
Evaluating the Efficiency of Retrieval Methods for Component Repositories

Oliver Hummel, Werner Janjic & Colin Atkinson
Chair of Software Technology, University of Mannheim

{hummel, wjanjic, atkinson}@informatik.uni-mannheim.de

Abstract
Component-based software reuse has long been seen

as a means of improving the efficiency of software
development projects and the resulting quality of software
systems. However, in practice it has proven difficult to set
up and maintain viable software repositories and provide
effective mechanisms for retrieving components and
services from them. Although the literature contains a
comprehensive collection of retrieval methods, to date
there have been few evaluations of their relative
efficiency. Moreover, those that are available only study
small repositories of about a few hundred components.
Since today’s internet-based repositories are many orders
of magnitude larger they require much higher search
precision to deliver usable results. In this paper we
present an evaluation of well known component retrieval
techniques in the context of modern component
repositories available on the World Wide Web.

1. Introduction
The basic motivation for software reuse is simple. It is

about “creating software systems from existing software
rather than building software systems from scratch” as
Krueger [1] put it in 1992. It is expected to reduce the
time needed to developed software applications and
improve the quality of delivered software products.
Krueger’s definition includes the potential reuse of any
kind of asset during a software development process.
Approaches like product line engineering [3] and design
patterns [4] have proven particularly successful in this
regard. However, the original vision presented by
McIlroy [5] in 1968 focussed on the reuse of software
components obtained from so-called component markets.
The availability of components has clearly grown over the
years but component markets have yet to make a
significant impact on practical software development.
This is for example demonstrated by the limited number
of component vending sites available on the Internet and
last year’s surprising shutdown of the Universal Business
Registry for web services [6].
Some successful “in-house” implementations of the
component market concept have been reported by
companies like IBM [9] or GTE [10] in the past.
However, the size of their component repositories was
limited to a few hundred components - the same
approximate size as the component repository prototypes
that were investigated in the 1990s (e.g. [7], [8]). Some

experts like Poulin [19] have identified a size of about
200 components as the upper limit for manually
maintained component repositories since the content of
larger repositories tends to degenerate (the UBR is a good
example for this hypothesis). However, researchers have
long tried to exceed this limit and automatically populated
repositories [20] with more than one hundred thousand
assets have been reported more recently [2]. One rationale
for this approach is to try to improve the chances of
finding a suitable component. Another is the enormous
size of publicly available class and function libraries,
which often exceed thousands of components, and
company version control systems which often contain
hundreds of thousands of components. It is obvious that
only automatically populated repositories will be able to
cope with the numbers of reusable assets available today.
The reuse of open source software from the web presents
even more challenges to the reuse community and there
has been general pessimism in some quarters that the so-
called component storage and retrieval problem will be
solved in the near future [13] [16].
Very recently however, some commercial search engines
focusing on (open) source code from the Internet have
demonstrated that repositories with millions of
components are now technically feasible. The four major
players in this segment are, in the order of appearance on
the market: Koders.com, Krugle.com, merobase.com and
Google’s new code search engine (google.com/
codesearch). We believe that repositories of this size
require a shift of priorities in component retrieval
research. Where the main problem used to be to find any
kind of matching (or at least a similar) component in a
small repository, today the problem has shifted to finding
the “best” matching component from a variety of
candidates. This can only be achieved by improved
retrieval techniques. Because of the previous lack of real
world reuse repositories there are only a few publications
examining the efficiency of these techniques. Even the
authors of an often cited survey [16] admitted that their
data about retrieval efficiency was largely estimated from
common sense and the few meager studies accessible to
them at the time. Even worse, the few viable results that
are obtainable (e.g. [7]) are all based on repositories with
far less than one thousand components. It is questionable
whether these results will be scaleable for larger
collections and will hold for repositories with millions of
assets. The following small example illustrates why.

404

Consider the interface of a simple stack component that
might have the following form in Java:

 public class Stack {
 public void push(Object o) {}
 public Object pop() {}
 public int size() {}
 }

Using signature matching [15], a classic and well known
retrieval technique the component could be represented as
follows:

 Object -> void
 void -> Object
 void -> int

In a collection of about 1000 components such a signature
might appear less then ten times and a stack could be
identified with relative ease amongst them. However,
performing the same query with the data pool of the
merobase search engine (containing almost 10 million
components) delivers more than 40.000 results.
Given these new developments it has become apparent
that new analyses of the effectiveness of classical
retrieval techniques, and combinations thereof, are
required to improve the theoretical foundation for
component repositories. In section 2 we provide a more
detailed overview of the state of the art in component-
based software reuse, component retrieval techniques and
known evaluations. In section 3 we present our own
evaluation of retrieval techniques based on modern code
search engines from the web and discuss the results in
section 4. Finally, we summarize and conclude our
contribution in section 5.

