
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221406982

Automated Creation and Assessment of Component

Adapters with Test Cases

Conference Paper · June 2010

DOI: 10.1007/978-3-642-13238-4_10 · Source: DBLP

CITATIONS

19
READS

2,392

2 authors:

Some of the authors of this publication are also working on these related projects:

Multi-Level Modeling Research View project

Oliver Hummel

Karlsruhe Institute of Technology

56 PUBLICATIONS 704 CITATIONS

SEE PROFILE

Colin Atkinson

Universität Mannheim

212 PUBLICATIONS 5,724 CITATIONS

SEE PROFILE

All content following this page was uploaded by Oliver Hummel on 20 January 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221406982_Automated_Creation_and_Assessment_of_Component_Adapters_with_Test_Cases?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221406982_Automated_Creation_and_Assessment_of_Component_Adapters_with_Test_Cases?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multi-Level-Modeling-Research?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Karlsruhe-Institute-of-Technology?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet-Mannheim?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Atkinson-3?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Hummel?enrichId=rgreq-74b4ab133592c13935e32debcbb1a931-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQwNjk4MjtBUzoxMDQwMDAzMzA0MDM4NDRAMTQwMTgwNzAxOTQ1Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

L. Grunske, R. Reussner, and F. Plasil (Eds.): CBSE 2010, LNCS 6092, pp. 166–181, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Automated Creation and Assessment
of Component Adapters with Test Cases

Oliver Hummel and Colin Atkinson

Software Engineering Group, University of Mannheim
68131 Mannheim, Germany

{hummel,atkinson}@informatik.uni-mannheim.de

Abstract. The composition of new applications from pre-existing parts has
been one of the central notions in software reuse and component-based devel-
opment for many years. Recent advances with component retrieval technologies
and dynamically reconfiguring systems have brought the automated integration
of components into systems into the focus of research. Even when a component
offers all functionality needed by the using environment there is often a host of
“syntactic obstacles” and to date there is no general solution available that can
automatically address syntactic mismatches between components and their
clients. In this paper we present an approach that automatically creates all syn-
tactically feasible adapters for a given component-client constellation and
selects the semantically correct one with the help of “ordinary” unit test cases.
After explaining how our approach works algorithmically, we demonstrate that
our prototype implementation is already able to solve a large fraction of the
adaptation challenges previously identified in the literature fully automatically.

1 Introduction

As Brook’s “No Silver Bullet” article [1] famously highlighted, software development
deals with complex problems and is thus an inherently complex undertaking. Splitting
software systems into more manageable subparts following the “divide and conquer”
principle has hence been part of the toolset of software engineers for a long time [2].
Inspired by other engineering disciplines, McIlroy proposed the reuse of existing
software artifacts as a means to reduce the effort involved in software development
over four decades ago [3]. A number of years later, the ideas in his seminal paper not
only gave rise to the notion of component-based development [4], they arguably also
paved the way for the recent emergence of (web) services as a key technology of
enterprise computing [5]. Similar to object-oriented software development, both ap-
proaches are based on the underlying metaphor of a jigsaw puzzle: the assembly of a
“whole” based on smaller parts. And just like the pieces in a jigsaw puzzle, a number
of objects, components or services needs to be placed together with their appropriate
neighbors to yield the desired “whole”. This process is known as composition in the
component community and as orchestration in the web service community.

Generally speaking, in a software system, the individual connections between the
pieces (i.e. between a client and a server component) are established through so-called
interfaces comprising syntactic descriptions of operation signatures (comparable to

 Automated Creation and Assessment of Component Adapters with Test Cases 167

the outer form of the puzzle pieces) and semantic descriptions of the functionality
(comparable to the picture on the puzzle pieces if you will). Clearly, both descriptions
can cause a mismatch when a part needs to be integrated into an existing system. A
semantic mismatch occurs when a piece has the wrong picture (i.e. incorrect function-
ality) and can thus typically only be detected after the pieces have been put together
and some test cases have been executed. Furthermore, it does not make much sense to
attempt to perform larger modifications to the functionality of a part since it is more
likely simply the wrong building block for the purpose in hand than a malformed part.

A syntactic mismatch, however, occurs when a piece has the right picture but the
incorrect shape (i.e. incorrect operation signatures) and thus can be easily detected by
the compiler or the runtime environment. Obviously, developers that need to deal
with syntactic mismatches may alter the interface of either the server or the client
component to fix the incompatibilities. However, this makes most sense early in the
development process [6] and becomes much more expensive and difficult if, for ex-
ample, a part needs to be replaced at run-time in a dynamically reconfigurable system.

