
Chapter 14
Reuse-Oriented Code Recommendation Systems

Werner Janjic, Oliver Hummel, and Colin Atkinson

Abstract Effective software reuse has long been regarded as an important
foundation for a more engineering-like approach to software development. Proactive
recommendation systems that have the ability to unobtrusively suggest immediately
applicable reuse opportunities can become a crucial step toward realizing this goal
and making reuse more practical. This chapter focuses on tools that support reuse
through the recommendation of source code—reuse-oriented code recommendation
systems (ROCR). These support a large variety of common code reuse approaches
from the copy-and-paste metaphor to other techniques such as automatically
generating code using the knowledge gained by mining source code repositories.
In this chapter, we discuss the foundations of software search and reuse, provide an
overview of the main characteristics of ROCR systems, and describe how they can
be built.

14.1 Introduction

Although the idea of software reuse is not new, it has yet to take off in practice.
The basic problem is that the perceived benefits of systematic software reuse still
do not clearly outweigh the effort, risks, and uncertainties involved. Developers are
faced with the dilemma of whether to first create a detailed system design and then
try to find matching coarse-grained components relatively late in the development
process or to invest a great deal of effort discovering what components already

W. Janjic (�) • C. Atkinson
Software-Engineering Group, University of Mannheim, Mannheim, Germany
e-mail: werner.janjic@informatik.uni-mannheim.de; atkinson@informatik.uni-mannheim.de

O. Hummel
Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology,
Karlsruhe, Germany
e-mail: hummel@kit.edu

M.P. Robillard et al. (eds.), Recommendation Systems in Software Engineering,
DOI 10.1007/978-3-642-45135-5__14, © Springer-Verlag Berlin Heidelberg 2014

359



360 W. Janjic et al.

exist and then try to tailor and combine them to meet the requirements. In either
case, it is not always certain that all system requirements can be fulfilled and
that something reusable can actually be found. It is therefore no surprise that the
reuse approaches that have recently gained the most attention are pragmatic reuse
approaches [10] that focus on the non-preplanned reuse of source code assets mainly
during implementation.

Regardless of the exact motivation for reuse, researchers and practitioners have
traditionally faced three main obstacles to implementing an effective reuse program
for mainstream software development:

• The repository problem [8, 29], that is, where to find a sufficient amount of
reusable material

• The representation problem [9], that is, how to optimally store and represent the
reusable material

• The retrieval problem [25], that is, how to formulate and execute queries for a
repository in a simple and precise manner

A great deal of progress has been made in all these areas recently (partly due to
the open source “revolution” that made literally millions of potentially reusable files
freely available), and new solutions to these problems laid the foundation for a new
generation of internet-scale software search engines.

Although software search engines are an essential prerequisite for reuse recom-
mendation tools, in their simple (mostly web-based) form they cannot be regarded
as recommendation engines since they will only retrieve exactly what they are asked
to retrieve. Thus, they are a necessary but not sufficient part of the whole solution;
additional features would be needed to move into the realm of practical, large-scale
software reuse. An ideal reuse recommendation engine would automate the whole
process of searching, adapting, and evaluating reuse candidates as well as validating
that they seamlessly integrate into the application under development. Obviously,
in general this process becomes more challenging the larger and more complex the
reuse candidates.

The main obstacle to software reuse is no longer the lack of components to reuse
or the ability to retrieve them efficiently. Many projects have shown that this is
feasible with modern technology [3, 11, 14, 27]. The main obstacle is rather the
balance between the effort required to evaluate and incorporate components into
new applications and the likely benefit (including the risk that a reuse candidate will
turn out to be unsuitable). This is where code recommendation tools can come in
handy. Their role is to nonintrusively and reliably find and recommend high quality
code artifacts leveraging software reuse and to help developers integrate them into
their systems with minimal effort.

There are different forms of recommendation system supporting different ser-
vices and use cases involved in software reuse. Nevertheless, based on the generic
definition of a recommendation system from Robillard et al. [28], we can define a



14 Reuse-Oriented Code Recommendation Systems 361

reuse-oriented code recommendation system (ROCR1) as any tool that recommends
code artifacts of any kind and size for the sake of supporting reuse tasks. In general,
ROCRs are assistant tools for developers, which are seamlessly integrated into the
developers’ software development process and environment. Based on observations
of the pros and cons of example ROCRs, we can identify a minimum set of
requirements that have to be met by modern code recommendation tools to make
code reuse more convenient. These “best practices” should be standard features of
ROCR systems as they contribute to higher acceptance of such systems among users.

Proactive recommendation systems that unobtrusively suggest code with a high
likelihood of being beneficial in a given situation provide a promising way of
supporting reuse in the implementation phase of software development projects.
The artifacts recommended by such systems need not just be functional production
code but can include all different kinds of executable software used in the lifecycle
of a project such as tests, prototypes, frameworks, libraries, or small code snippets
that can be retrieved, recommended, and reused. Furthermore, a code artifact can be
reused in different ways ranging from direct inclusion in a new software product to
using it as an oracle to drive the software testing process [2, 17].

The remainder of this chapter discusses opportunities, challenges, and techniques
associated with the creation of ROCR systems and describes the basic technologies
needed to build such a system. Many examples of ROCRs have been produced,
including Code Finder [8], CodeBroker [32], Strathcona [11], Prospector [22], Code
Genie [21], Code Conjurer [15], and Code Recommenders [5]. Surveying all such
tools is beyond the scope of this chapter; two archetypal examples (Strathcona and
Code Conjurer) are outlined in Sect. 14.2. Section 14.3 describes the process of
software reuse as well as the basic characteristics and range of different search
services that state-of-the-art code search engines can provide. Section 14.4 takes a
closer look at different forms of code-related reuse that provides the motivation for
variants of code recommendation systems with different foci. It then introduces the
important characteristics of these variants along with implications for their usage.
Building on the provided foundations, Sect. 14.5 focuses on the implementation of
a recommendation system using the open source tool Code Conjurer [14] to provide
concrete examples for the discussed aspects. Finally, a discussion and some thoughts
on the future of reuse recommendation technology—emphasizing open issues and
current developments—are presented in the last two sections.

14.2 Introductory Examples

To provide an intuitive introduction to the subject of this chapter, we present two
ROCR systems by briefly describing their background and characterizing their
features. More detailed information on each of them can be found in the provided

1The acronym ROCR is meant to be pronounced “rocker.”



362 W. Janjic et al.

public class MyClass {
public CompilationUnit createASTFromSource(String source) {

ASTParser.setSource(source.toCharArray());
}

}

Listing 14.1 Example skeleton used to query Strathcona

literature sources. The first one, Strathcona, is a recommendation system that
suggests examples of actual usage scenarios based on information extracted from
existing software components, while the second, Code Conjurer, is a “classic”
reuse tool that recommends reusable code in a copy-and-paste manner, leveraging a
particular code search engine (Merobase).

14.2.1 Code Recommendation for API Usage with Strathcona

Strathcona is an example recommendation tool [11]. Instead of following the estab-
lished source code reuse approaches that target component reuse, the Strathcona
recommendation system focuses on the lack of documentation accompanying the
wide variety of frameworks and software libraries that are used in modern software
systems. The example recommender assists users by recommending usage and
invocation examples relevant to the developer’s context without imposing new
hurdles for users such as learning a new query language. It achieves this by
extracting all necessary search parameters directly from the developer’s code. An
illustrating example that is familiar to most developers who work within the Eclipse
IDE is the question of how to create an abstract syntax tree (AST) from a piece of
source code. A first quick look at the documentation for the application programming
interface (API) provided by Eclipse suggests that the setSource(...) method
of the ASTParser class would be helpful in achieving this goal, resulting in the
developer trying to write an implementation like that in Listing 14.1.

