garmisch, Germany, 1968.

[2] Szyperski, C. Component Software: Beyond Object-Oriented
Programming (2nd ed.), Addison-Wesley, 2002.

[3] Beck, K. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[4] Larman, C. Applying UML and Patterns (3rd ed.). Prentice
Hall, 2004.

[5] Hummel, O., Janjic, W., Atkinson, C. Code Conjurer:
Pulling Reusable Software out of Thin Air, IEEE Software
(Vol. 25, Iss. 5), 2008

[6] Booch, G. The Accidental Architecture. IEEE Software,
Volume 23, Issue 3, 2006.

[7] Crnkovic, I., Chaudron, M., Larsson, S. Component-Based
Development Process and Component Lifecycle.
Proceedings of the International Conference on Software
Engineering Advances, 2006.

[8] Erl, T. Services-Oriented Architectures, Prentice Hall, 2005.

[9] Lau, K.K., Wang, Z. Software Component Models. IEEE
Transactions on Software Engineering, Volume 33, Issue 10,
2007.

[10] Kleppe, A., Bast, W., Warmer, J. MDA Explained: The
Model-Driven Architecture. Addison-Wesley, 2003.

[11] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E.,
Laitenberger, O., Laqua, R., Muthig, D., Paech, B., Wüst, J.,
Zettel, J.: Component-based Product Line Engineering with
UML, Addison-Wesley, 2001.

[12] Atkinson, C., Bostan, P., Brenner, D., Falcone, G., Gutheil,
M., Hummel, O., Juhasz, M., Stoll, D.: Modeling
Components and Component-Based Systems in KobrA. In
Rausch, Reussner, Mirandola, Plasil (editors): The Common
Component Modelling Example, Springer, 2008.

[13] Fowler, M. Refactoring, Addison-Wesley, 1999.

[14] Sherif, K., Vinze, A. Barriers to adoption of software reuse:
A qualitative study. Journal of Information Management,
Vol. 41, No. 2, 2003.

[15] D'Souza, D.,Wills, A. Objects, Components, and
Frameworks with UML: The Catalysis Approach: The
Catalysis Approach, Addison-Wesley, 1998.

[16] Cheesman, J., Daniels, J. UML Components: A Simple
Process for Specifying Component-Based Software,
Addison-Wesley, 2000.

[17] Schwaber, K. Agile Project Management with Scrum,
Microsoft Press, 2004.

[18] Hummel, O. Semantic Component Retrieval in Software
Retrieval, PhD Dissertation, University of Mannheim, 2008.

82