Consequently, in this context, the non-invasive insertion of an adapter class in be-
tween two components treated as unmodifiable black boxes yields many advantages.
It works analogously to the way in which power adapters are used to connect power-
outlets with plugs from foreign countries. Of course, transferring this approach to
software components is not a new idea: it has been around for such a long time that it
is listed in practically every catalogue of development patterns such as for example
the one by the Gang of Four [7]. As the comprehensive survey of Kell [8] underlines,
adaptation is important for, and thus has been influenced by, a number of different
software engineering research communities. Amongst developers, however, adapta-
tion is often perceived as a tedious and error-prone activity that requires extensive
testing, especially when interfaces are not well documented. Clearly, this perception
and its impact make software adaptation a valuable target for automation.

The central theme of our article is thus to present a fully automated solution for
overcoming syntactic mismatches that often arise when components are to be used
and deployed in a new environment, whether this be in the context of reuse [3] or in
the context of dynamically reconfigurable systems [22]. As we will discuss in more
detail in section 5 we have found that it is feasible to use ordinary unit test cases to
drive the automatic creation of adapters for software components. Before presenting
this, we continue our article in section 2 by explaining important foundations of
component-based software development and reuse. We especially elaborate on the
test-driven reuse approach that initially trigged the development of our solution for
automated adaptation. In section 3, following that, we explain how mismatching
components are typically adapted for existing systems in order to present the required
foundations for the automated adaptation approach we present in section 4. In section
5, we demonstrate the practical applicability of the tool we have implemented before
we compare our approach to related works in section 6. A brief discussion of ongoing
work and a summary of our contribution concludes our paper in section 7.

2 Component Software

As indicated in the introduction, the decomposition of large systems into more man-
ageable parts is a common approach in software development. Still, the term “software

168 O. Hummel and C. Atkinson

component” (and especially its relation to “software object”) is probably one of the
most-discussed terms in software engineering. The first widely accepted definition was
formulated at the Workshop on Component-Oriented Programming (WCOP) in 1996
[4]. Its main essence is that components have to hide their implementation behind
contractually specified provided interfaces and may have explicit context dependencies
(so-called required interfaces) only. However, the debate still continues as there are
many open questions left. Today, for example, there are some widely accepted compo-
nent technologies such as CORBA or EJB available, but interestingly they both use
objects (“plain old Java objects” or POJOs in the latter case) as their underlying build-
ing blocks and do not fully match the component definition cited above for various
reasons. To date, there is no genuine programming construct in object-oriented
languages, and thus components can only be mimicked to a certain extend by using
packages, (inner) classes and interfaces in order to achieve component-like behaviour.
Only recently, some industry-driven efforts – such as OSGi [27] – have tried to miti-
gate this problem by defining deployment bundles that package together a number of
Java classes and come closer to the above component definition. However, we do not
want to pursue this discussion at this point - our goal with this brief outline is rather to
motivate the understanding of the term that we will use throughout the remainder of
this paper: We define a component as a software entity that offers its functionality only
through a well-defined interface and thus is composable with other components with-
out the need to disclose its underlying implementation. This definition clearly includes
the common notions of objects and (web) services in use today and the ideas intro-
duced in this paper can be applied to them as well as to other forms of modules. In fact,
for the sake of simplicity and due to its high profile, we will use Java classes to illus-
trate our ideas in the following. We will explicitly mention other concepts only where
specific differences arise.

2.1 Component Integration

Traditionally, one of the main drivers for component-based software development has
been the reuse of existing software artefacts [3]. However, this is an area that long
suffered from a lack of reusable material that prevented the creation of generally us-
able reuse systems. Only recently have some innovative approaches such as
Test-Driven Reuse [11] taken advantage of the exploding amount of freely available
open-source components and become able to deal with millions of components. How-
ever, even the latest component retrieval approaches need to live with the fact that
increasing complexity of components reduces the likelihood of finding perfectly
matching reuse candidates. Broadly speaking, as already explained in the introduc-
tion, two different criteria must be satisfied in order to integrate a component into a
given environment, namely the component must match the needs of the environment
syntactically and semantically. Although this distinction is already sufficient to under-
stand the basic contribution of our approach, the more detailed set of criteria recently
provided by Becker et al. [12] makes the goal of our approach clearer and will facili-
tate better comparability with other ideas later. The authors introduce a finer grained
taxonomy that contains five distinct classes of integration mismatches, namely –

