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Abstract. We present a new cryptosystem based on ideal arithmetic in quadratic
orders. The method of our trapdoor is different from the Diffie–Hellman key distribution
scheme or the RSA cryptosystem. The plaintextm is encrypted bympr , wherep is a
fixed element andr is a random integer, so our proposed cryptosystem is a probabilistic
encryption scheme and has the homomorphy property. The most prominent property of
our cryptosystem is the cost of the decryption, which is of quadratic bit complexity in
the length of the public key. Our implementation shows that it is comparably as fast as
the encryption time of the RSA cryptosystem withe = 216 + 1. The security of our
cryptosystem is closely related to factoring the discriminant of a quadratic order. When
we choose appropriate sizes of the parameters, the currently known fast algorithms,
for example, the elliptic curve method, the number field sieve, the Hafner–McCurley
algorithm, are not applicable. We also discuss that the chosen ciphertext attack is not
applicable to our cryptosystem.

Key words. Public-key cryptosystem, Fast decryption, Quadratic order, Factoring
algorithm, Chosen ciphertext attack.

1. Overview

Plenty of public-key cryptosystems have been proposed, and the Diffie–Hellman key
distribution scheme or the RSA cryptosystem are mostly used throughout the world
[9], [22]. Typically, these public-key cryptosystems involve a modular exponentiation
with a large number, which is of cubic bit complexity in the bit length of the public
key and its computation is relatively slow. On the other side, for the sake of high secu-
rity the secret keys are stored on a smart card and the decryption computation is also
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carried out over the smart card. So a cryptosystem with fast decryption is desired. To
our knowledge, there exists no practical public key cryptosystem which has quadratic
decryption time. In this paper we present a new cryptosystem with fast decryption time.
The decryption is of quadratic bit complexity; it involves an extended Euclidean algo-
rithm computation, an ideal reduction and a few basic operations like multiplication
and division with remainder of numbers. By the experiment of our implementation, our
cryptosystem is comparably as fast as the encryption time of the RSA cryptosystem with
e= 216+ 1.

Our cryptosystem is constructed over an imaginary quadratic field. Buchmann and
Williams proposed the first algorithm which achieves the Diffie–Hellman key distribu-
tion scheme using the class group in an imaginary quadratic field [5]. Later, Hafner
and McCurley discovered the subexponential algorithm against the discrete logarithm
problem of the class group [13]. Since then cryptosystems over class groups have not
gained much attention in practice. Recently, H¨uhnlein et al. proposed an ElGamal-
type public-key cryptosystem with a faster decryption process in class groups of imag-
inary quadratic fields [14]. Here we call it the HJPT cryptosystem. Denote byCl(1q)

andCl(11) the class group of the nonmaximal order and that of the maximal order,
respectively. The technique used in the HJPT cryptosystem is to “switch” the ide-
als betweenCl(1q) and Cl(11). Note that the arithmetic of the switching is fast,
i.e., has quadratic complexity in the bit length of the public key. Nevertheless, the
HJPT cryptosystem has cubic decryption time because it is an ElGamal-type public-
key cryptosystem and involves an exponentiation step. In our case, we encrypt the
plaintext m by E(m, r ) = mpr , wherep is an element in the kernel of the map
Cl(1q) → Cl(11) and r is a random integer. By this encryption, the decryption
process only involves the switching arithmetic, so the decryption has quadratic com-
plexity in the bit length of the public key. The encryption processE(m, r ) = mpr

induces that our cryptosystem uses a probabilistic encryption and the homomorphy
property.

The security of our cryptosystem is based upon a new number-theoretic problem over
quadratic orders which is closely related to factoring the discriminant1q = −pq2.
When we choose appropriate sizes of the parameters, the currently known fast algo-
rithms like the elliptic curve method [15], the number field sieve [16], and the Hafner–
McCurley algorithm [13] are not applicable. We also discuss the chosen ciphertext
attack. In our cryptosystem, the surjective one way mapCl(1q) → Cl(11) plays an
important role. Two public key cryptosystems which use such a surjective map are
known: Shamir’sRSA for paranoidswhich uses(Z/nZ)∗ → (Z/pZ)∗ (n = pq)
[25] and the Okamoto–Uchiyama cryptosystem which uses(Z/nZ)∗ → (Z/pZ)+
(n = p2q) [20]. The chosen ciphertext attack is applicable to both public key
cryptosystems, and the attacker can easily factor the public modulusn (see, for
example, [12]). However, the chosen ciphertext attack is not applicable to our
cryptosystem.

