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Abstract
Component-based software reuse has long been seen 

as a means of improving the efficiency of software 
development projects and the resulting quality of software 
systems. However, in practice it has proven difficult to set 
up and maintain viable software repositories and provide 
effective mechanisms for retrieving components and 
services from them. Although the literature contains a 
comprehensive collection of retrieval methods, to date 
there have been few evaluations of their relative 
efficiency. Moreover, those that are available only study 
small repositories of about a few hundred components. 
Since today’s internet-based repositories are many orders 
of magnitude larger they require much higher search 
precision to deliver usable results. In this paper we 
present an evaluation of well known component retrieval 
techniques in the context of modern component 
repositories available on the World Wide Web. 

1.   Introduction 
The basic motivation for software reuse is simple. It is 

about “creating software systems from existing software 
rather than building software systems from scratch” as
Krueger [1] put it in 1992. It is expected to reduce the 
time needed to developed software applications and 
improve the quality of delivered software products. 
Krueger’s definition includes the potential reuse of any 
kind of asset during a software development process. 
Approaches like product line engineering [3] and design 
patterns [4] have proven particularly successful in this 
regard. However, the original vision presented by 
McIlroy [5] in 1968 focussed on the reuse of software 
components obtained from so-called component markets. 
The availability of components has clearly grown over the 
years but component markets have yet to make a 
significant impact on practical software development. 
This is for example demonstrated by the limited number 
of component vending sites available on the Internet and 
last year’s surprising shutdown of the Universal Business 
Registry for web services [6].  
Some successful “in-house” implementations of the 
component market concept have been reported by 
companies like IBM [9] or GTE [10] in the past. 
However, the size of their component repositories was 
limited to a few hundred components - the same 
approximate size as the component repository prototypes 
that were investigated in the 1990s (e.g. [7], [8]). Some 

experts like Poulin [19] have identified a size of about 
200 components as the upper limit for manually 
maintained component repositories since the content of 
larger repositories tends to degenerate (the UBR is a good 
example for this hypothesis). However, researchers have 
long tried to exceed this limit and automatically populated 
repositories [20] with more than one hundred thousand 
assets have been reported more recently [2]. One rationale 
for this approach is to try to improve the chances of 
finding a suitable component. Another is the enormous 
size of publicly available class and function libraries, 
which often exceed thousands of components, and 
company version control systems which often contain 
hundreds of thousands of components. It is obvious that 
only automatically populated repositories will be able to 
cope with the numbers of reusable assets available today. 
The reuse of open source software from the web presents 
even more challenges to the reuse community and there 
has been general pessimism in some quarters that the so-
called component storage and retrieval problem will be 
solved in the near future [13] [16]. 
Very recently however, some commercial search engines 
focusing on (open) source code from the Internet have 
demonstrated that repositories with millions of 
components are now technically feasible. The four major 
players in this segment are, in the order of appearance on 
the market: Koders.com, Krugle.com, merobase.com and 
Google’s new code search engine (google.com/ 
codesearch). We believe that repositories of this size 
require a shift of priorities in component retrieval 
research. Where the main problem used to be to find any 
kind of matching (or at least a similar) component in a 
small repository, today the problem has shifted to finding 
the “best” matching component from a variety of 
candidates. This can only be achieved by improved 
retrieval techniques. Because of the previous lack of real 
world reuse repositories there are only a few publications 
examining the efficiency of these techniques. Even the 
authors of an often cited survey [16] admitted that their 
data about retrieval efficiency was largely estimated from 
common sense and the few meager studies accessible to 
them at the time. Even worse, the few viable results that 
are obtainable (e.g. [7]) are all based on repositories with 
far less than one thousand components. It is questionable 
whether these results will be scaleable for larger 
collections and will hold for repositories with millions of 
assets. The following small example illustrates why. 
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Consider the interface of a simple stack component that 
might have the following form in Java: 

  public class Stack { 
    public void push(Object o) {} 
    public Object pop() {} 
    public int size() {} 
  } 

Using signature matching [15], a classic and well known 
retrieval technique the component could be represented as 
follows: 

  Object -> void 
  void -> Object 
  void -> int 

In a collection of about 1000 components such a signature 
might appear less then ten times and a stack could be 
identified with relative ease amongst them. However, 
performing the same query with the data pool of the 
merobase search engine (containing almost 10 million 
components) delivers more than 40.000 results. 
Given these new developments it has become apparent 
that new analyses of the effectiveness of classical 
retrieval techniques, and combinations thereof, are 
required to improve the theoretical foundation for 
component repositories. In section 2 we provide a more 
detailed overview of the state of the art in component-
based software reuse, component retrieval techniques and 
known evaluations. In section 3 we present our own 
evaluation of retrieval techniques based on modern code 
search engines from the web and discuss the results in 
section 4. Finally, we summarize and conclude our 
contribution in section 5. 