 Automated Creation and Assessment of Component Adapters with Test Cases 169

1. Technical mismatches
2. Signature mismatches
3. Protocol mismatches
4. Concept mismatches
5. Quality mismatches

These mismatches are ordered from top to bottom since a mismatch occurring in a
higher class makes the consideration of lower classes immediately pointless. In other
words, should a technical mismatch occur (i.e. component and target environment use
different platforms) it does not make sense to check for a matching signature as the
technical mismatch already prevents the components from functioning together. Sig-
nature (mis)matches in this classification are widely equivalent to what we described
for syntactic matching earlier. Protocol mismatches focus on the invocation order of
operations. For example, with a stack data type at least one element must have been
pushed on the stack before its pop operation can be called successfully. Generally,
these mismatches are a subclass of the semantic mismatches we introduced earlier and
are related to concept (i.e. functionality) mismatches in the above classification as
both classes are usually described using (semi-)formal pre- and postconditions [13].
However, since full formal descriptions of pre- and postconditions are often difficult
if not impossible to check automatically (due to the halting problem), it makes sense
to consider protocol matching separately as it can be investigated with simpler nota-
tions (such as state machines or petri nets). As the name implies, quality mismatches
concentrate on non-functional issues, such as response time or reliability. While
some, like response time, might be adaptable by the use of special mechanisms (such
as caching in this case), other non-functional constraints such as the latter example are
often not adaptable at all.

As mentioned before, the goal of the approach we present in this paper is the group
of signature mismatches that has been further investigated by Βecker et al. [12].
Based upon Zaremski and Wing’s seminal work on signature matching [14] that we
will introduce in more detail in section 3.1, Becker et al. identified a number of poten-
tial signature mismatches that need to be supported by an adaptation solution. We will
utilize (and further explain) this collection in section 5.1 later in order to assess our
prototypical implementation and to allow better evaluation of its capabilities.

3 Foundations of Component Adaptation

The adapter pattern described by the Gang of Four [7] as the archetype for adaptation
comes in two forms – a static variant called the class adapter which is based on multi-
ple inheritance and a dynamic variant based on delegation known as the object
adapter. For today’s most widespread object-oriented languages such as Java and C#
that do not support multiple inheritance, the more appropriate variant is the object
adapter which we will thus briefly explain in the following. The UML class diagram
below depicts a situation where adaptation is required in order to make the Client
class on the left-hand side work with the class shown on the right-hand side (the
Adaptee). Unfortunately, the Adapatee provides an interface that is different to
the specified (Target) interface required by the Client. Hence, the role of the

170 O. Hummel and C. Atkinson

ObjectAdapter class is to implement Target by forwarding the requests it
receives from the Client to the appropriate operation of the Adaptee. Ideally, of
course, this has to happen transparently to both the Client and the Adaptee. In
other words, neither the Client nor the Adaptee is aware of the fact that an
adapter is “translating” the requests and responses between them. Obviously, for the
sake of simplicity, the Target interface shown in Fig. 1 could be omitted and the
Client could use the ObjectAdapter directly.

Fig. 1. Object adapter pattern as envisaged by the Gang of Four

The implementation of the ObjectAdapter class is straightforward. It needs to
create an instance of the Adaptee during its own instantiation and forward all in-
coming requests to it as it executes. Once a response is returned from the Adaptee,
it is passed on by the adapter to the Client. The challenge for a tool supposed to
create adapters automatically is to figure out the internal “wiring” responsible for the
forwarding of the adapter solely based on the interface and contract information pro-
vided by the Target and the Adaptee.

3.1 Signature Matching

The first fundamental prerequisite required for (automatic) adapter creation is to find
out when two interfaces can be regarded as equivalent (or isomorphic) or when there
is a chance they can potentially be made equivalent. In the reuse community, this
process is usually called signature matching. Signature matching in its original form
was defined by Zaremski and Wing [14] for the retrieval of functions and modules in
functional languages from a component library and recognizes a match between two
functions when they are identical in terms of the types they use in their signatures. In
other words, the names of functions and parameters are fully ignored. More formally,
this can be expressed as follows:

Signature Match(q, M, C) = {c ∈ C : M(c, q)}

This means, a signature match requires a given query signature q, a match predicate
M and a component library C in order to deliver a set of components where each one
satisfies the match predicate. The signature of a function is definied as the list of types
used as the function’s input and output parameters and the exceptions it can throw. In

 Automated Creation and Assessment of Component Adapters with Test Cases 171

addition to simple function matches, Zaremski and Wing also investigated module
matches where a module is seen as a multiset of functions exhibited in the interface of
the module. To our knowledge, only [15] has transferred these ideas to an object-
oriented language, namely Ada, by condensing a collection of operation signatures
into an object abstraction. We are not aware of any work in this direction for today's
widely used object-oriented languages such as Java and C#. However, it is fairly
straightforward to also apply these ideas to today’s object-oriented languages and
components as well as services.