The paper is organized as follows: we first recall the basic notions of class groups
of quadratic orders and describe how to “switch” from the nonmaximal order to the
maximal order and vice versa. We then present the new cryptosystem and analyze
its security. Finally, we give some timings comparing our new cryptosystem with
RSA.
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2. Quadratic Orders

There are plenty of cryptographic primitives using quadratic fields and several public-
key cryptosystems are proposed [6]. We briefly explain the class group of a quadratic
order. A more complete treatment may be found in [8].

Let 1 ∈ Z not a square such that1 ≡ 0,1 (mod 4). We call1 a (quadratic) dis-
criminant.1 is called afundamentaldiscriminant if1 ≡ 1 (mod 4) and is square-free,
or1/4≡ 2,3 (mod 4) and is square-free. Every discriminant1 can be represented by
11 f 2, where11 is a fundamental discriminant andf is an integer, and we denote1 f =
11 f 2. We consider only negative discriminants in this paper. Let

√
1 f = i

√|1 f | be the
square root of1 f on the upper half-plane. Then we callO1 f = Z+ ((1 f +

√
1 f )/2)Z

thequadratic orderof discriminant1 f . It is an integral domain. If1 f is not a fundamen-
tal discriminant, thenO1 f ⊂ O11 andO1 f has finite indexf inO11. Moreover, we have
O1 f = Z + fO11. The orderO1 f is called thenonmaximal orderwith conductor f,
and the orderO11 is called themaximal order. Every elementα ∈ O1 f is represented by
α = (x+y

√
1 f )/2, x, y ∈ Z. Forα = (x+y

√
1 f )/2, we denote byα′ = (x−y

√
1 f )/2

its (complex) conjugate. Thenormof α is defined asN(α) = αα′ = (x2 − y21 f )/4.
A subseta of O1 f is an (integral) ideal ofO1 f if α + β ∈ a wheneverα, β ∈ a, and
α(1 f +

√
1 f )/2 ∈ a wheneverα ∈ a. Every ideala of O1 f is given by

a = m

(
aZ+ b+√1 f

2
Z

)
, (1)

wherem ∈ Z, a ∈ Z>0, andb ∈ Z such thatb2 ≡ 1 f (mod 4a). This expression is
unique if we choose−a < b ≤ a. Then(m,a,b) is called thestandard representation
of a. The norm of an ideala is defined byN(a) = am. a is said to beprimitive if
m = 1. In that case, we representa by (a,b). For two given idealsa, b, we can define
their productab (see, for example, [5]). The computation of a representation ofab needs
O((log(max{N(a), N(b)}))2) bit operations.

We describe the class group ofO1 f . An ideala is calledprimeto f if GCD(N(a), f ) =
1 holds. The ideals ofO1 f prime to f form an Abelian group; denote it byI1 f ( f ). Two
idealsa andb are calledequivalentif there is anα ∈ O1 f such thata = αb. Denote
this equivalence relation bya ∼ b. For an elementγ ∈ O1 f the idealγO1 f is called a
principal ideal. The principal idealsP1 f ( f ) which are prime tof form a subgroup of
I1 f ( f ). The quotient groupI1 f ( f )/P1 f ( f ) is called theclass groupof O1 f ; denote it
byCl(1 f ). The order of this group is denoted byh(1 f ). For a primitive ideala inI1 f ( f ),
we say thata = (a,b) is reducedif |b| ≤ a ≤ c = (b2−1 f )/4a and additionallyb ≥ 0
if a = c or a = |b|. There is only one reduced ideal in every equivalence class. Denote
by Red1 f (a) the reduced ideal equivalent toa ∈ I1 f ( f ). An algorithm to compute
Red1 f (a) from a is described in [5] and requiresO((log(N(a)))2) bit operations. We
identify each class of the class group with the unique reduced ideal. It is easy to verify
thatN(a) <

√|1 f |/3 holds for every reduced ideala ∈ I1 f ( f ). Conversely, a primitive
ideala ∈ I1 f ( f )with small norm such thatN(a) <

√|1 f |/4 is always a reduced ideal.
It turns out that we can compute the representation of the product of two classes of the
class group inO((log

√|1 f |)2) bit operations. See [2].
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2.1. The Map Cl(1q)→ Cl(11)

In [8] the relationship between ideals in the maximal orderO11 and in the nonmaximal
orderO1 f is investigated. Ifa is an ideal inI1 f ( f ), thenA = aO11 is an ideal in
I11( f ) andN(a) = N(A). Similarly, if A is an ideal inI11( f ), thena = A ∩ O1 f is
an ideal inI1 f ( f ) andN(A) = N(a). The mapϕ : a 7→ aO11 induces an isomorphism