However, the documentation does not describe the three steps necessary to
complete the task, namely: (1) the parser needs to be created by using a factory
method, (2) the parser needs to be made aware of the source code, and (3) the
AST has to be created. Strathcona’s client (provided as a plugin for Eclipse) will
extract the structure of the developer context to identify the class, its parents,
method calls, and possibly existing field declarations to form a query for its
backend, where different matching heuristics can be applied. The server looks
up possible example recommendations and returns the top ten examples to the
recommender client; Listing 14.2 gives an example (shown in the source view, one
of several presentations provided by Strathcona). The examples serve both to solve
the developer’s immediate problem, and to provide context about additional issues
about which they may be unaware (like the possibility of setting preferences on
generating bindings or on fault tolerance, as in this example).



14 Reuse-Oriented Code Recommendation Systems 363

public class ASTResolving {
public static CompilationUnit createQuickFixAST(

ICompilationUnit compilationUnit, IProgressMonitor monitor)
{

ASTParser astParser = ASTParser.newParser(ASTProvider.
SHARED_AST_LEVEL);

astParser.setSource(compilationUnit);
astParser.setResolveBindings(true);
astParser.setStatementsRecovery(ASTProvider.

SHARED_AST_STATEMENT_RECOVERY);
astParser.setBindingsRecovery(ASTProvider.

SHARED_BINDING_RECOVERY);
return (CompilationUnit) astParser.createAST(monitor);

}
}

Listing 14.2 Example result (source view without highlighting) delivered by Strathcona

14.2.2 Code Reuse with Code Conjurer

Many developers experience the feeling when implementing a piece of code that
“this must have been already implemented by someone else.” It is certainly possible
to find existing implementations of frequently used components by using a web-
based search engine, but this is typically a haphazard process that disturbs the
natural workflow of developers and requires the explicit cognitive decision to search
for reusable artifacts. In most cases, attempts to use “raw” code search engines
either lead to frustration because nothing reusable can be found or to a decrease
in productivity since searches take too much time. Moreover, developers often
miss possible reuse opportunities because they did not expect reusable artifacts
to be available. To support this “classic” code reuse scenario, the Code Conjurer
recommendation system nonintrusively suggests reusable artifacts by examining
developers’ code and autonomously querying the Merobase code search engine for
results [14]. As an example, imagine a developer writing a simple text editor that
requires the contents of a file to be loaded into a string object and the changes to be
written back to the file. Code Conjurer can help to find a routine that does all of this
based on the method declarations in the source code. For example, solely relying on
the information in Listing 14.3, Code Conjurer will autonomously query Merobase
for reusable artifacts without the user noticing.

Upon receiving the search results, the Code Conjurer client will then present the
developer with results of the kind shown in Listing 14.4.

This code recommendation may be directly reused in the developer’s project via
a simple drag-and-drop action, thus imposing no additional effort on the developer
related to searching and reusing code. In other words, Code Conjurer seamlessly
integrates code reuse into the “natural” workflow of software developers. In addition
to that, Code Conjurer integrates reuse with test-driven development: if developers



364 W. Janjic et al.

public class TextDocument {
public String loadFile(String filename) {
}

public void saveFile(String filename) {
}

}

Listing 14.3 Example class stub used by Code Conjurer for code recommendation

private String loadFile(String fName) throws Exception {
FileReader fr = new FileReader(fName);
BufferedReader br = new BufferedReader(fr);
StringBuffer sb = new StringBuffer();
String line;

while ((line = br.readLine()) != null) {
sb.ppend(line);

}
br.close();
fr.close();

return sb.toString();
}

Listing 14.4 Example result delivered by Code Conjurer

write JUnit tests before they write the actual code, Code Conjurer is able to find
reusable assets that fulfill the requirements manifested in the test cases and therewith
to recommend semantically matching components.

14.3 Foundations

Before a ROCR can be beneficial and reuse can actually be carried out, it is
necessary to have a critical mass of potentially reusable artifacts. These artifacts
need to be mined for interesting information and an effective search-engine that can
efficiently support searches needs to be built. But why do developers actually want
to find something reusable? The essential motivation for software search and reuse is
clearly captured by a frequently-cited quotation from Krueger [19] who was strongly
opposed to the continuous “reinvention of the wheel” in software development:

Software reuse is the process of creating software systems from existing software rather
than building software systems from scratch. [. . . ] Simply stated, software reuse is using
existing software artifacts during the construction of a new software system.



14 Reuse-Oriented Code Recommendation Systems 365

This simple vision was built upon the suggestions made even earlier by McIlroy
[23], which are often regarded as the starting point for research in the area of
software reuse. Since software reuse depends on the ability to discover reusable
artifacts, it is necessary to take a closer look at software search engines that form the
“backend” for most ROCR systems. In the past, the development of tools designed to
support reuse has usually been preceded or accompanied by the creation of a search
engine focused on the particular kind of reuse to be supported. This separation
of concerns helped their developers to ensure best quality in both fields: search
engines focusing on optimizing the processing of search queries and client systems
providing a convenient way for users to benefit from this functionality within their
development environments.

Before taking a closer look at the whys and hows of ROCRs, the following
section covers the basic foundations on code reuse itself as well as some basic
knowledge on software search engines, as a prerequisite for the creation of ROCR
systems. In this context, the term software search engine is used in a broader sense
than for just plain source code search since there are different categories/variants
of ROCR systems and not all of them focus purely on code; some also provide
automatically generated code recommendations based on the use of sophisticated
data mining techniques to harvest the knowledge embedded in existing code.

14.3.1 Software Reuse Process

In the literature, there are numerous publications dealing with software reuse, its
foundations, and possible improvements. For example, de Almeida et al. [7] define
a comprehensive framework that cleanly describes the key ingredients for software
reuse in general. Besides the need for a repository and search infrastructure, they
describe a generic software reuse process and various best practices for effective
software reuse. As with classical software development, for effective software reuse
it is necessary to have a specification of what should be built or reused as it forms the
foundation for a query to the search backend that looks for reusable candidates. The
simplest way to do this in a search engine is the “Google approach” of looking
for keywords like “getDistance int” to find a distance calculator, for example.
Nevertheless, such a simple hand-crafted query does not convey much information
beyond the meaning of names and will most probably lead to poor (i.e., rather
imprecise) results [13].

Thus, it is necessary to improve and enrich pure name-matching with additional
information from the context of the environment in which the reused asset should
be integrated. An overview of the improvements in precision that can be achieved
with enhanced query formulation is depicted in Table 14.1, which compares four
textual software search techniques. The table illustrates that all techniques except
the interface-based search deliver a large number of false-positives. Therefore, they
make it hard for developers to identify concretely reusable candidates without the
additional effort of examining many useless ones.