Clearly, it is not necessary for the desired interface and the adaptee to be absolutely
isomorphic, it is obviously sufficient if all operations of the adapter can be mapped to
one operation of the adaptee; there can still be unused operations in the latter. How-
ever, it often happens that an operation signature can appear more than once within an
adaptee which is a challenge not solvable purely by the means of signature matching
anymore. Although the names of the operations might help in a case like this, in prac-
tice, there are often situations where establishing the right match becomes a tedious
task even for a human developer. Consider, for example, the case in which operations
are not well documented or not even well named (as is today often the case with web
services). Further ideas developed by Zaremski and Wing include the use of so-called
relaxed signature matches that, for instance, also allow different parameter orders to
be accepted. Likewise, the idea of “relaxing” parameter or return types used with
functional languages is also applicable for primitive types in object-oriented lan-
guages today. The general rule there is that preconditions cannot be strengthened and
postconditions cannot be weakened for a subtype. Translated to parameters in opera-
tion signatures, this means that the “range” of a parameter in a reuse candidate can be
increased (e.g. a long parameter on the adaptee side can also accept an int from the
client or some reference type parameter can also accept objects of a subtype). Clearly,
the inverse principle is valid for return types. For object types this can be based on the
well-known Liskov Substitution Principle [16].

In order to conclude this subsection, we want to reiterate that signature matching is
only able to determine whether two operation signatures can be considered equal,
which is, of course, an important prerequisite for adaptation. However, it cannot be
used to determine whether two operations are semantically adaptable or to derive the
required mapping of operations and their parameters for the adaptation itself. We will
discuss how to deal with this challenge in the next section.

4 Automating Adaptation

In this section we explain how the appropriate counterpart for a desired operation can
be automatically identified in a candidate component. In other words, the challenge
that we address here is finding the “correct” way of mapping the operations and the
parameters of the desired component to those in an adaptee component. This is essen-
tially a two-stage process:

First, based on signature matching, all potentially correct counterparts (i.e. all syn-
tactically matching operations) need to be found. Details of the algorithms that create
all valid permutations of the operation and parameter mappings are explained in
the next subsection. Second, once all potential mappings have been established it is

172 O. Hummel and C. Atkinson

necessary to find the correct mapping for the adapter amongst the created permuta-
tions. For this purpose, it is necessary to have a specification of the functionality
expected by the client at hand. However, specifying the functionality of software
components is difficult and has consequently been an area of intensive research for
decades. The commonly accepted approach today is the use of contracts [13] that
specify pre- and post-conditions of operations in some typically (semi-) formal way.
However, developers often perceive this as cumbersome since they need to learn an
additional specification language and thus contracts are rarely used in practice. In
Java, for example, this situation has been recently alleviated with the introduction of
assertions that allow expressing pre- and postconditions in Java syntax. Nevertheless,
due to the halting problem, the checking of assertions still requires the execution of
code with concrete input values and is thus and closely related to the following idea
from the reuse community. There, Podgurski and Pierce came up with the idea of
using so-called samples (i.e. tuples of input and expected output values) to check the
semantic fitness of operations [10]. About a decade ago, the test-driven development
movement popularized the similar approach of using test cases created prior to the
actual implementation as a specification for the required functionality [9]. Test cases
have recently also been used successfully to implement so-called test-driven reuse
[11] where they are used to evaluate the semantic fitness of reuse candidates. In fact,
our adaptation solution was largely motivated by the need to adapt reusable Java
classes in the context of our research in that area. Although test cases in this context
naturally do not guarantee a full semantic assessment of the tested component, we
have found them being a viable candidate for assessing the quality of adapters as we
will demonstrate and discuss in section 5.

4.1 Permutation Creation

As indicated before, the first step required by our automated adaptation process is the
creation of a table containing all possible syntactical adaptations for a given adaptee
class and the desired interface of a client. Essentially, this is a four stage process
based on two algorithms explained in the following. First, signature matches need to
be established between all methods of the adapter and all matching methods of the
candidate (i.e. the adaptee) according to the following Algorithm 1.

Algorithm 1. Discovering feasible method mappings

for each method in the adapter
 initialize empty List listm of method mappings
 for each method in the candidate
 if signatures match
 add method mapping to listm
 endif
 endfor
endfor

For a better understanding of the algorithm (and the later evaluation of our prototypi-
cal implementation) we illustrate its application by using an adaptation challenge for a
component performing simple mathematical matrix calculations. It is inspired by

 Automated Creation and Assessment of Component Adapters with Test Cases 173

Fig. 2. An exemplary adaptation challenge

an evaluation example used in [26] and illustrated in the figure below. The interface
of the required matrix component is shown on the left-hand side and the one provided
by the adaptee on the right-hand side.