2.   Component Retrieval Background 
Many attempts have been made to solve the problem 

of effectively storing large numbers of potential reuse 
candidates in a component repository. However, not only 
has this so-called “repository problem” [13] proven hard 
to solve, the question of how a component should best be 
represented (called the “reuse representation problem” by 
[7]) has also been a stumbling block. Given that the 
existing component repositories on the web are almost all 
source code centric and offer only basic text-search 
capabilities (see next subsection) it is difficult to use them 
for more sophisticated reuse approaches than just “code 
scavenging” [1]. This practice describes the copying and 
pasting of small code snippets into the system under 
development and is discouraged in many publications 
such as the Anti-pattern book [21]. It requires a lot of 
effort to find appropriate snippets and their use is more 
likely to degenerate the design of the system under 
development than to improve its quality. Although 
software reuse has been the subject of research for almost 

four decades, there is still no clear picture of when and 
how components should be used in a development 
process and how they should be stored in a repository. 
Even modern development methodologies contain only 
very abstract guidelines to select components based on 
their interface. Kratz et. al. [22] have recently shown that 
there is indeed some relation between the interface and 
the functionality of a component. However, since 
candidates might not match perfectly, a feedback loop 
may be necessary in which either the design or the 
candidate have to be adapted. This idea is best described 
in [11] so far.  
Our own experience with reuse repositories indicates that 
the best kind of component search to use in a 
development process depends on the point of time at 
which the search is performed rather than on the nature of 
the process itself. The earlier reusable components are 
searched during a system’s development the less design 
work is likely to have been carried out. Hence a general 
text-based search is more useful in early development 
phases and can feed back valuable information about 
potential components and their interfaces into the design 
process. On the other hand, if component search is carried 
out at a relatively late point in the development process an 
interface-driven search approach is required. 
Furthermore, if binary components or web services are to 
be discovered there is no source code and thus the search 
has to use interface descriptions in any case. Considering 
these differing requirements, a component search engine 
must be very flexible. However, most of the first 
generation search engines available today are only able to 
support keyword-driven searches. 

2.1.   Component Representation Methods 
 A repository’s component representation format 

determines the possibilities for searches on this structure. 
Frakes and Pole [7] identified four basic representation 
methods briefly explained in the following. Enumerated 
classification originates from library science and 
separates an area into mutually exclusive, typically 
hierarchical classes. Ontologies in the semantic web 
community might be considered a modern synonym for 
this approach. Facetted classification [10] and the slightly 
more general attribute value classification approaches are 
very similar and use a number of facets (resp. attributes) 
to describe an asset. Each facet comprises a finite set of 
terms from which one is chosen to describe the asset.  In 
contrast an attribute can contain any arbitrary value. 
Finally, free text indexing approaches extract textual 
information from an asset, i.e. the component or its 
documentation in our context.  
There have been a lot of attempts to develop efficient 
component retrieval techniques for all four approaches. 
These are best summarized in the well-known survey by 
Mili et al. [16], but as the authors conclude, “most 
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solutions are either too inaccurate to be useful or too 
intractable to be usable”. Since the representation 
methods are rather intuitive we turn our attention towards 
component retrieval techniques that more directly 
influence the query formulation techniques available to 
users in the next subsection. 

2.2.   Component Retrieval Techniques 
Mili et al [16] distinguish the following fundamental 

techniques for component retrieval in five (originally six) 
not fully orthogonal groups: 

 1. Information retrieval methods 
 2. Descriptive methods 
 3. Operational semantics methods 
 4. Denotational semantics methods 