366 W. Janjic et al.

Table 14.1 Precision of code retrieval techniques [13]

signature matching keyword-based name-based interface-based

average precision 0.9% 16.3% 17.2% 53.7%
standard deviation 1.8% 21.9% 19.3% 22.4%

decision to 
search

description of 
request

searchrecommendation
selection

reuse & 
maintain

Fig. 14.1 Overview of the
microprocess of software
reuse. Ideally a software
reuse action is followed by a
new one

When the search returns a set of candidate results, these are usually not
directly fit for purpose for various reasons such as missing dependencies or API
mismatches. Thus, the process of software reuse involves their examination as well
as possibly their reengineering and adaptation to support seamless integration into
the developers’ software projects. By reusing a previously created piece of code, the
lifecycle of the reused asset is tied to that of the whole project. In other words,
the incorporated code is subject to modifications or refactoring within its new
environment and tests may reveal issue. All these aspects need to be reflected within
a ROCR system that ideally supports the full automation of this process as well as
the responses to developers’ inputs.

A simplified representation of the microprocess of software reuse is depicted
in Fig. 14.1. The process itself is generic and applies to manual as well as tool-
supported software search and reuse. The particular elements of this process are as
follows:

Decision. During a software project, developers decide to actively search for a
reusable asset. Therefore, they need to decide what kind of asset they want to
reuse. The different kinds of search scenarios/assets that users search for will be
described in the subsequent section.

Description. Once a developer has decided to look for reusable assets, a clear
description of what should be reused needs to be created. This specification
ideally should comprise all required information that is necessary to find useful
reusable assets.

Search. The description serves as the query to a search engine. Sophisticated
algorithms should be able to automatically refine and adapt queries in order to
filter out all useless artifacts and ensure that no useful ones are missed. This is
almost impossible without tool support, as it would consume a lot of time to



14 Reuse-Oriented Code Recommendation Systems 367

create a query, inspect the results, refine and re-issue the query, etc. This cycle
may have to be repeated several times and is obviously not very efficient when
done manually.

Selection. From the “raw” set of search results, the developer needs to choose
whether any of the results are useful and if there are different candidates that
fulfill the given criteria. In that case, the developer has to select the best match
from the list, which can be a very tedious task since it may involve trial uses of
a large number of possible candidates. If this is carried out manually, it involves
to copy of the code from the search engine, look for necessary dependencies,
eventually adapt the provided interface of a reused class and finally try it out.
This must be performed for every candidate in order to find the best matching
one.

Reuse and Maintain. Once a candidate has been selected for reuse and integrated
into the developer’s system, the microprocess of code reuse is completed.
Nevertheless, the reused candidates are now part of the developer’s project
development lifecycle and should be subject to all the same actions and processes
as the other parts of the system like testing and maintenance.

Although the microprocess of reuse is complete, Fig. 14.1 reflects that reuse
should not be a one-off event but should rather be continuously applied throughout
project development [e.g., 19].

14.3.2 Software Search

A recommendation system’s ability to provide reusable code assets to the developer
is mainly based on a repository of previously written code, which has been indexed
and made efficiently searchable. In the past, there have been many commercial
and scientific attempts to provide web-based search engines for code. Examples
include Google Code Search, Koders, Krugle, Sourcerer, and Merobase. However,
none of them ever reported significant numbers of users comparable to mainstream
search engines. In fact, Google even shut down their code search engine in 2012,
clearly illustrating that developers need some other form of support for code reuse.
This is where ROCR systems become an interesting alternative to web-based search
engines as they offer a large range of potential usage scenarios that are very similar
to the archetypal usage scenarios of software search described by Janjic et al. [17].

Detailed understandings of the different use cases for software search have only
emerged recently through studies and online surveys such as those described by
Umarji et al. [30]. A prominent example from this survey is the use of search
engines to provide guidance in the use of libraries—a topic that led to the creation
of a couple of recommendation systems that have received significant research
attention (like, e.g., Strathcona [11]) and their approaches inspired the official
Eclipse Code Recommenders project.



368 W. Janjic et al.

Software Life Cycle Phases

Analysis Design Implem. Test Deploy. Maint.Archetype

Code inspiration
Design prompter
Snippet reuse

Component reuse

Library reuse

Test case reuse

Libr. identification
Progr. understand.

definitive search speculative search

Fig. 14.2 Search scenarios in software engineering [adapted from 17]

Searches motivated by the goal of reusing code without modification are subject
to the following four categories:

• Code snippets, wrappers or parsers
• Reusable data structures, algorithms and graphical user interface (GUI) widgets

to be incorporated into an implementation
• Reusable libraries to be incorporated into an implementation
• A reusable system to be used as a starting point for an implementation

Searches motivated by the goal of finding reference examples are categorized by
the following four categories:

• A block of code to be used as an example
• Examples for how to implement a data structure, an algorithm or a GUI widget
• Examples for how to use a library
• Looking at similar systems for ideas and inspiration

Figure 14.2 visualizes the eight archetypal search scenarios assigned to the
traditional software development life cycle. Searches are grouped into speculative
or definitive searches, represented by dashed or solid lines respectively. While the
former are likely to occur early during the software development process, giving
users an idea about how to solve particular tasks, the latter are more likely to
occur late in the design and implementation phases when a concrete specification
of a required component is typically available. Since our focus is source code
recommendation, the tools presented in this chapter focus on recommending
artifacts originating from the following four archetypal usage-scenarios of software
search:

1. Snippet reuse
2. Component reuse
3. Library reuse
4. Test case reuse



14 Reuse-Oriented Code Recommendation Systems 369

Having clarified the motivation for software searches and having described con-
crete use cases in which they are typically applied, we deal with the characteristics
of ROCRs in general in the next section.

14.4 Common Characteristics of ROCRs

In this section, we discuss common characteristics of ROCR systems. These criteria
were largely distilled from previous research work capturing the “best practices”
that should be considered for newly built ROCR systems. It is important to
emphasize that the characteristics presented in this section are valid for all the
different categories of ROCR systems that we introduce hereafter.

14.4.1 Use Case Characteristics

The term software reuse is usually associated with the integration of existing
software (i.e., code) into a project under development utilizing a copy-and-paste
approach to reuse [20]. This is also known as code scavenging when contiguous
blocks of source code are copied to the new system [19]. The underlying goal of
these techniques, which are known by different names and are subsumed under the
term pragmatic reuse [10], is to copy as much code as possible from already existing
projects. However, this is not the only kind of reuse that is possible. There are many
other forms of software reuse like design scavenging, where large blocks of code
are reused and subject to major internal changes. This diversity in motivation for
reuse leads to different varieties of ROCR systems. ROCR systems were designed to
support other forms of reuse than just to copy pre-existing code. For example, some
systems recommend automatically created code fragments by leveraging knowledge
from pre-existing source code or other software artifacts.

Component Reuse

The most obvious use case for a ROCR system is to present previously written code
assets to developers. These artifacts may have different levels of granularity ranging
from code snippets, methods, and classes up to whole subsystems and systems.
A well known member of this family is Code Conjurer, which offers developers the
possibility to find reusable code artifacts from the Merobase component finder [18].
When using this Eclipse plugin in its proactive mode, developers are offered
suggestions for reusable methods and classes that fit into their programming context;
they can simply drag-and-drop the best match into their project. By offering the
possibility of automatic dependency resolution, where classes are accompanied by
those classes that they make use of (e.g., by instantiation or method invocation),
Code Conjurer even offers the automated reuse of (smaller) systems, which we call
components in the sense of component-based software development [1].