For the sake of brevity we will omit a few methods in the following and merely
consider the set and mul methods as they are sufficient to demonstrate the main
challenges. As identified in previous work [17] the “translation” of a Matrix into a
MatrixAdaptee required by the mul method is another challenge for adapter creation.
We will discuss this issue in some more detail in section 5.1 and just assume it
as solved for now. Thus, after Algorithm 1 has been executed, listm will contain the
following entries:

set → setCell
mul → add
mul → mult
mul → sub

Here and in the following we use the right arrow to indicate an “is forwarded to”
relationship. In other words, e.g. the set operation of the adapter (Matrix) for-
wards the request to setCell in the adaptee (MatrixAdaptee). Once these indi-
vidual mappings have been established, they need to be combined for all methods
contained in the Matrix component according to the algorithm shown below.

Algorithm 2. Combining method mappings for the whole class

initialize empty List list1 of combinations
for each method in the adapter
 initialize empty List list2 of combinations
 for each mapping in the listm
 for each entry in list1 or once if empty
 if candidate method not used in list2 so far
 add method mapping to list2
 endfor
 endfor
 list1 = list2
endfor

174 O. Hummel and C. Atkinson

An important constraint in Algorithm 2 is that no method of the candidate may be
addressed twice by adapter operations, which cannot happen in this simple example,
however. The following list contains the three independently feasible internal wirings
for the adapter class as obtained from the application of Algorithm 2:

set → setCell + mul → add
set → setCell + mul → mult
set → setCell + mul → sub

Furthermore, for each method, these mappings have to be combined with the feasible
parameter permutations which can be derived in the next two stages of the permuta-
tion creation process using the same principles described in the two algorithms above.
First, for each method mapping a list is created identifying which parameter in the
adapter’s method can be mapped to which parameter in the candidate method, e.g. for
the set/setCell mapping:

set(int row, int col, double val)

 → setCell(int i, int j, double v)

This yields:

row → i (int → int)
row → j (int → int)
col → i (int → int)
col → j (int → int)
val → v (double → double)

This list needs to be combined appropriately under the constraint that no parameter is
used twice per method adaptation so that the resulting list of combinations has the
following form:

set(row, col, val) → setCell(row, col, val)
set(row, col, val) → setCell(col, row, val)

Finally, we need to combine all method adaptations with their appropriate parameter
permutations, which, for our example, leads to a total of twelve possible combinations
of adaptations like the following:

set(row, col, val) → setCell(row, col, val)
mul(m) → add(m)

and

set(row, col, val) → setCell(col, row, val)
mul(m) → add(m)

 Automated Creation and Assessment of Component Adapters with Test Cases 175

And so on with mul(m) → mult(m) and mul(m) → sub(m). Once all po-
tential adaptations have been created like this, one configuration after the other can be
checked for its fitness with the help of ordinary unit test cases typically created by the
developers for the validation of a system’s components anyway. We will explain this
evaluation process in more detail in the next section.

5 Proof of Concept Implementation

The naive way to assess the adaptations created by the above algorithms with the help
of test cases would be to submit an adapter class for each potential mapping to a test-
ing environment along with the test case and the candidate class. However, this would
involve a huge overhead since for every permutation a new adapter needs to be cre-
ated, compiled, transferred, and executed. A more efficient solution that uses Java’s
reflection capabilities to lower the overhead to just one compilation run can be im-
plemented as described in the following. The central idea is to not create new adapters
at compile-time, but to interpose the permutation engine (the Permutator object in
figure 3 below) in between the adapter and the candidate at run-time. This allows the
switching to a new mapping within the adapter to happen more efficiently. The basic
flow and the participants of this process are shown in the following sequence diagram
and are explained in more detail thereafter.

Fig. 3. Sequence diagram of the testing process

The TestCoordinator object on the left-hand side is responsible for managing
the whole adaptation and testing process. Upon its invocation, it initializes the Per-
mutator object and lets it create a lookup table that stores all possible permutations
for the method and parameter mappings derived from the interface of the Adapter
and Candidate (i.e. the adaptee) objects. After that, the engine is set up to carry out
the permutation and testing cycle by executing the TestCase, which is a normal

176 O. Hummel and C. Atkinson

JUnit test case. In order to provide the TestCase with the “illusion” of having an
appropriate class under test, as discussed before, the Adapter is created according to
the interface specified in the TestCase. The Adapter object, in turn, is created
with the knowledge of the Permutator object and does not directly call the Can-
didate (i.e. the adaptee) as an adapter usually would, but rather forwards the
parameters and an ID of the invoked method to the Permutator.

The Permutator internally keeps track of the state of permutations and is thus
able to look up the relevant internal wiring for the current testing iteration. This al-
lows it to invoke the actual operation of the Candidate with the appropriate pa-
rameter permutation. For the sake of clarity, we have depicted this scenario with just
one invocation of the Candidate in figure 3. Of course, in real life, this needs to be
done for every call from the TestCase to the Candidate – in other words, for one
complete execution of the test case – with the same settings. As soon as one of these
tests fails, the engine assumes that the current adaptation is not correct and a new
permutation needs to be adjusted. Accordingly, the TestCoordinator notifies the
Permutator to switch to the next permutation and the TestCase is executed once
again. This surrounding loop is executed until either the complete test case has been
passed without error or no further permutations are available. The former case obvi-
ously occurs for semantically acceptable reuse candidates and a correct adaptation
while the latter indicates that the candidate is for some reason not reusable in the
given context. This usually means that it does not offer the required functionality.