2. Component Retrieval Background
Many attempts have been made to solve the problem

of effectively storing large numbers of potential reuse
candidates in a component repository. However, not only
has this so-called “repository problem” [13] proven hard
to solve, the question of how a component should best be
represented (called the “reuse representation problem” by
[7]) has also been a stumbling block. Given that the
existing component repositories on the web are almost all
source code centric and offer only basic text-search
capabilities (see next subsection) it is difficult to use them
for more sophisticated reuse approaches than just “code
scavenging” [1]. This practice describes the copying and
pasting of small code snippets into the system under
development and is discouraged in many publications
such as the Anti-pattern book [21]. It requires a lot of
effort to find appropriate snippets and their use is more
likely to degenerate the design of the system under
development than to improve its quality. Although
software reuse has been the subject of research for almost

four decades, there is still no clear picture of when and
how components should be used in a development
process and how they should be stored in a repository.
Even modern development methodologies contain only
very abstract guidelines to select components based on
their interface. Kratz et. al. [22] have recently shown that
there is indeed some relation between the interface and
the functionality of a component. However, since
candidates might not match perfectly, a feedback loop
may be necessary in which either the design or the
candidate have to be adapted. This idea is best described
in [11] so far.
Our own experience with reuse repositories indicates that
the best kind of component search to use in a
development process depends on the point of time at
which the search is performed rather than on the nature of
the process itself. The earlier reusable components are
searched during a system’s development the less design
work is likely to have been carried out. Hence a general
text-based search is more useful in early development
phases and can feed back valuable information about
potential components and their interfaces into the design
process. On the other hand, if component search is carried
out at a relatively late point in the development process an
interface-driven search approach is required.
Furthermore, if binary components or web services are to
be discovered there is no source code and thus the search
has to use interface descriptions in any case. Considering
these differing requirements, a component search engine
must be very flexible. However, most of the first
generation search engines available today are only able to
support keyword-driven searches.

2.1. Component Representation Methods
 A repository’s component representation format

determines the possibilities for searches on this structure.
Frakes and Pole [7] identified four basic representation
methods briefly explained in the following. Enumerated
classification originates from library science and
separates an area into mutually exclusive, typically
hierarchical classes. Ontologies in the semantic web
community might be considered a modern synonym for
this approach. Facetted classification [10] and the slightly
more general attribute value classification approaches are
very similar and use a number of facets (resp. attributes)
to describe an asset. Each facet comprises a finite set of
terms from which one is chosen to describe the asset. In
contrast an attribute can contain any arbitrary value.
Finally, free text indexing approaches extract textual
information from an asset, i.e. the component or its
documentation in our context.
There have been a lot of attempts to develop efficient
component retrieval techniques for all four approaches.
These are best summarized in the well-known survey by
Mili et al. [16], but as the authors conclude, “most

405

solutions are either too inaccurate to be useful or too
intractable to be usable”. Since the representation
methods are rather intuitive we turn our attention towards
component retrieval techniques that more directly
influence the query formulation techniques available to
users in the next subsection.

2.2. Component Retrieval Techniques
Mili et al [16] distinguish the following fundamental

techniques for component retrieval in five (originally six)
not fully orthogonal groups:

 1. Information retrieval methods
 2. Descriptive methods
 3. Operational semantics methods
 4. Denotational semantics methods