5. Structural methods 

Since software retrieval is grounded on information 
retrieval, a natural first step was to transfer the methods 
of the latter to the former and to apply a simple textual 
analysis to software assets. Descriptive methods go one 
step further and rely on additional textual descriptions of 
assets like a set of keywords or facet definitions [10]. 
Operational semantics methods rely on the execution or 
so-called sampling [8] of the assets. Denotational 
semantics methods use signatures [15] or specifications of 
components for retrieval. Finally, structural methods do 
not deal with functional properties of components but 
with their structure (i.e. act-alike vs. look-alike). Most of 
these mechanisms were initially developed for functional 
languages with an underlying type theory (i.e. type 
hierarchies) and no implicit variable passing as is 
common in today’s programming languages. Only a few 
of these ideas (such as (1) and (2)) are easily transferable 
to object-oriented languages like Java or C#. 
Mili et al. describe a sixth group – the so-called 
topological methods – as an approach to minimize the 
“distance” between query and reusable candidates. This 
approach relies on an underlying, “measurable” retrieval 
technique and hence we prefer to consider it as an 
approach for ranking the results of a query. The authors 
assessed these groups according to a scheme with five 
discrete rates ranging from very low (VL), low (L) 
through medium (M) to high (H) and very high (VH). 
Detailed explanations may be found in the referenced 
source itself. Due to space constraints, we only reproduce 
a table containing the three technical aspects that are 
interesting for the remainder of this paper. Precision is a 
measure from information retrieval (IR) theory that 
describes the ratio of relevant retrieved assets to the total 
number retrieved, see e.g. [14]. The recall also originates 
from IR and is the ratio of retrieved relevant assets to the 
total number of relevant assets in the collection. The 
meaning of the automation potential should be obvious. 

Method Precision Recall Automation 
Potential

1. Information Retrieval M H H 

2. Descriptive H H VH 

3. Operational Semantics VH H VH 

4. Denotational Semantics VH H M 

5. Structural VH VH VH 

Table 1. Overview of retrieval techniques.

It is important to note that Mili et al. themselves state that 
due to the low number of publications on this topic their 
values are largely best effort estimations. Moreover, since 
there were no large component repositories at that time 
the data is only based on experience with smaller 
collections of a few hundred components. 

2.2.1.   Previous Results 
Information Retrieval (IR) typically uses recall and 

precision as defined previously to evaluate the 
performance of retrieval systems. Since it is important to 
know the number of relevant documents in a collection, 
the IR community has created a number of so-called 
reference collections (again with about 1000 documents, 
[20]) over the years. These collections are built by experts 
and hence it is known which documents can be 
considered relevant for a given query. Consequently, it is 
simple to test retrieval algorithms and to calculate recall 
and precision for them. One of the first authors who 
investigated the efficiency of their retrieval technique 
(called “behaviour sampling”) in that way were Podgurski 
and Pierce [8]. They used a small library (around 100 
components) of C functions where examples could be 
retrieved by randomized sampling, i.e. input and output 
values were provided and functions that delivered the 
expected outputs for given inputs were considered 
acceptable. The system delivered a precision of 100 
percent if exactly the right number of samples (>= 12) 
was provided. However, it is clear that this technique is 
too time consuming for repositories with millions of 
assets. Frakes and Pole performed an evaluation of 
retrieval efficiency with UNIX commands [7]. Although 
it is one of the few publications that focused on this topic 
it is very domain specific and UNIX commands do not 
have an interface in the sense of components in modern 
programming languages. Hence, although these 
experiments can provide some general insights it is 
questionable whether they can be generalized and applied 
to today’s retrieval systems. Inoue et al. presented and 
evaluated a retrieval system [2] that was considerably 
larger (about 120.000 components) than all previous 
systems. The authors realized that the classic recall 
measure cannot be calculated for repositories of that size 
since it is not possible to find all components potentially 
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relevant for a query. Their examination focused on 
keyword-based searches (e.g. “clock applet”) for Java but 
unfortunately the authors did not make their relevance 
criterion explicit. However, they claimed precision rates 
of about 70 percent for their system. One possible 
approach to estimate the recall for a large repository is 
injecting known components into it. However this is not 
feasible for third party search engines on the web. 
Moreover, results can easily become biased as they 
require examples that are known to work well with a 
given configuration.  
To briefly summarize the main issues arising in this 
context: at present, no reference collections of software 
components are available. Moreover, even if one were 
available it could not come anywhere near the size and 
complexity of today’s software repositories. It is therefore 
questionable whether its results would be scaleable to real 
world situations. Without the knowledge of how many 
components are relevant for a query it is not possible to 
calculate the recall of a search engine. Fortunately, it is 
feasible to calculate the precision by examining a given 
number of results and determining whether they do what 
they are supposed to do. We adopted these insights in our 
experimental design that we describe in more detail in 
section 3. 

2.3.   Component Search Engines 
Most of the component search engines available today 

only offer keyword-based search capabilities based on a 
free-text representation of components (i.e. they use an IR 
method). The following table lists the most prominent 
component search engines that we were aware of at the 
time of writing. 
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merobase 45 ~10 M all yes 
Google Codesearch 
(GCS) 

44 ~5 M text, 
facetted 

partially via 
regular expr. 

Krugle 37 ~5 M text, 
facetted 

limited, 
name-based 

Koders 32 ~1M text, 
facetted 

limited, 
name-based 

Table 2. Popular code search engines. 