5.1 Evaluation

In order to assess the capabilities of our prototype we designed a complex adaptation
challenge for a comprehensive “in vitro” evaluation. The two interfaces shown in
figure 4 below contain the adaptation aspects currently supported by our system,
namely – a constructor with a parameter that needs to be stored in an object variable,
one method that accesses this variable, one method that changes this variable and
various methods with multiple parameters. For this task, we have defined a simple
JUnit test that specifies the interface of the class shown on the left-hand side of the
figure and prepared an adaptee with the interface shown on the right-hand side. In
order to make the challenge more expressive, the signature of each method appears
twice to demonstrate that the tool is not only capable of finding the correct order of
parameters, but identifying the correct operation as well. The “doNothing” operations
contained in the adaptee are those that are meant to return a value that leads to a failed
test. In total this challenge yielded 12,288 possible permutations and the small blue
digits in figure 4 indicate the amount of possible permutations per method for the
given example. The correct permutation was the 1,544th, which was discovered after
roughly seven and a half minutes of our test system, which was a 2.0 GHz single-core
notebook with 1.5 GB RAM running Windows XP.

This example also covers the most relevant challenges for an adapter generator
based on the types of mismatched recognized by Becker et al. [12]. The table follow-
ing below lists each one, shows how far our prototype supports it, refers to an exam-
ple adaptation from the above challenge and contains a brief explanation for each.

 Automated Creation and Assessment of Component Adapters with Test Cases 177

Fig. 4. Adaptation challenge built to check the features of prototype implementation

Table 1. Overview of adaptation challenges and how far they are supported by the prototype
implementation

Mismatch Supported Example Brief Explanation
1. Naming of methods yes noParam -> check through evaluation of

possible permutations

2. Naming of parameters implicitly add -> adder with permutations

3. Naming of types only for the
adaptee itself

Calculator -> Cal-
culatorAdaptee

used types are identical
but have different names

4. Structuring of (used) com-
plex types

indirectly used types can be
adapted separately

used types require adapta-
tion as well

5. Naming of exceptions no exceptions with a different
name can be adapted

6. Typing of methods no returned values can be of a
subtype

7. Typing of parameters no submitted parameters can
be of a subtype

8. Typing of exceptions n.a. essentially identical with 5
in Java

9. Ordering of parameters yes sub -> subtractor through permutations
10. Number of parameters no number of parameters can

vary e.g. due to constant
or empty parameters

11. Return values of own type yes create -> creator see above
12. Parameters of own type yes test -> tester see above

Rows 11 and 12 are not contained in the reference publication and have been added
by us. They are referring to the previously mentioned “translation problem” that oc-
curs when a class uses objects of its own type as parameters or return values such as
the test method in figure 4 (or the mul operation from figure 2). Since the Calcu-
latorAdaptee expects an object of its own type it is not possible to simply
forward the calculator instance in this case. Rather it must be replaced by the adapter
with the appropriate adaptee instance. A solution for this issue is discussed in a previ-
ous publication [17] in more detail.

178 O. Hummel and C. Atkinson

In addition to the example constructed above, we also applied our system to the
matrix adaptation challenge from figure 2 after we had created a simple test case for
it. Out of 24 feasible permutations the correct one was chosen in less than five 5 sec-
onds. In order to have our system undergo another more practically relevant evalua-
tion we used some further Matrix components we had previously retrieved from the
merobase.com component search engine in summer 2007. In total, this set comprises
137 potentially reusable candidates out of which 10 have exactly identical method
names with the interface we specified on the left-hand side of figure 2. Out of these
10 components only two candidates could be directly executed without adaptation or
any other modification. Of course, our test case did not even compile successfully
with the other 127 candidates due to deviating class or operation names. However,
once we included our automatic adaptation creation into the testing process, we were
able to test 26 out of these 137 candidates successfully. No false positives were de-
tected amongst them in a manual inspection. There were in fact some false negatives,
i.e. classes that seem to offer the right functionality but which our prototype was not
able to adapt. The main reasons for this were lacking dependencies and thrown excep-
tions that our tool is not able to adapt yet. For adapting and assessing all 137 compo-
nents our prototype requires about 5 minutes and 30 seconds on our test system.