370 W. Janjic et al.

Library Reuse

Especially within object-oriented development projects, developers constantly
utilize prefabricated building blocks provided in the form of libraries by invoking
some of their functionality. This is very convenient at first sight, since libraries
form a cohesive piece of software that usually incorporates a lot of reusable objects
with their dependencies. Although they can make the development of new software
much easier, there are, however, numerous obstacles to their usage that every
developer experiences on a regular basis. Questions like “how is this library used,”
“which objects do I need,” “how are they created,” and “what sequence of calls do
I have to make” arise almost every time a new framework, API, or library is used.
Tools like Strathcona [11] or Prospector [22] explicitly address this problem by
recommending code snippets that show examples of how libraries can be used or
which call sequence is necessary to transform an object from one into another type
(e.g., a File into an AbstractSyntaxTree).

Test Case Reuse

Modern code search engines index vast quantities and varieties of reusable code
artifacts. This also includes a large number of test cases along with production
code. For instance, JUnit tests are written as plain Java code and can even be
built into and shipped with a component. This opens up another form of code
recommendation—the recommendation of test code for a newly created system.
Appropriate recommendation techniques for JUnit test code were introduced by
Janjic and Atkinson [16]. They focus on predicting the best possible “next test”
based on a repository of previously written test cases and the knowledge extracted
from them. Such systems do not recommend reusable code per se, but generate
reusable test code by assembling the previously analyzed knowledge bound up in
existing tests and their accompanied production code.

14.4.2 Design Characteristics

Building ROCR systems is a challenging task. Users are sensitive to the usability
of such systems and the quality of the recommendations they provide. If ROCR
systems do not work or behave the way that users expect them to, if they start to
annoy developers with too many suggestions—especially if these are useless or
incorrect—they can quickly get deactivated or uninstalled. To name an example,
a “Clippy-style” intrusive user-interface will most likely cause users to dislike even
the best system (see Murphy-Hill and Murphy [26] in Chap. 9), since it disturbs
them in their primary tasks and forces them to additional cognitive decisions
combined with additional effort (even if this only means to move/click the mouse to
hide an unsuitable recommendation). Therefore, the first important characteristic of
a ROCR system is how these systems should be integrated into users’ development
environments.



14 Reuse-Oriented Code Recommendation Systems 371

Integration and Usability

An environment for code reuse (sometimes also called software reuse environ-
ment) [7] should ensure full integration of the reuse process into developers’
personal development processes and IDEs. To be successful, the microprocess of
code reuse, which comprises similar tasks to classic software development, has to
be non-intrusively adopted and integrated into the development process of the users’
software projects. For a ROCR system this means that it should be unnoticeable
to the developers unless it has something useful to recommend. And even in the
case that the system can be helpful it must make its recommendation as clearly,
concisely, and unobtrusively as possible. ROCR systems must also make it easy for
developers to reject the recommendation and continue their work with no additional
effort should they decide that the suggested recommendations are not of interest.

In Chap. 9, Murphy-Hill and Murphy [26] present the general characteristics of
recommendation systems’ user interfaces (UIs) in more detail. The characteristics
presented there almost fully apply to ROCR systems as well, so we do not repeat
them here.

Autonomous Background Agent

One of the key problems of web-based code search engines is that the developers
usually have to leave their current working environment (i.e., the active code editor
and project), which obviously interrupts their workflow. Moreover, because queries
have to be defined in a completely different environment (the web-browser) without
access to the immediate context of the user’s work, there is very little space to for-
mulate queries that fully match the developer’s goal. In addition, developers have to
understand how a search engine works to be able to formulate adequate queries that
deliver precise results. And, last but not least, developers have to invest a significant
amount of effort to manually evaluate and integrate reusable assets into their new
applications. In particular, to try out any of the recommendations, users have to
switch between (at least) two windows, and may even lose track in the process.

Reuse-oriented code recommendation systems should therefore operate in a com-
pletely automatic manner in the background, constantly monitoring the developers’
actions. More specifically, an autonomous background agent process is required to
observe all changes made to the system under development and to proactively decide
when to trigger a search for recommendable artifacts. This should happen without
any user involvement. A ROCR system may in fact be much better at timing a search
than the user would be, as it can take into account different factors like network and
system load, the time necessary for the creation of the recommendations, etc. If a
recommendation system needs some time to examine recommendations from a list
of search results for fitness for purpose or has to create the recommendations on
the fly by extracting information from the search, it makes even more sense that
it initiates the recommendation process at the earliest possible moment so that the
recommendations are ready should the user request them.



372 W. Janjic et al.

The timing and smartness of the background agent in issuing searches and
providing valuable information to the search engine is a key feature of the rec-
ommendation system. This proactive behavior therefore needs to be well designed
since it plays a major role in determining how a ROCR system is perceived by its
users.

Context Awareness

In order to be able to efficiently find potential recommendations, a ROCR system
needs to access as much information about the development context as possible.
Depending on the kind of recommendation system, context awareness may range
from the immediate environment of the cursor to the source code of the whole
project. As the ability to analyze context data is an important driver to the
proactive behavior of a recommendation system, it should be directly embedded
into a developer’s working environment with full project access. This enables the
aforementioned background agent to autonomously decide, when to issue searches
and to deliver recommendations to the system’s user.

Traditional code search engines usually offer users a small text field where they
can write a short query describing the desired reusable assets. This query can either
be in the form of a sequence of keywords or a sophisticated query language to
provide a full description of the interface the requested assets should provide. While
the former case is quite easy to use, the latter involves additional effort in the
formulation of the query. As the evaluations in Table 14.1 show, keyword-based
searches tend to be rather imprecise, while the interface-based ones seem to provide
more precise search results. Further manual refinements of a query may make the
whole searching process more time-consuming and inefficient. This can frustrate the
user who, dissatisfied by this experience, might be tempted to revert to “reinventing
the wheel” again.

To address this problem, context aware ROCR systems should remove the
responsibility for query formulation from developers, instead performing such tasks
on their behalf. In conjunction with a background agent, context awareness allows
the system to perform search tasks hidden from the users’ view. Depending on
the kind of code recommendation system, context awareness may have different
foci. One application is when a recommendation system aims at simplifying API
usage of a framework or library. In this case the recommendation system is usually
more interested on the immediate context of the cursor than on other classes in the
developers’ project. More specifically, it uses the last few lines created to issue a
search based on such information as the type of a newly instantiated object (i.e.,
source type), method invocations associated with that object and the allocation of a
method’s return value to another new object (target type). Another example of the
usage of context awareness can be found in Sect. 14.5 where Code Conjurer [14] is
used to illustrate how code recommendation systems can be implemented.



14 Reuse-Oriented Code Recommendation Systems 373

Since the possibilities for investigating the context of the code under development
are uncountable and mining it for relevant information during query formulation is
a time consuming task, this process has to be carried out automatically if it is to be
efficient. In Chap. 3, Menzies [24] provides further insights into the topic of data-
mining.

Evaluation and Ranking

To be useful for developers, recommendation systems in general and ROCR systems
in particular should not present the raw data acquired from the search backend,
but should provide a meaningful ranked overview of the recommendations. The
consequences of providing the user with incorrect or unordered recommendations
are similar to those mentioned in the section on user-interface characteristics.
Furthermore, following the ideas of Brun et al. [6], the users of a recommendation
system should not be required to inspect large numbers of options before they
(hopefully) find a useful asset. Therefore the IDE should autonomously perform an
evaluation of the consequences of the application of the assets within the developers’
context. This approach is called speculative analysis and it enables ROCR systems
to investigate and predict the consequences of the inclusion of any of the suggested
options in the developer’s project.