To date, only merobase is able to fully support searches 
on interface descriptions based on a combination of IR- 
and denotational methods. Koders and Krugle are able to 
constrain searches to method or class names (we call this 
name-based) and interface-driven searches can be widely 
imitated with regular expressions on Google Codesearch. 

The large number of programming languages supported 
by the engines in table 2 can be explained by the fact that 
they not only support usual programming languages such 
as Java and C#, but also index scripting languages like 
Javascript or PHP and other artifacts such as makefiles 
etc. We do not consider other search engines such as 
Codase.com, Planetsourcecode.com, ucodit.com, 
jsourcery.com, Codehound.com etc. due to their limited 
size, range of languages or different search focus. As we 
have shown in [12], it is also possible to use regular 
Google or Yahoo for source code searches. 

3.   Experimental Evaluation 
Due to the limitations discussed in section 2.2.1 we 

focused our investigation on the precision of search 
engines and retrieval techniques. We reused some of our 
previous work [12] where we collected query examples 
from the reuse literature. We derived interface-driven 
queries from them and inspected the first 25 results for 
Java (as it is most widely supported) from each query in 
two different experiments. First we evaluated the retrieval 
performance of various search. The results are presented 
in section 3.1. Our second experiment performed a more 
academic comparison of some retrieval techniques and is 
discussed in section 3.2. 
Our matching criterion was that the required interface was 
contained verbatim or with simply a change of case in a 
candidate component. In order to finally decide whether 
such a candidate component is functionally appropriate 
and thus relevant we improved the sampling approach of 
[8] and manually defined meaningful JUnit test cases for 
each interface. We have already experimented with this 
technique before and found that interfaces and test cases 
can be used to describe and retrieve components in a very 
precise manner. Due to its affiliation with test-driven 
development we have called this approach “Extreme 
Harvesting”. A proof of concept is also presented in [12].  

3.1.   Comparison of Search Engines 
We limited our comparison to the three component 

search engines shown in table 3 below since only they 
offered an API for programmatic access at the time of 
writing. Additionally, we compared them with the general 
web search versions of Google and Yahoo which we 
enhanced with special filetype constraints to better utilize 
them for software component retrieval. To our 
knowledge, we made the optimal use of each search 
engines facilities for mimicking interface-driven retrieval. 
For instance, requiring the term “randomString” to appear 
only in method names should deliver more precise results 
with Koders than allowing it anywhere in the source 
code. Table 3 below summarizes our results for this 
experiment. 
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copyFile(String, 
 String): void 1 / 25 2 / 25 7 / 25 0 / 25 18 / 25 

gcd(int,int):int 10 / 25 7 / 25 12 / 25 2 / 25 17 / 25 
isLeapYear(int): 
 boolean 8 / 25 12 / 25 3 / 25 2 / 25 14 / 25 

md5(String):String 0 / 25 0 / 25 4 / 22 0 / 25 12 / 25 
isPrime(int): 
 boolean 6 / 25 15 / 25 7 / 25 4 / 25 5 / 25 

randomNumber(int, 
 int):int 0 / 25 3 / 25 2 / 7 0 / 7 14 / 25 

randomString(int): 
 String 4 / 25 2 / 25 6 / 25 4 / 16 5 / 25 

replace(String, 
 String, String): 
 String 

2 / 25 8 / 25 14 / 25 3 / 25 22 / 25 

reverseArray( 
 int[]):int[] 1 / 10 3 / 23 1 / 1 0 / 4 5 / 7 

sort(int[]):int[] 0 / 25 0 / 25 5 / 20 0 / 25 20 / 25 
sqrt(double): 
 double 5 / 25 4 / 25 4 / 25 1 / 25 11 / 25 

getMinMax(int[]): 
 int[] 0 / 15 0 / 22 0 / 0 0 / 25 2 / 4 

Stack( 
 push(Object):void 
 pop():Object  
 size():int 
)

1 / 25 2 / 25 0 / 0 1 / 25 6 / 25 

Average Precision  12.2% 17.9% 29.5% 5.9% 53.7% 
Standard Deviation 13.3% 18.9% 26.5% 7.8% 22.4% 

Table 3. Comparison of code search engines.

We calculated the mean value and the standard deviation 
of each engine’s precision. Furthermore, we performed t-
tests for = 0.05 to measure the statistical difference of 
the results. Only the results provided by merobase show a 
significant improvement over the other engines. Google 
Codesearch (GCS) is also significantly better than 
Koders; but all other pairwise comparisons reveal no 
statistically significant difference. It is interesting that the 
general versions of Google and Yahoo tend to deliver 
more precise results for code searches than the specialized 
engine of Koders. However, we believe this can be 
explained by the different expressiveness of the queries 
offered by the different search engines. We will support 
this with more evidence in the next subsection where we 
directly compare retrieval methods. 