I1 f ( f )
∼→I11( f ). The inverse of this map isϕ−1 : A 7→ A∩O1 f . Let f = q be a prime

and let
√|11|/3< q. Then all the reduced ideals inCl(11) are prime to the conductor

q [14]. Thus we can consider the following map based onϕ:

ϕq : Cl(1q) −→ Cl(11),

a 7−→ Red11(aO11),

where we identify a class of both class groups with the unique reduced ideal in that class.
(Note that ifq >

√|11|/3 we can also define this map; we possibly have to compute an
ideal equivalent toa which is prime toq. See [14].) A practical algorithm to compute
ϕq is as follows:

Algorithm 1 (GoToMaxOrder)

Input: A reduced ideala = (a,b) ∈ Cl(1q), the discriminant1q, the funda-
mental discriminant11, and the conductorq.

Output: A reduced idealA = ϕq(a) = (A, B).

1. A← a
2. bO ← 1q mod 2
3. Solve 1= µq+λa forµ, λ ∈ Z using the extended Euclidean algorithm
4. B← bµ+ abOλ mod 2a
5. (A, B)← Red11(A, B)
6. RETURN(A, B)

Note that the mapGoToMaxOrder is different from the map described in [14]. Every
step of this algorithm requiresO((log

√|1q|)2) bit operations, thus the complexity of
this algorithm is quadratic.

We discuss the “inverse” mapϕ−1
q . The mapϕq : Cl(1q)→ Cl(11) is surjective and

we haveh(1q) = h(11)(q− (11/q)), where(11/q) is the Kronecker-symbol (see, for
example, [8]). Denote by Ker(ϕq) the kernel of the mapϕq : Cl(1q)→ Cl(11) which
is a cyclic subgroup ofCl(1q) with orderq− (11/q). So there is a(q − (11/q))-fold
ambiguity for the inverse of the mapϕq. We distinguish a unique reduced ideal from these
preimages using the size of the norm of an ideal. The norm of any reduced ideal inCl(11)

is smaller than
√|11|/3. By our assumption

√|11|/3< q all ideals inCl(11) are prime
to the conductorq. Therefore, for a reduced idealA in Cl(11), a = ϕ−1(A) = A∩O1q

is a primitive ideal inI1q(q), and N(A) = N(a). If the primitive ideala in I1q(q)
satisfiesN(a) <

√|11|/4, then botha andA are reduced ideals. Consequently, if we
restrict ourselves to idealsa in Cl(1q) such thatN(a) <

√|11|/4, thenϕq(a) ∩ O1q

is reduced (inI1q(q)) and so we can compute a distinguished inverse of the mapϕq,
namely,a. Note that the cardinality of this set is smaller than that ofCl(11). We denote
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by ϕ−1
q this restricted inverse map and the practical algorithm to compute the mapϕ−1

q
is as follows:

Algorithm 2 (Inverse)

Input: A reduced idealA = (A, B) ∈ Cl(11) such thatN(A) <
√|11|/4,

the conductorq.
Output: A reduced ideala ∈ Cl(1q) such thatϕ−1

q (A) = a = (a,b).
1. a← A
2. b← Bq mod 2a
3. RETURN(a,b)

This algorithm obviously requires onlyO((log(
√|11|))2) bit operations.

3. The New Cryptosystem

Generate two random primesp,q > 4 such thatp ≡ 3 (mod 4) and let11 = −p. Let
Cl(11) be the class group of the maximal order with discriminant11 and letCl(1q) be
the class group of the nonmaximal order with conductorq.1q will be public, whilst its
factorization into11 andq will be kept private. The discriminant11 and the conductor
q are large primes to prevent breaking the cryptosystem by factoring1q.

In the key generation, we choose an idealp from the kernel Ker(ϕq) and makep public.
The message idealm is a reduced ideal inCl(1q) with norm smaller thanb√|11|/4c.
The encryption is carried over the class groupCl(1q) by computingRed1q(mpr ), where
r is a random integer smaller thanq− (11/q). Then, by the knowledge of the conductor,
we can go to the maximal order and the image of the message idealϕq(m) in the maximal
order is revealed, sinceϕq(mpr ) = ϕq(m)ϕq(p

r ) = ϕq(m)O11 = ϕq(m). We can recover
the message by computing the unique preimage ofϕq(m), namely,m = ϕ−1

q (ϕ(m)).