Implementing this approach, however, only does half the work since the infor-
mation obtained through speculative analysis is just a basis for ranking the
recommendations. The detailed ranking criteria strongly depend on the focus of the
ROCR system and need to be optimized on a domain-by-domain basis. If the reuse
system is used in conjunction with a private reuse repository, it is also possible to
filter out the classes and types that are in the so-called reuse-by-memory space of a
developer and thus need not be recommended by the system [31]. This is done by
CodeBroker, for instance, where the system removes recommendations well-known
to the developer to save time.

Ready on Demand

The introduction to this chapter already mentioned the dilemma of make-or-reuse
from which code search and reuse considerably suffered in the past. Yet, it is still a
challenge to convince developers that this approach can make them more efficient
during system development since issuing a query to a search engine typically comes
at the price of interrupting their cognitive work on a program. In contrast, ROCR
systems do not create this problem since they are integrated into the developers’ IDE
and have to be ready on demand in order to be successful. Imagine a reuse-oriented
recommendation system that is tightly integrated into the code editor and which



374 W. Janjic et al.

forces the developer to stop typing while it is performing a time consuming task.
This would result in immediate deactivation of the system and adoption of the make
option described above.

To avoid such situations, ROCR systems have to be ready on demand and must
not cause any delays on the developer’s work. If they cannot deliver any appropriate
recommendations in a particular situation, they need to stay silent and invisible.

Traceability

Recommendation systems in general and code recommendation systems in partic-
ular need to be easy to understand and self-explanatory when they are used. The
aforementioned requirement of integrating the system into the developer’s IDE
is a key consequence of this. Thereby a tight integration means as well, that the
usage, the “look-and-feel” and the behavior of the recommendation system has to
be similar to what developers are used to from their IDE. No new design or usage
metaphors should be imposed, as they may impose an extra hurdle to the usage of
the system.

Beyond plain UI design criteria, however, it is also important that the recom-
mendations themselves are understandable and reasonable from the developers’
point of view. Recommendation systems should present their information in a clean
and transparent manner so the users can clearly comprehend their value. This also
involves the aforementioned ranking, where users should easily understand why an
option outranks others and in the ideal case should also be able to adapt the ranking
criteria to their needs. When a recommendation is finally integrated into the system
under development, the system should highlight that fact and should not perform
any action that cannot easily be undone and observed by users in case that the
reused component needs to be removed from the system at a future point in time
for unforeseen reasons.

Summary

To sum up the characteristics discussed in this section, imagine a ROCR system
as an adviser that provides a developer with an easy to use interface for the most
sophisticated search engines and mining tools available. It must silently monitor
the developers’ activities and present recommendations only when there is a high
likelihood that they will actually be useful and fit into the current system in an
effective way. “Less is more” is probably also an important motto for a ROCR
system, since too much visible activity can easily annoy users and cause them to
switch off all or part of the functionality. The subsequent section discusses how to
tackle this none trivial challenge from an implementation point of view.



14 Reuse-Oriented Code Recommendation Systems 375

14.5 Implementing ROCRs

After having laid out the basic foundations and having discussed the generic
characteristics of ROCR systems, this section focuses on how such systems can be
implemented for, and incorporated, into modern IDEs. More specifically, it provides
an overview of the architectural organization of a recommender-enhanced IDE and
briefly touches on the question of which technologies can be helpful to build ROCR
systems.

14.5.1 Architecture of ROCR Systems

A ROCR system is supposed to automate the micro-process of code reuse. There-
fore, it is not composed of a single building block, but synthesizes various modules
that need to fit together in order to create a ROCR system as illustrated in Fig. 14.3.
Let us take a closer look at the individual parts of such an architecture and describe
them in more detail by reviewing the process steps outlined previously in Fig. 14.1:

decision ! description ! search ! selection ! reuse and maintain

While the introduction outlined this process in general terms, the following
reflects it in the specific context of ROCR systems.

Decision. A ROCR system is integrated into the IDE of the developer and
includes an autonomous background agent. The system constantly monitors
developer actions within the IDE and autonomously decides when it should
trigger the process of searching for a recommendation.

Description. Considering the full context of the developers’ projects, the ROCR
system collects all relevant information that is necessary to create a description
of the current task for which it aims to create a reuse recommendation. The result
is the formulation of a query that can be sent to the underlying search engine.

Search. Utilizing the information gathered from the project, the search infrastruc-
ture performs a search for reusable assets. ROCR systems take into account that
the results at that stage can only be regarded as raw material (i.e., candidates)
for further examination in the subsequent selection process and are by no means
ready to use.

Selection. The selection part of the considered microprocess can also involve a
conversion step in the context of ROCR systems. Since these are, as discussed
before, not solely focused on copy-and-paste reuse of code, in this step they
may also generate code recommendations from information contained in the
search results. At this stage, the ROCR system automatically evaluates the set
of candidates to provide a ranked selection of recommendations. Based on the
information gained from this, the system should rank the recommendations and
reject those that are presumably not useful to the developer. This ensures that the



376 W. Janjic et al.

HelloTest.java UML.diagHello.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

public class Hello {

   /*
    * Hello Recommendations Example
    *
    */

   public void sayHello() {

}

Complete stub
Insert method
Complete class
System.out.println
Insert JFrame

String hello = "Hello" +
               "World!";

System.out.println(hello);

1
2

3

4
5

Reuse-Oriented
Code-Recommendation

Systems

Fig. 14.3 Architectural overview on a ROCR system

users of the system get a precise list of recommendations from which they can
choose the most beneficial for their purposes.

Reuse. When a recommendation is selected it becomes part of the developer’s
system. The recommended asset is integrated into the development lifecycle
of the project and becomes subject to the same quality assurance criteria and
maintenance tasks as the rest of the system under development.

This generic architecture is naturally only an outline of the specific architec-
ture for any single ROCR system implementation tailored to a specific usage
scenario. Possible refinement options may address the inclusion of user feedback
on recommendations, the association of the recommendations with artifacts from
the development context (e.g., for caching purposes), social aspects like reporting
of users’ recommendations of reused assets to other users [e.g., 4] and reporting
changes to reused assets back to the original source, etc. Some of these aspects are
addressed in the discussion in Sect. 14.6.



14 Reuse-Oriented Code Recommendation Systems 377

14.5.2 Implementation Outline

As with any software system, the implementation of a ROCR system must be driven
by the specification of functionality the system should deliver. In our case, this
is the recommendation of any form of source code that is automatically derived
from previous implementations. The Eclipse plug-in Code Conjurer [14] therefore
serves as a reference system, which supports the reuse of Java code based on
interface-based or test-driven searches. The system utilizes the Merobase code
search engine2 and recommends reusable code assets that fit into the context of
the class under development. Developers may choose to integrate only portions of
the recommendations into their project (by dragging a method into a class) or to
reuse a class with all its dependencies and, if necessary, appropriate adapters.

Background Agent for Search Initiation

The decision when to search for recommendable assets is the responsibility of
the autonomous background agent that “intelligently” triggers the recommendation
process. In this context, “intelligent” means that it should perform its task in a
smart way in that sense that not every event, such as a keystroke, should initiate
a search and drain the resources of the development system or the network and
search infrastructure.