3.2.   Comparison of Retrieval Techniques  
This subsection presents the results of our experiments to 
compare four retrieval techniques on the component pool 
of merobase. The experimental process is identical to that 
used in the last subsection. Since we had access to the 
data pool of merobase and could implement some 
dedicated support for these experiments we used this 
engine for a comparison of the retrieval techniques shown 
in table 4. However, it would not have been possible to 

test other known retrieval techniques or the representation 
models on their own without major changes to index 
structure. Hence we compared interface-driven search 
capabilities with pure signature matching and simple 
keyword-based searches in two distinct forms. Namely, 
an algorithm that searches keywords in the complete 
source code of components and a name-based algorithm 
that is able to constrain searches to method or class names 
(cf. table 2). 
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copyFile(String, 
 String): void 0 / 25 3 / 25 16 / 25 18 / 25 

gcd(int,int):int 0 / 25 20 / 25 11 / 25 17 / 25 
isLeapYear(int): 
 boolean 0 / 25 9 / 25 7 / 25 14 / 25 

md5(String):String 0 / 25 0 / 25 0 / 25 12 / 25 
isPrime(int): 
 boolean 0 / 25 4 / 25 5 / 25 5 / 25 

randomNumber(int, 
 int):int 0 / 25 0 / 25 0 / 25 14 / 25 

randomString(int): 
 String 0 / 25 4 / 25 6 / 25 5 / 25 

replace(String, 
 String, String): 
 String 

1 / 25 6 / 25 0 / 25 22 / 25 

reverseArray( 
 int[]):int[] 0 / 25 0 / 25 2 / 25 5 / 7 

sort(int[]):int[] 1 / 25 0 / 25 0 / 25 20 / 25 
sqrt(double): 
 double 0 / 25 2 / 25 4 / 25 11 / 25 

getMinMax(int[]): 
 int[] 1 / 25 2 / 25 2 / 25 2 / 4 

Stack( 
 push(Object):void 
 pop():Object  
 size():int 
)

0 / 25 3 / 25 3 / 25 6 / 25 

Average Precision 0.9% 16.3% 17.2% 53.7% 
Standard Deviation 1.8% 21.9% 19.3% 22.4 % 

Table 4. Comparison of retrieval techniques. 

We again performed statistical t-tests for = 0.05 on 
these results and found all pairwise comparisons 
significantly different, except for text-based vs. name-
based. The results demonstrate that interface-driven 
searches are far more precise than plain keyword-based 
queries. This might also explain why Koders tends to be 
weaker then the general versions of Google and Yahoo 
where interface-driven searches can be better “simulated” 
with quoted queries. Google Codesearch and merobase 
consequently deliver significantly better results when 
their capabilities for regular expressions or interface-
driven searches are used. However the precision remains 
still roughly between 30 and 60 percent and given the fact 
that sometimes thousands of results are returned a further 
increase of the precision is still required. This can be 
obtained by the use of a final semantic validation as 
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integrated in our Extreme Harvesting approach where we 
use standard JUnit tests to check the dynamic behavior of 
components.  
Another important requirement for precise searches are 
so-called search constraints that allow queries to be 
enhanced with additional metadata (such as the 
programming language) as is common in most general 
web search engines today. Thus, we believe it is not only 
necessary to combine various of the retrieval techniques 
proposed in the literature to reach acceptable precision on 
today’s component collections, but also to combine a 
number of representation methods. 

4.   Conclusion 
In the last year or so there has been an explosion in the 

number of search engines focusing on the discovery of 
software. However, their search algorithms and degree of 
precision are generally too weak to deliver a valuable 
service. One retrieval technique alone is typically not 
sufficient to guarantee high precision searches on a large 
repository and hence it makes sense to develop a 
combination of various techniques as we proposed for 
Extreme Harvesting [12]. However, this idea has so far 
been largely based on our intuition since we had no 
adequate repository at hand to compare the retrieval 
techniques proposed in the past. The results presented in 
this paper demonstrate that interface-driven searches 
deliver significantly better results than simple keyword-
based approaches. Furthermore they deliver better 
candidates that can be checked with a more time 
consuming retrieval technique such as behavior sampling 
or the more advanced Extreme Harvesting. Testing of the 
form advocated in Extreme Harvesting seems to be able 
to push the precision close to 100%. However, to make  
Extreme Harvesting practicable we still have to overcome 
a number of practical problems (such as security and 
performance concerns). We are currently working on this 
challenge and will elaborate on further experiments on 
another occasion. 
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