5.2 Discussion

As the above evaluations reveal, the automated adaptation engine described in this
paper not only works in a controlled laboratory environment, but also demonstrated
its robustness with real world reuse candidates arbitrarily downloaded from the web.
In this context it considerably increases the probability of finding appropriate reuse
candidates. Interestingly, the applicability of automatic adaptation goes far beyond
plain reuse. For example, it seems feasible to extend recent research on self-testing
components [22] with an automated adaptation engine and thus to create self-adapting
components [24] that can be used in dynamically reconfiguring systems. However, in
order to allow the application of our approach in a practical environment with perhaps
even more complex components, we still need to overcome a number of challenges.
As mentioned before, it is obvious that test cases are by no means a complete specifi-
cation of the behaviour of components. They can merely sample it and the reliability
of reuse candidates retrieved with a test-driven reuse system and adapters generated
by our prototype is of course closely correlated with the quality of the tests employed.
Our previous experience with test-driven reuse [11] nevertheless indicates that al-
ready quite simple test cases created with common practices rule out false positives
with high confidence. Clearly, establishing concrete measures and guidelines in this
context is another interesting area for future research.

In order to conclude the discussion of our approach we briefly need to come back
to the initial comparison of components and objects as this is certainly an important
issue for its scalability. As we have demonstrated in the evaluation section, our proto-
type is able to adapt the interfaces of classes with significant complexity and since a
well defined component is supposed to hide its implementation behind an interface of
identical style our approach is applicable in that case as well. However, as our current
“in vitro” implementation is still based on a brute-force assessment of all possible
adapters its application can become time consuming with increasing interface sizes.

 Automated Creation and Assessment of Component Adapters with Test Cases 179

Thus, we are currently exploring potential optimization strategies for the testing proc-
ess. Currently, the most promising idea to speed up the permutation evaluation is
reusing test results of already tested adapter configuration for operations. In other
words, the tool remembers previous test results and therefore does not need to process
the adaptation of an operation again once it has been tested with the same adaptee
method and parameter permutation. However, as their might exist subtle dependen-
cies between operations we still assume that we need to have a fallback to the brute
force variant in order to be sure not to miss a working adapter configuration. Never-
theless, we expect this solution will improve the scalability of our approach consid-
erably. Scalability, however, is often confused with the ability to deal with more than
one adaptee at a time in the context of components and class assemblies. However,
adaptation per se is defined as a one to one mapping between adapter and adaptee [7]
and composing a number of classes or components beyond that notion is rather an
orchestration challenge (based on the facade pattern [7]) as currently under intensive
investigation in the web service community. Nevertheless, the approach just presented
might be helpful to find a general solution to this group of problems as well, but this
has yet to be investigated as well.

6 Related Work

We have already referred the reader to [8] for a comprehensive overview of general
adaptation techniques. This article lists a tremendous amount of literature that offers a
wide variety of approaches for the integration of components into a system from a
large number of communities. We, however, focus on those previous approaches that
aimed to automate the adaptation process in the remainder of this subsection.

To our knowledge, Penix and Alexander [18] were the first researchers that
sketched a solution for this challenge. They grounded their proposal in formal com-
ponent specifications. However, they merely described some theoretical foundations,
but provided neither concrete algorithms nor a practical implementation. More re-
cently, Haak et al. [19] proposed a similar approach for automated adaptation of a
subset of Standard ML and claim to have a working solution for simple modules en-
riched with machine-readable semantic specifications. However, neither a proof of
concept nor an evaluation is provided. Furthermore, such semantic specifications
impose additional effort on the developers and are not likely to be created for reusable
components. Bracciali et al. [20] developed a methodology that comprises a small
language for adapter specifications from which adapters can be automatically derived.
However, it suffers from a similar shortcoming as the previous approaches since the
specification of the adapters needs to be figured out by a human developer. Gschwind
has also worked on the automation of component adaptation and proposed the use of
an adapter repository where adapters can be stored and selected automatically [21].
However, the content of the repository (i.e. the adapters) need to be generated by
humans again. Other more recent efforts to automate adaptation such as [23] or [25]
also present interesting ideas, supporting the semi-automated generation of adapters
for web services or the automated creation of adaptation contracts, but neither of them
is able to fully support the whole process of adapter creation without human support.

180 O. Hummel and C. Atkinson

7 Conclusion

The wide variety of existing articles discussing the automation of component adapta-
tion demonstrates the importance of this topic. However, to the best of our knowl-
edge, so far there exists no approach with appropriate tool support that would be able
to automatically deliver practically usable syntactic adaptations for components in
popular mainstream programming languages such as Java. We have experienced the
necessity of such a technology during research we conducted for a test-driven compo-
nent retrieval system and found that the underlying testing engine could also be used
to assess the quality of automatically created adapters. Thus, we developed a so-called
permutation engine that is able to derive all syntactically feasible adaptations between
a specified interface and a syntactically mismatching component. Together with the
testing engine this yields a system that is usually able to generate a working adapter
for average size components completely without human intervention in just a few
seconds. No previous approach has been able to offer such a large degree of automa-
tion including syntactic and protocol adaptation as our test-driven adaptation engine.