As Code Conjurer is a Java-based, code-centric tool, its background agent
is merely activated when a developer is working in a Java Editor and remains
inactive otherwise. If a developer changes any structural property of the class under
development, such as any of its interface defining parts, the system switches to a
state where it waits for further user action within a given timeframe. If no further
user interaction is observed, the system initiates a search in due consideration of the
development context. Therefore, Code Conjurer examines the development context
looking for tests that accompany the class under development and if it finds any, it
accordingly creates a query and issues a search to the search infrastructure.

Thus, the “smartness” of a background agent for ROCR systems has several
facets. It must be able to construct a query that goes beyond the information a user
would provide to a code search engine, issues queries autonomously (which helps to
prevent delays induced by the search infrastructure), and it considers the limitation
of resources by incorporating a grace timer for user interaction. This is introduced
to prevent the system from initiating too many search requests one after another that
would either be carried out in parallel with minimal differences in content or would
have to be frequently canceled, both resulting in a waste of resources.

2The Merobase repository of reusable assets contains approximately 2.5 million Java source files
with around 22 million methods [18].



378 W. Janjic et al.

Search Infrastructure

There is an obvious synergy between search engines and recommendation systems.
As previously mentioned, on the one hand practically all ROCR systems have user
interfaces, which are integrated into an IDE, but need to rely on some kind of search
engine (or database) as their source of information. Code search engines on the
other hand are good in delivering a large amount of information, but often require
relatively complex queries that need to be manually prepared by users. Hence,
simply by providing a semi-automatic and context aware way of invoking search
engines, recommendation systems already improve the reuse process.

To a certain extent, the creation of search engines nowadays is a straight-
forward task and there are many tutorials available that describe this process in
detail. Besides the use of relational databases (which, e.g., also underpinned the
Sourcerer [21] code search engine), document-driven full-text databases such as
Lucene or MongoDB have recently gained a lot of popularity in projects like Code
Recommenders [5], Merobase [18], and Sentre [16]. Since it is very important for a
recommendation system to be responsive and provide recommendations to users on
an ad hoc on-demand basis, it is important that the underlying search infrastructure
supports this goal.

The search infrastructure can be distributed in many different ways. If the
recommendations are created from a small and static pool of data, it is possible
to ship the search infrastructure with the recommendation system itself. This is,
however, the least common case, since the code base from which the search indices
are created usually changes rapidly (after all, it primarily consists of source code)
and search infrastructure should aim to incorporate short update cycles. Therefore, it
is helpful to separate the search infrastructure from the ROCR system and to locate
it on a centrally maintained and operated server that provides enough resources to
store the data and execute the updates as well as the searches. Additionally, another
positive effect of this separation is the ability to store user feedback from the reuse
process to improve the user experience of all clients.

In our exemplary implementation, Code Conjurer queries the Merobase search
engine via a web service in order to receive potentially reusable code assets.
Merobase itself is a web application implemented using J2EE utilizing Lucene and
runs on a JBoss application server. The queries arriving at the server are translated
(parsed) into the Lucene query language in order to use Lucene to drive the code
search process [12]. The results of a search (which usually takes less than a second)
are immediately returned to Code Conjurer for further analysis.

Selection and Ranking of Recommendations

When receiving the search results, a recommendation system should evaluate and
process them before they are presented to the user. This helps to elevate the users’
perception of the ROCR system and makes its application more effective and
efficient. The context awareness of ROCR systems is one of the key features that



14 Reuse-Oriented Code Recommendation Systems 379

make them superior to traditional search engines by enabling them, for instance, to
autonomously issue queries or to evaluate the effects of accepting a recommendation
before it is actually selected. In the literature, the latter is referred to as speculative
analysis [6].

Code Conjurer supports speculative analysis, when it comes to the recommenda-
tion of JUnit test cases, that is, test code [16]. In general, there are two main ways
in which this feature can be implemented for classic code recommendation:

Distance Measure. A naive measure that can be used to rank the results is
a distance metric between an issued query and the results delivered by the
search backend. It subsumes a comparison of the interface-description provided
by the class under development with the interface-description of the elements
in the result list. The smaller the deviation of a reuse candidate’s interface from
the developer’s class’ interface, the higher the ranking of the particular candidate
in the list of recommendations. As an example, consider a generic class that
comprises a set of methods with input parameters. If the interface-description of
this class perfectly matches the interface-description of a candidate the distance
between them is zero and thus the candidate will be ranked highly. However, if
only the class names of the query and the candidate match, it is assigned a low
ranking.

Test-Driven Reuse. The main difference between code and other (textual) doc-
uments is that code is executable. As described in the characterization of
the background agent Code Conjurer therefore uses its context awareness and
examines the project’s workspace in order to look for test cases that have
been written for the class under development. If the system is able to identify
accompanying tests, they are executed against the reuse candidates and used
as a means of evaluating the candidate’s fitness for purpose. Thereby a set of
running candidates is obtained and the system can distinguish between those that
provide an interface that matches the one defined in the test and those that need an
adapter for their interface in order to execute tests. In both approaches, additional
metrics like LOC, cyclomatic complexity and execution times can also be used
to influence the final ranking.

Convenient Integration of Recommendations

In Chap. 9, Murphy-Hill and Murphy [26] discuss the importance of an effective
user-interface design and of making recommendation systems as easy to use and
access as possible. This applies in particular to ROCR systems, since developers
can quickly get frustrated by popup-windows or other UI effects that disturb their
creative work and distract them from their main task—the creation of software.
Thus, the recommendations should seamlessly integrate into the IDE and be intuitive
to use as well as to not use. As mentioned before, an example of how this can be
achieved is shown in Fig. 14.4, where the recommendation system is integrated into
the auto-completion feature of the IDE.



380 W. Janjic et al.

HelloTest.java UML.diagHello.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

public class Hello {

   /*
    * Hello Recommendations Example
    *
    */

   public void sayHello() {

}

Complete stub
Insert method
Complete class
System.out.println
Insert JFrame

String hello = "Hello" +
               "World!";

System.out.println(hello);

Fig. 14.4 Recommendations integrated in the IDE’s auto-completion

In this case, the system does not distract the developer with unwanted popup
windows and there is no need to activate any special views. Moreover the recom-
mendations themselves can be examined using the arrow keys, and if users want
to use the recommendation they can simply integrate it by pressing the enter key.
Similarly, discarding the recommendations only involves the pressing of the escape
key. This is a very convenient way for developers to interact with the system that
takes into account the fact that during the creation of code users usually have their
fingers on the keyboard and are not in contact with other input devices.

Code Conjurer also provides a convenient way of integrating reuse candidates
in the system under development. If a reusable asset calls some functionality of
another class or object, the system tries to automatically resolve this dependency
and offers the developer the option of integrating that artifact into the system as well.
In addition to that, it automatically adapts search results to the developer’s context:
if a reuse candidate in test-driven search provides a different interface to the one
required by the test, an adapter generator tries to produce the necessary glue code to
allow the candidate to be invoked. If this is successful, Code Conjurer supports the
automatic integration of the component and the adapter into the developer’s Eclipse
workspace.