5. Structural methods

Since software retrieval is grounded on information
retrieval, a natural first step was to transfer the methods
of the latter to the former and to apply a simple textual
analysis to software assets. Descriptive methods go one
step further and rely on additional textual descriptions of
assets like a set of keywords or facet definitions [10].
Operational semantics methods rely on the execution or
so-called sampling [8] of the assets. Denotational
semantics methods use signatures [15] or specifications of
components for retrieval. Finally, structural methods do
not deal with functional properties of components but
with their structure (i.e. act-alike vs. look-alike). Most of
these mechanisms were initially developed for functional
languages with an underlying type theory (i.e. type
hierarchies) and no implicit variable passing as is
common in today’s programming languages. Only a few
of these ideas (such as (1) and (2)) are easily transferable
to object-oriented languages like Java or C#.
Mili et al. describe a sixth group – the so-called
topological methods – as an approach to minimize the
“distance” between query and reusable candidates. This
approach relies on an underlying, “measurable” retrieval
technique and hence we prefer to consider it as an
approach for ranking the results of a query. The authors
assessed these groups according to a scheme with five
discrete rates ranging from very low (VL), low (L)
through medium (M) to high (H) and very high (VH).
Detailed explanations may be found in the referenced
source itself. Due to space constraints, we only reproduce
a table containing the three technical aspects that are
interesting for the remainder of this paper. Precision is a
measure from information retrieval (IR) theory that
describes the ratio of relevant retrieved assets to the total
number retrieved, see e.g. [14]. The recall also originates
from IR and is the ratio of retrieved relevant assets to the
total number of relevant assets in the collection. The
meaning of the automation potential should be obvious.

Method Precision Recall Automation
Potential

1. Information Retrieval M H H

2. Descriptive H H VH

3. Operational Semantics VH H VH

4. Denotational Semantics VH H M

5. Structural VH VH VH

Table 1. Overview of retrieval techniques.

It is important to note that Mili et al. themselves state that
due to the low number of publications on this topic their
values are largely best effort estimations. Moreover, since
there were no large component repositories at that time
the data is only based on experience with smaller
collections of a few hundred components.

2.2.1. Previous Results
Information Retrieval (IR) typically uses recall and

precision as defined previously to evaluate the
performance of retrieval systems. Since it is important to
know the number of relevant documents in a collection,
the IR community has created a number of so-called
reference collections (again with about 1000 documents,
[20]) over the years. These collections are built by experts
and hence it is known which documents can be
considered relevant for a given query. Consequently, it is
simple to test retrieval algorithms and to calculate recall
and precision for them. One of the first authors who
investigated the efficiency of their retrieval technique
(called “behaviour sampling”) in that way were Podgurski
and Pierce [8]. They used a small library (around 100
components) of C functions where examples could be
retrieved by randomized sampling, i.e. input and output
values were provided and functions that delivered the
expected outputs for given inputs were considered
acceptable. The system delivered a precision of 100
percent if exactly the right number of samples (>= 12)
was provided. However, it is clear that this technique is
too time consuming for repositories with millions of
assets. Frakes and Pole performed an evaluation of
retrieval efficiency with UNIX commands [7]. Although
it is one of the few publications that focused on this topic
it is very domain specific and UNIX commands do not
have an interface in the sense of components in modern
programming languages. Hence, although these
experiments can provide some general insights it is
questionable whether they can be generalized and applied
to today’s retrieval systems. Inoue et al. presented and
evaluated a retrieval system [2] that was considerably
larger (about 120.000 components) than all previous
systems. The authors realized that the classic recall
measure cannot be calculated for repositories of that size
since it is not possible to find all components potentially

406

relevant for a query. Their examination focused on
keyword-based searches (e.g. “clock applet”) for Java but
unfortunately the authors did not make their relevance
criterion explicit. However, they claimed precision rates
of about 70 percent for their system. One possible
approach to estimate the recall for a large repository is
injecting known components into it. However this is not
feasible for third party search engines on the web.
Moreover, results can easily become biased as they
require examples that are known to work well with a
given configuration.
To briefly summarize the main issues arising in this
context: at present, no reference collections of software
components are available. Moreover, even if one were
available it could not come anywhere near the size and
complexity of today’s software repositories. It is therefore
questionable whether its results would be scaleable to real
world situations. Without the knowledge of how many
components are relevant for a query it is not possible to
calculate the recall of a search engine. Fortunately, it is
feasible to calculate the precision by examining a given
number of results and determining whether they do what
they are supposed to do. We adopted these insights in our
experimental design that we describe in more detail in
section 3.

2.3. Component Search Engines
Most of the component search engines available today

only offer keyword-based search capabilities based on a
free-text representation of components (i.e. they use an IR
method). The following table lists the most prominent
component search engines that we were aware of at the
time of writing.