1. Key generation: Generate two random primesp,q > 4 with p ≡ 3 (mod 4)
and
√

p/3 < q. Let11 = −p and1q = 11q2. Let k andl be the bit lengths of
b√|11|/4c andq − (11/q), respectively. Choose an idealp in Cl(1q), where

ϕq(p) is a principal ideal inO11. (2)

Then(p,1q, k, l ) are the system parameters, and11,q are the secret keys.
2. Encryption: Let m be the plaintext, wherem is a reduced ideal inCl(1q) with

log2 N(m) < k. Pick up a randoml − 1 bit integer and encrypt the plaintext as
follows using binary exponentiation techniques:

c = Red1q(mpr ). (3)

Thenc is the ciphertext.
3. Decryption: Using the secret keys11,q, we computeK = GoToMaxOrder(c).

The plaintextm can be recovered by computingm = Inverse(K).

The embedding of a number into a message ideal may be simply done as follows: letx
be a message and lett be a random number of lengthk − 2− blog2 xc. Denote byx.t
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the concatenation ofx andt as bitstrings. We determine the smallest primel larger than
x.t with (1q/ l ) = 1. It follows that log2 l < k − 1. This can be done effectively using
a few trials of a primality test and Jacobi symbol computations. Then, computeb such
that1q ≡ b2 mod 4l ,−l < b ≤ l . This can also be done effectively using the RESSOL
algorithm of Shanks [26]. Thena = (l ,b) is a reduced ideal with log2 N(a) < k.

The key generation simply works as follows: choose a numberα ∈ O11 with norm
less than

√|1q|/4, compute the standard representation of the idealαO11, and compute
p = ϕ−1(αO11). This is explained in [14]. Thenp ∈ kerϕq. The encryption takes
O((log

√|1q|)3) bit operations because of the binary exponentiation. The decryption
involves two algorithms of quadratic complexity, so it requires onlyO((log

√|1q|)2)
bit operations.

4. Security Considerations

The security of our cryptosystem depends on the difficulty of factoring the discriminant
1q. If the discriminant1q can be factored, our proposed cryptosystem is completely
broken. First, we consider the size of the secret parameters11 andq to prevent breaking
the cryptosystem by factoring1q. On the other hand, an attacker may somehow compute
the imageϕ(a) in the maximal orderO11 for some ideala of O1q . We prove that
to compute the mapϕ(a) is as intractable as factoring1q. In our cryptosystem, we
make public an idealp in Ker(ϕq). We discuss that according to current knowledge the
knowledge of such an ideal does not bring any advantage for factoring the discriminant.
Finally, we argue that a chosen ciphertext attack as presented in [12] against Shamir’s
RSA variant [25] will not give us substantially more knowledge than was previously
known.

4.1. The Size of the Secret Parameters11,q

We discuss the size of the secret parameters11 = −p andq which prevents attacks by
the known factoring algorithms. LetL N [s, c] = exp((c+o(1)) logs(N) log log1−s(N)).
The number field sieve [16] and the elliptic curve method [15] are the different types of
factoring algorithms which have to be taken care of; other factoring algorithms are more
or less slower [18], [23]. The number field sieve is the fastest factoring algorithm, and
the running time depends on the total bit length of the composite number|1q|; it is of
the order ofL |1q|[

1
3, (

64
9 )

1/3]. Currently the fastest implementation for the number field
sieve factored a 130-digit (≈ 431-bit) RSA modulus [7]. If we choose1q to be larger
than 768 bits, the number field sieve becomes infeasible. On the other hand, the elliptic
curve method depends on the size of the primesp or q and the expected running time is
Lr [ 1

2,2
1/2], wherer is p or q. The fastest implementation for the elliptic curve method

found a 48-digit (≈ 159-bit) prime factor [10]. If we choosep andq to be larger than 256
bits, the elliptic curve method becomes infeasible. Therefore, the 768-bit discriminant
1q with 256-bit p,q is secure for cryptographic purposes.

We wonder if there exists a special algorithm for factoring a composite number with
a squared prime factor. To our knowledge, the only algorithm for this problem presented
is by Peralta and Okamoto [21]. They improve the elliptic curve method by a constant
factor by considering the distribution of the Jacobi symbol. For example, for finding
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the 40-digit (≈ 133-bit) prime factor, the algorithm is 25 times faster than the original
elliptic curve method. Its improvement is negligible and is not a real threat.