14.6 Discussion

The principles, practices, and examples presented in this chapter provide a basic
overview of ROCR systems and their creation. Many of the characteristics described
are more or less “best practices” distilled through a constant process of improvement



14 Reuse-Oriented Code Recommendation Systems 381

and learning about how these systems can be improved and enriched. This short
section is intended to take a look at the implications arising from the usage of ROCR
systems and point to possible improvements in future systems.

14.6.1 Responsibility

Software development is a labor-intensive task, involving creativity and endurance.
It is thus unfortunate that developers continue to invest a huge amount of effort in
re-creating similar code over and over again. Software reuse, however, promises to
ease this burden on developers and to provide more room for the creation of truly
new components. This is, nevertheless, only one side of the coin, since the reuse of
code imposes a great deal of responsibility on developers.

Although modern systems are able to perform initial checks on the reused code
like filtering malicious code (as it is performed, for instance, with the server-side
execution in Code Conjurer) or evaluating the system’s state by applying speculative
analysis, developers have to ensure that the recommended and reused code does
not introduce any (possibly malicious) unwanted behavior into the system under
development. Furthermore, they need to inspect the code for any potentially harmful
modules and ensure that the quality of the code at least matches that of a “self-made”
system.

As explained before, when integrated into the system, the recommended code
assets have to adhere to the same process and quality standards as the code
written by the project developers themselves. The developers must understand what
the reused code does, which beside code-inspection involves reading additional
comments and documentation about the component at hand and, as a side effect,
identifying possibly superfluous statements, that is, dead code.

An example of how this can be implemented is provided by Code Conjurer,
which supports the identification of superfluous parts of code in reuse candidates.
During a test-driven search the system inspects the reuse candidates and examines
whether dead-code can be removed before compilation. If the reused component
executes in the context of the developer’s test case, the system allows only the
necessary parts of the reuse candidate to be integrated. In addition, it provides
dependency resolution when necessary and cleans up imports and declarations after
the code has been inserted into the new system.

Although parts of the code inspection and cleanup actions have been considered
and partially implemented in contemporary tools, in general the question of quality
assurance in ROCR systems has been somewhat neglected in the past.

14.6.2 Feedback

In the same way that context awareness is critical to the processes of query
formulation and result evaluation, the collection of user created feedback is critical
to the quality and improvement of future recommendations provided by ROCR



382 W. Janjic et al.

systems. This not only involves processing intentional feedback from users like the
manual rating of a recommended asset. It also means collecting indirect feedback
derived from the users’ behavior and interaction with the system under development.

As an example, one aspect of (intentional) user feedback includes ideas from
social media and networks. Users may want to tell other developers within their
project that a particular piece of code they reused does a great job and that
they recommend its reuse. Additionally, this may help to motivate other users in
their decision to exploit reuse in their projects. Developers of ROCR systems are
therefore encouraged to enable users to share their experience with the system and
the code assets it recommends.

Information acquired from automatically collected feedback can help to adjust
the process of evaluating and ranking the retrieved results of the search, which
usually relies on algorithms that grade the results with the help of a set of weighted
criteria. Ideally, when the system offers a list of ranked recommendations to its
users, the first item on the list should be the most suitable. It may, however,
happen that users pick some other candidate from the list in accordance with their
own evaluation criteria. Although this is not likely to be an issue for a small list
of recommendations, the users’ confidence in the recommendation system would
be higher if it learned from their decisions and improved its recommendations
accordingly. To achieve this, the system may for instance analyze how the different
internal ranking criteria can be re-adjusted to put a user’s choice first in the list and
store this information in a data model for learning algorithms.

In addition, it is important to keep in mind that the process of code reuse
also involves the maintenance of the integrated assets. This means, that users will
invariably create new versions of the code recommended by the ROCR system
by fixing bugs, improving efficiency, . . . These changes can be monitored and
processed in order to archive the new version of the code and provide it to other
users who reused an older version. In this way the overall quality of the code in
software projects applying reuse should rise, since the more often a piece of code is
reused the more it will be refined and cleaned of bugs.

14.6.3 Privacy

The overall application of ROCR systems, as well as the specific issue of user
feedback, cannot be considered without a look at privacy issues. The following list
of issues provides an impression of some problems that may arise.

Query Formulation. Whenever a ROCR system relies on a server-side search
infrastructure, the queries extracted from the developer’s code are sent to the
network and thus potentially exposed to others. Users need to be aware of this and
ROCR systems should incorporate mechanisms to establish a trust relationship
with developers. The wide range of possibilities includes the anonymization of
user-related information (i.e., removal of user-id, client IP, etc.) in the server logs,



14 Reuse-Oriented Code Recommendation Systems 383

as well as the usage of secure connections. In addition, the query may contain
sensitive data (like the inner design structure of a developer’s system) that should
not be stored or exposed to others.

Test-Driven Reuse. With the availability of test-driven reuse, a balance has to be
found between the aforementioned privacy rights of the users of a system and the
protection against attacks. Since test-driven reuse involves the execution of the
user’s code (on the server infrastructure in the case of Code Conjurer), it must be
possible to track the sources of possibly malicious code and intentional attacks.

Versioning. Automating the tracking of versions may not be as easy as it seems
at first sight. Reused artifacts may become deeply integrated into a developer’s
system and thus be tightly connected to the intellectual property of the developer
and/or owning company. Since not all open-source licenses have a strong
copyleft, users might not want to share their valuable code and thus it may be
hard if not impossible to track changes just to the reused code without revealing
more code from the project.

14.7 Conclusion

Software engineering has benefited greatly from the open source movement,
especially the nascent genre of ROCR systems. Without open source it would have
been much harder if not impossible to build the ROCR systems described in this
chapter since a key prerequisite for them is a large set of source code that can be
used as a basis for recommendations. As discussed, the ROCR systems that have
been built to date index all kinds of software artifacts ranging from small code
snippets, API usage, coarse-grained components and even test cases.

All tools presented in this chapter generally need to support the simplified
software reuse process presented in Sect. 14.3.1 that requires developers to carry
out five steps: First they need to consciously decide to reuse an artifact. Once this
decision has been made they need to describe what they are looking for so that the
search tool is able to find candidates for reuse. In most cases, a search will deliver
a number of candidate results so that the next step is to select and tailor the most
useful artifact. Once it has been integrated into the project, it needs to be maintained
and updated like all other artifacts in the developer’s code base.

In principle, a full-fledged ROCR system should be able to support all these steps
automatically so that the developer is not burdened with them. This means that the
system needs to monitor the developer’s activities and must be able to independently
decide when it is worthwhile to execute a search query. Obviously, it needs to be able
to generate an appropriative query for the underlying search engine and rank the
results according to their usefulness for a given context. Ideally, the developer then
simply needs to choose the most appropriate result and the corresponding artifact
is then integrated into the project automatically by the ROCR system. In a perfect
world, the ROCR system would keep track of changes to the reused artifact from
then on and would at least notify the developer when they occur.



384 W. Janjic et al.

A ROCR system basically consists of two main parts, namely a search engine or
repository hosting the code base used to search for recommendations (the back-
end if you will) and the actual recommendation engine (the front-end) that is
responsible for the user and IDE interaction. If stable, generic, and mature software
search engines were available it would be possible to drive several recommender
systems from one search engine. However, all ROCR systems created in the last 15
years have been built in the context of academic theses and incorporated their own
specialized search engine. As a result, many of them are no longer operational due
to the rapid change in the landscape of code search and reuse technologies. Hence,
building novel and more sustainable ROCR systems that finally accomplish the
transition to a production-ready tool is still a challenge for an upcoming generation
of students or industrial developers. We hope this chapter will provide them with
the historical context and background knowledge needed to create them.