Name

L
an

gu
ag

es

C
om

po
ne

nt
s

R
ep

re
se

nt
at

io
n

M
et

ho
ds

 U
se

d

Su
pp

or
t f

or

In
te

rf
ac

e-
D

ri
ve

n
Se

ar
ch

es

merobase 45 ~10 M all yes
Google Codesearch
(GCS)

44 ~5 M text,
facetted

partially via
regular expr.

Krugle 37 ~5 M text,
facetted

limited,
name-based

Koders 32 ~1M text,
facetted

limited,
name-based

Table 2. Popular code search engines.

To date, only merobase is able to fully support searches
on interface descriptions based on a combination of IR-
and denotational methods. Koders and Krugle are able to
constrain searches to method or class names (we call this
name-based) and interface-driven searches can be widely
imitated with regular expressions on Google Codesearch.

The large number of programming languages supported
by the engines in table 2 can be explained by the fact that
they not only support usual programming languages such
as Java and C#, but also index scripting languages like
Javascript or PHP and other artifacts such as makefiles
etc. We do not consider other search engines such as
Codase.com, Planetsourcecode.com, ucodit.com,
jsourcery.com, Codehound.com etc. due to their limited
size, range of languages or different search focus. As we
have shown in [12], it is also possible to use regular
Google or Yahoo for source code searches.

3. Experimental Evaluation
Due to the limitations discussed in section 2.2.1 we

focused our investigation on the precision of search
engines and retrieval techniques. We reused some of our
previous work [12] where we collected query examples
from the reuse literature. We derived interface-driven
queries from them and inspected the first 25 results for
Java (as it is most widely supported) from each query in
two different experiments. First we evaluated the retrieval
performance of various search. The results are presented
in section 3.1. Our second experiment performed a more
academic comparison of some retrieval techniques and is
discussed in section 3.2.
Our matching criterion was that the required interface was
contained verbatim or with simply a change of case in a
candidate component. In order to finally decide whether
such a candidate component is functionally appropriate
and thus relevant we improved the sampling approach of
[8] and manually defined meaningful JUnit test cases for
each interface. We have already experimented with this
technique before and found that interfaces and test cases
can be used to describe and retrieve components in a very
precise manner. Due to its affiliation with test-driven
development we have called this approach “Extreme
Harvesting”. A proof of concept is also presented in [12].

3.1. Comparison of Search Engines
We limited our comparison to the three component

search engines shown in table 3 below since only they
offered an API for programmatic access at the time of
writing. Additionally, we compared them with the general
web search versions of Google and Yahoo which we
enhanced with special filetype constraints to better utilize
them for software component retrieval. To our
knowledge, we made the optimal use of each search
engines facilities for mimicking interface-driven retrieval.
For instance, requiring the term “randomString” to appear
only in method names should deliver more precise results
with Koders than allowing it anywhere in the source
code. Table 3 below summarizes our results for this
experiment.

407

Query

G
oo

gl
e

Y
ah

oo

G
C

S

K
od

er
s

m
er

ob
as

e

copyFile(String,
 String): void 1 / 25 2 / 25 7 / 25 0 / 25 18 / 25

gcd(int,int):int 10 / 25 7 / 25 12 / 25 2 / 25 17 / 25
isLeapYear(int):
 boolean 8 / 25 12 / 25 3 / 25 2 / 25 14 / 25

md5(String):String 0 / 25 0 / 25 4 / 22 0 / 25 12 / 25
isPrime(int):
 boolean 6 / 25 15 / 25 7 / 25 4 / 25 5 / 25

randomNumber(int,
 int):int 0 / 25 3 / 25 2 / 7 0 / 7 14 / 25

randomString(int):
 String 4 / 25 2 / 25 6 / 25 4 / 16 5 / 25

replace(String,
 String, String):
 String

2 / 25 8 / 25 14 / 25 3 / 25 22 / 25

reverseArray(
 int[]):int[] 1 / 10 3 / 23 1 / 1 0 / 4 5 / 7

sort(int[]):int[] 0 / 25 0 / 25 5 / 20 0 / 25 20 / 25
sqrt(double):
 double 5 / 25 4 / 25 4 / 25 1 / 25 11 / 25

getMinMax(int[]):
 int[] 0 / 15 0 / 22 0 / 0 0 / 25 2 / 4

Stack(
 push(Object):void
 pop():Object
 size():int
)

1 / 25 2 / 25 0 / 0 1 / 25 6 / 25

Average Precision 12.2% 17.9% 29.5% 5.9% 53.7%
Standard Deviation 13.3% 18.9% 26.5% 7.8% 22.4%

Table 3. Comparison of code search engines.