Another big advantage of our approach is the fact that it is solely based on artefacts
(namely the test cases) that are normally created during the development process of a
system and does not require any additional specification effort or the learning of a
potentially complex formal specification language. Together with performance op-
timizations and coverage improvements currently under development it opens a host
of interesting research possibilities that, in the future, promise to facilitate not only the
composition of complex applications from components, but also the orchestration of
web services.

References

1. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20(4) (1987)

2. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules. Commu-
nications of the ACM 15(12) (1972)

3. McIlroy, D.: Mass-Produced Software Components. In: Software Engineering: Report of a
Conference Sponsored by the NATO Science Committee, Garmisch, Germany (1968)

4. Szyperski, C.: Component Software, 2nd edn. Addison-Wesley, Reading (2002)
5. Erl, T.: Service-oriented architecture: concepts, technology and design. Prentice-Hall,

Englewood Cliffs (2005)
6. Crnkovic, I., Chaudron, M., Larsson, S.: Component-based Development Process and

Component Lifecycle. In: Proc. of the Intern. Conf. on Software Engin. Advances (2006)
7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
8. Kell, S.: A Survey of Practical Software Adaptation Techniques. Journal of Universal

Computer Science 14(13) (2008)
9. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley, Reading

(2004)
10. Podgurski, A., Pierce, L.: Retrieving Reusable Software by Sampling Behavior. ACM

Transactions on Software Engineering and Methodology 2(3) (1993)

 Automated Creation and Assessment of Component Adapters with Test Cases 181

11. Hummel, O., Janjic, W., Atkinson, C.: Code Conjurer: Pulling Reusable Software out of
Thin Air. IEEE Software 25(5) (2008)

12. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: Towards an
Engineering Approach to Component Adaptation. In: Reussner, R., Stafford, J.A., Szyper-
ski, C. (eds.) Architecting Systems with Trustworthy Components. LNCS, vol. 3938.
Springer, Heidelberg (2006)

13. Meyer, B.: Applying Design by Contract. IEEE Computer 25(10) (1992)
14. Zaremski, A.M., Wing, J.M.: Signature Matching: A Tool for Using Software Libraries.

ACM Transactions on Software Engineering and Methodology 4(2) (1995)
15. Stringer-Calvert, D.W.J.: Signature Matching for Ada Software Reuse. Master’s Thesis,

University of York (1994)
16. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Transaction on Program-

ming Languages and Systems 16(6) (1994)
17. Hummel, O., Atkinson, C.: The Managed Adapter Pattern: Facilitating Glue Code Genera-

tion for Component Reuse. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS,
vol. 5791. Springer, Heidelberg (2009)

18. Penix, J., Alexander, P.: Towards Automated Component Adaptation. In: Proceedings of
the International Conference on Software Engineering and Knowledge Engineering (1997)

19. Haack, C., Howard, B., Stoughton, A., Wells, J.B.: Fully automatic adaptation of software
components based on semantic specifications. In: Kirchner, H., Ringeissen, C. (eds.)
AMAST 2002. LNCS, vol. 2422. Springer, Heidelberg (2002)

20. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. The Jour-
nal of Systems and Software 74(1) (2005)

21. Gschwind, T.: Adaptation and Composition Techniques for Component-Based Software
Engineering, PhD thesis, Technical University of Vienna (2002)

22. Brenner, D., Atkinson, C., Malaka, R., Merdes, M., Suliman, D., Paech, B.: Reducing
Verification Effort in Component-Based Software Engineering through Built-In Testing.
In: Information Systems Frontiers, vol. 9(2). Springer, Heidelberg (2007)

23. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proceedings of the International
Conference on the World Wide Web (2007)

24. Atkinson, C., Hummel, O.: Reconciling Reuse and Trustworthiness through Self-Adapting
Components. In: Proceedings of the International Workshop on Component-Oriented
Programming (2009)

25. Martin, J.A., Pimentel, E.: Automatic Generation of Adaptation Contracts. Electronic
Notes on Theoretical Computer Science, vol. 229, p. 2 (2009)

26. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000)

27. O.S.G. Alliance: OSGi Service Platform Core Specification. Release 4. OSGi (2007)

View publication stats

https://www.researchgate.net/publication/221406982

	Automated Creation and Assessment of Component Adapters with Test Cases
	Introduction
	Component Software
	Component Integration

	Foundations of Component Adaptation
	Signature Matching

	Automating Adaptation
	Permutation Creation

	Proof of Concept Implementation
	Evaluation
	Discussion

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