References

1. Atkinson, C., Bostan, P., Brenner, D., Falcone, G., Gutheil, M., Hummel, O., Juhasz, M.,
Stoll, D.: Modeling components and component-based systems in KobrA. In: Rausch, A.,
Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example.
Lecture Notes in Computer Science, vol. 5153, pp. 54–84. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85289-6_4

2. Atkinson, C., Hummel, O., Janjic, W.: Search-enhanced testing. In: Proceedings of
the ACM/IEEE International Conference on Software Engineering, pp. 880–883 (2011).
doi:10.1145/1985793.1985932

3. Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., Lopes, C.: Sourcerer:
a search engine for open source code supporting structure-based search. In: Companion to
the ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 681–682 (2006). doi:10.1145/1176617.1176671

4. Begel, A., Phang, K.Y., Zimmermann, T.: Codebook: discovering and exploiting relationships
in software repositories. In: Proceedings of the ACM/IEEE International Conference on
Software Engineering, pp. 125–134 (2010). doi:10.1145/1806799.1806821

5. Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion
systems. In: Proceedings of the European Software Engineering Conference/ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 213–222 (2009).
doi:10.1145/1595696.1595728

6. Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Speculative analysis: exploring future develop-
ment states of software. In: Proceedings of the FSE/SDP Workshop on the Future of Software
Engineering Research, pp. 59–64 (2010). doi:10.1145/1882362.1882375

7. de Almeida, E.S., Alvaro, A., Lucrédio, D., Garcia, V., de Lemos Meira, S.R.: RiSE
project: towards a robust framework for software reuse. In: Proceedings of the IEEE
International Conference on Information Reuse and Integration, pp. 48–53 (2004).
doi:10.1109/IRI.2004.1431435

8. Fischer, G., Henninger, S., Redmiles, D.: Cognitive tools for locating and comprehending
software objects for reuse. In: Proceedings of the ACM/IEEE International Conference on
Software Engineering, pp. 318–328 (1991). doi:10.1109/ICSE.1991.130658

9. Frakes, W.B., Pole, T.: An empirical study of representation methods for reusable software
components. IEEE Trans. Software Eng. 20(8), 617–630 (1994). doi:10.1109/32.310671



14 Reuse-Oriented Code Recommendation Systems 385

10. Holmes, R., Walker, R.J.: Systematizing pragmatic software reuse. ACM Trans. Software Eng.
Meth. 21(4), 20:1–20:44 (2012). doi:10.1145/2377656.2377657

11. Holmes, R., Walker, R.J., Murphy, G.C.: Approximate structural context matching: an
approach to recommend relevant examples. IEEE Trans. Software Eng. 32(12), 952–970
(2006). doi:10.1109/TSE.2006.117

12. Hummel, O., Atkinson, C., Schumacher, M.: Artifact representation techniques for large-scale
software search engines. In: Sim, S.E., Gallardo-Valencia, R.E. (eds.) Finding Source Code on
the Web for Remix and Reuse. Springer, Heidelberg (2013). doi:10.1007/978-1-4614-6596-
6_5

13. Hummel, O., Janjic, W., Atkinson, C.: Evaluating the efficiency of retrieval methods for com-
ponent repositories. In: Proceedings of the International Conference on Software Engineering
and Knowledge Engineering, pp. 404–409 (2007)

14. Hummel, O., Janjic, W., Atkinson, C.: Code Conjurer: pulling reusable software out of thin air.
IEEE Software 25(5), 45–52 (2008). doi:10.1109/MS.2008.110

15. Janjic, W.: Realising high-precision component recommendations for software-development
environments. Diploma thesis, University of Mannheim (2007)

16. Janjic, W., Atkinson, C.: Utilizing software reuse experience for automated test recommenda-
tion. In: Proceedings of the International Workshop on Automation of Software Test (2013)

17. Janjic, W., Hummel, O., Atkinson, C.: More archetypal usage scenarios for software search
engines. In: Proceedings of the Workshop on Search-Driven Development: Users, Infrastruc-
ture, Tools, and Evaluation, pp. 21–24 (2010). doi:10.1145/1809175.1809181

18. Janjic, W., Hummel, O., Schumacher, M., Atkinson, C.: An unabridged source code dataset for
research in software reuse. In: Proceedings of the International Working Conference on Mining
Software Repositories, pp. 339–342 (2013)

19. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992).
doi:10.1145/130844.130856

20. Lange, B.M., Moher, T.G.: Some strategies of reuse in an object-oriented programming envi-
ronment. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing
Systems, pp. 69–73 (1989). doi:10.1145/67449.67465

21. Lazzarini Lemos, O.A., Bajracharya, S., Ossher, J., Masiero, P.C., Lopes, C.: A test-driven
approach to code search and its application to the reuse of auxiliary functionality. Inform.
Software Tech. 53(4), 294–306 (2011). doi:10.1016/j.infsof.2010.11.009

22. Mandelin, D., Xu, L., Bodík, R., Kimelman, D.: Jungloid mining: helping to navigate the API
jungle. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 48–61 (2005). doi:10.1145/1065010.1065018

23. McIlroy, M.D.: Mass-produced software components. In: Software Engineering: Report on a
Conference by the NATO Science Committee, pp. 138–155 (1968)

24. Menzies, T.: Data mining: a tutorial. In: Robillard, M., Maalej, W., Walker, R.J.,
Zimmermann, T. (eds.) Recommendation Systems in Software Engineering, Springer,
Heidelberg, Chap. 3 (2014)

25. Mili, A., Mili, R., Mittermeir, R.T.: A survey of software reuse libraries. Ann. Software Eng.
5, 349–414 (1998). doi:10.1023/A:1018964121953

26. Murphy-Hill, E., Murphy, G.C.: Recommendation delivery: getting the user interface just right.
In: Robillard, M., Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems
in Software Engineering, Springer, Heidelberg, Chap. 9 (2014)

27. Reiss, S.P.: Semantics-based code search. In: Proceedings of the ACM/IEEE International
Conference on Software Engineering, pp. 243–253 (2009). doi:10.1109/ICSE.2009.5070525

28. Robillard, M.P., Walker, R.J., Zimmermann, T.: Recommendation systems for software
engineering. IEEE Software 27(4), 80–86 (2010). doi:10.1109/MS.2009.161

29. Seacord, R.: Software engineering component repositories. In: Proceedings of the International
Workshop on Component-Based Software Engineering (1999)



386 W. Janjic et al.

30. Umarji, M., Sim, S.E., Lopes, C.V.: Archetypal internet-scale source code searching. In:
Proceedings of the IFIP World Computer Conference, IFIP—The International Federation for
Information Processing, vol. 275, pp. 257–263. Springer, Heidelberg (2008). doi:10.1007/978-
0-387-09684-1_21

31. Ye, Y.: Supporting component-based software development with active component repository
systems. Ph.D. thesis, Department of Computer Science, University of Colorado, Boulder
(2001)

32. Ye, Y., Fischer, G.: Supporting reuse by delivering task-relevant and personalized information.
In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 513–
523 (2002). doi:10.1145/581339.581402