We calculated the mean value and the standard deviation
of each engine’s precision. Furthermore, we performed t-
tests for = 0.05 to measure the statistical difference of
the results. Only the results provided by merobase show a
significant improvement over the other engines. Google
Codesearch (GCS) is also significantly better than
Koders; but all other pairwise comparisons reveal no
statistically significant difference. It is interesting that the
general versions of Google and Yahoo tend to deliver
more precise results for code searches than the specialized
engine of Koders. However, we believe this can be
explained by the different expressiveness of the queries
offered by the different search engines. We will support
this with more evidence in the next subsection where we
directly compare retrieval methods.

3.2. Comparison of Retrieval Techniques
This subsection presents the results of our experiments to
compare four retrieval techniques on the component pool
of merobase. The experimental process is identical to that
used in the last subsection. Since we had access to the
data pool of merobase and could implement some
dedicated support for these experiments we used this
engine for a comparison of the retrieval techniques shown
in table 4. However, it would not have been possible to

test other known retrieval techniques or the representation
models on their own without major changes to index
structure. Hence we compared interface-driven search
capabilities with pure signature matching and simple
keyword-based searches in two distinct forms. Namely,
an algorithm that searches keywords in the complete
source code of components and a name-based algorithm
that is able to constrain searches to method or class names
(cf. table 2).

Query

si
gn

at
ur

e
m

at
ch

in
g

te
xt

-b
as

ed

na
m

e-

ba
se

d

in
te

rf
ac

e-

dr
iv

en

copyFile(String,
 String): void 0 / 25 3 / 25 16 / 25 18 / 25

gcd(int,int):int 0 / 25 20 / 25 11 / 25 17 / 25
isLeapYear(int):
 boolean 0 / 25 9 / 25 7 / 25 14 / 25

md5(String):String 0 / 25 0 / 25 0 / 25 12 / 25
isPrime(int):
 boolean 0 / 25 4 / 25 5 / 25 5 / 25

randomNumber(int,
 int):int 0 / 25 0 / 25 0 / 25 14 / 25

randomString(int):
 String 0 / 25 4 / 25 6 / 25 5 / 25

replace(String,
 String, String):
 String

1 / 25 6 / 25 0 / 25 22 / 25

reverseArray(
 int[]):int[] 0 / 25 0 / 25 2 / 25 5 / 7

sort(int[]):int[] 1 / 25 0 / 25 0 / 25 20 / 25
sqrt(double):
 double 0 / 25 2 / 25 4 / 25 11 / 25

getMinMax(int[]):
 int[] 1 / 25 2 / 25 2 / 25 2 / 4

Stack(
 push(Object):void
 pop():Object
 size():int
)

0 / 25 3 / 25 3 / 25 6 / 25

Average Precision 0.9% 16.3% 17.2% 53.7%
Standard Deviation 1.8% 21.9% 19.3% 22.4 %

Table 4. Comparison of retrieval techniques.

We again performed statistical t-tests for = 0.05 on
these results and found all pairwise comparisons
significantly different, except for text-based vs. name-
based. The results demonstrate that interface-driven
searches are far more precise than plain keyword-based
queries. This might also explain why Koders tends to be
weaker then the general versions of Google and Yahoo
where interface-driven searches can be better “simulated”
with quoted queries. Google Codesearch and merobase
consequently deliver significantly better results when
their capabilities for regular expressions or interface-
driven searches are used. However the precision remains
still roughly between 30 and 60 percent and given the fact
that sometimes thousands of results are returned a further
increase of the precision is still required. This can be
obtained by the use of a final semantic validation as

408

integrated in our Extreme Harvesting approach where we
use standard JUnit tests to check the dynamic behavior of
components.
Another important requirement for precise searches are
so-called search constraints that allow queries to be
enhanced with additional metadata (such as the
programming language) as is common in most general
web search engines today. Thus, we believe it is not only
necessary to combine various of the retrieval techniques
proposed in the literature to reach acceptable precision on
today’s component collections, but also to combine a
number of representation methods.

4. Conclusion
In the last year or so there has been an explosion in the

number of search engines focusing on the discovery of
software. However, their search algorithms and degree of
precision are generally too weak to deliver a valuable
service. One retrieval technique alone is typically not
sufficient to guarantee high precision searches on a large
repository and hence it makes sense to develop a
combination of various techniques as we proposed for
Extreme Harvesting [12]. However, this idea has so far
been largely based on our intuition since we had no
adequate repository at hand to compare the retrieval
techniques proposed in the past. The results presented in
this paper demonstrate that interface-driven searches
deliver significantly better results than simple keyword-
based approaches. Furthermore they deliver better
candidates that can be checked with a more time
consuming retrieval technique such as behavior sampling
or the more advanced Extreme Harvesting. Testing of the
form advocated in Extreme Harvesting seems to be able
to push the precision close to 100%. However, to make
Extreme Harvesting practicable we still have to overcome
a number of practical problems (such as security and
performance concerns). We are currently working on this
challenge and will elaborate on further experiments on
another occasion.

5. References
[1] C.W. Krueger, “Software reuse“, ACM Computing

Surveys, Vol. 24, Iss. 2, 1992.
[2] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto,

M. Matsushita, S. Kusumoto, “Ranking Significance
of Software Components Based on Use Relations”,
IEEE Trans. on Software Eng., Vol. 31, No. 3, 2005.

[3] Clemens, P., Northrop, L.: Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[5] D. McIlroy, “Mass-Produced Software
Components”, Report of a conference sponsored by
the NATO Science Committee, Garmisch, 1968.

[6] Microsoft’s UBR shutdown FAQ, 2006,
http://uddi.microsoft.com/about/FAQshutdown.htm

[7] W.B. Frakes, T.P. Pole, “An empirical study of
representation methods for reusable software
components”, IEEE Transactions on Software
Engineering, Vol. 20, Iss. 8, 1994.

[8] Podgurski, A., L. Pierce: “Retrieving Reusable
Software by Sampling Behavior”, ACM
Transactions on Software Engineering and
Methodology, Vol. 2, Iss. 3, 1993.

[9] M. Lenz, H. Schmid, P. Wolf, “Software reuse
through building blocks”, in W. Tracz (ed..):
Software Reuse: Emerging Technology, Computer
Society Press, 1987.

[10] R. Prieto-Diaz, ”Implementing Faceted
Classification for Software Reuse”. Communications
of the ACM, Vol. 34, Iss. 5, 1991.

[11] I. Crnkovic, M. Chaudron, S. Larsson, ”Component-
based Development Process and Component
Lifecycle”, Proceedings of Int. Conf. on Software
Engineering Advances, 2006.

[12] O. Hummel, C. Atkinson, “Using the Web as a
Reuse Repository”, Proceedings of the International
Conference on Software Reuse, Torino 2006.

[13] R. Seacord: “Software Engineering Component
Repositories”, Proceedings of the Int. Workshop on
Component-Based Software Engineering, 1999.

[14] R. Baeza-Yates, B. Ribeiro-Neto, Modern
Information Retrieval. Addison-Wesley, 1999.

[15] A.M. Zaremski, J.M. Wing: “Signature Matching: A
Tool for Using Software Libraries”, ACM
Transactions on Software Engineering and
Methodology, Vol. 4, No. 2, 1995.

[16] Mili, A., R. Mili and R. Mittermeir: “A Survey of
Software Reuse Libraries”, Annals of Software
Engineering, Vol. 5, 1998.

[17] K. Beck, Extreme Programming Explained:
Embrace Change, Addison-Wesley, 1999.

[18] Y. Ye., G. Fischer, “Reuse-Conducive Development
Environments”, Journal of Automated Software
Engineering, Vol. 12, No. 2, 2005.

[19] J. Poulin, “Populating Software Repositories:
Incentives and Domain-Specific Software”, Journal
of Systems and Software, Vol. 30, Iss. 3, 1995.

[20] Y.S. Maarek, D.M. Berry, G.E. Kaiser, “An
information retrieval approach for automatically
constructing software libraries”, IEEE Trans. on
Software Engineering, Vol. 17, Iss 8, 1991.

[21] W.J. Brown, R.C. Malveau, H.W. McCormick, T.J.
Mowbray, AntiPatterns: refactoring software,
architectures, and projects in crisis, Wiley, 1998.

[22] B. Kratz, R. Reussner, W.J. v.d. Heuvel, ”Empirical
Research on Similaritiy Mertrics for Software
Component Interfaces”, Journal of Integrated
Design and Process Science, Vol. 8, Iss. 4, 2004.

409