4.2. Security ofϕ

Only the person who knows the conductorq can compute the mapϕq and then recover
any message ideal. The mapϕq consists ofϕq = Red11 ◦ ϕ. If attackers somehow can
compute the idealϕ(a) in the maximal order which is the image of an ideala in Cl(1q),
then the message idealm may be recovered. Here, we can prove that the discriminant
1q can be factored using few iterations of any algorithm which computes the image
of ϕ.

Theorem 1. Assume that there exists an algorithmAL ϕ which computes for the prim-
itive ideala = (a1,a2) ∈ I1q(q) a primitive idealA = (A1, A2) ∈ I11(q) such that
A = ϕ(a) without knowing the conductor q. By using the algorithmAL ϕ as an oracle,
the discriminant1q = 1q2 can be factored in random polynomial time.

Proof. Let a = (a,b) be a primitive ideal inI1q(q). By using the algorithmAL ϕ , we
can computeA = (A, B) such thatA = ϕ(a). The relation between the idealsa andA

is as follows:

a = A, B ≡ bq−1 (mod a). (4)

Therefore, we can computeq ≡ bB−1 (mod a) because(B,a) = (b,a) = 1. We apply
this algorithm for several prime idealspi = (pi ,bpi ), wherepi is prime with(pi /1q) =
1, which require random polynomial time in generating them. After polynomially many
iterations in log21q, we can recover the conductorq using the Chinese Remainder
Theorem. It is easy to check the rightq by computing the greatest common divisor
with 1q.

This theorem means that nobody can “switch” the primitive ideal(a,b) to the maximal
order without the knowledge of the conductorq.

4.3. Knowledge ofp

Let p be the public key which is the element in Ker(ϕq). We argue that the knowledge
of p does not substantially help to factor1q using currently known fast algorithms.
For simplicity, we assumep is the generator of the group Ker(ϕq), so the order ofp
is q − (q/11). A nontrivial ambiguous ideal is an idealf in Cl(1q) such thatf2 ∼ 1
and f 6∼ 1. If a nontrivial ambiguous ideal in the orderO1q is known, we can factor
the discriminant1q [24]. For the discriminant1q of our cryptosystem, there is only
one nontrivial ambiguous ideal inCl(1q). Moreover, the nontrivial ambiguous ideal
lies in the group Ker(ϕq), so the probability thatpr for a randomr will be a nontrivial
ambiguous ideal is negligible. It is unknown whether other ideals in Ker(ϕq) except the
ambiguous ideals can be used for factoring the discriminant1q.

In our cryptosystem, we publish the idealp. A possible attack to find a nontrivial
ambiguous ideal for a givenp is to compute the order ofp in the groupCl(1q). The
fastest algorithm to compute the order ofp in the groupCl(1q) is the Hafner–McCurley
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algorithm [13]. Its running time isL |1q|[
1
2,2

1/2] which is much slower than factoring1q.
This shows that with the currently known algorithms, knowledge ofp does not with high
probability help in factoring1q. The same reasoning applies for polynomially many
elements of Ker(ϕq).

4.4. Chosen Ciphertext Attack

Let G1,G2 be finite abelian groups and consider a surjective homomorphismϕ : G1→
G2. If two elementsg, h in G1 satisfyϕ(g) = ϕ(h), then we assume themto be in
the same coset. Our cryptosystem is constructed using the surjective homomorphism
ϕq : Cl(1q)→ Cl(11). The message idealm is encrypted byc = Red1q(mpr ). Then
the ciphertextc “represents” all elements of the coset ofm in the groupCl(1q).

Similarly, Shamir proposed an RSA type public key cryptosystem using the homomor-
phismϕS : (Z/nZ)∗ → (Z/pZ)∗, wheren = pq and p,q are primes [25]. In the key
generation,e,d are generated by the relationed≡ 1 (mod p−1). The messageM must
be smaller thanp. For the encryption we computeC ≡ Me (mod n), and the message
can be recovered byM ≡ Cd (mod p). For an elementa ∈ (Z/nZ)∗, all elements of
the coset ofa for the mapϕS are represented by{a,a+ p,a+ 2p, . . . ,a+ (q− 1)p}.
Therefore, if we know two elementsa1,a2 in the same coset, we can factor the modulusn
by computing GCD(a1−a2,n) = p. This is equivalent to the fact thatn can be factored
if we know an element in the kernel ofϕS. Using this Gilbert et al. proposed the following
attack against this cryptosystem [12]. LetM ′ be a message larger thanp, and letC be
the ciphertext corresponding toM ′. If an attacker can know the plaintext corresponding
to C, sayM , then the modulusn can be factored by computing GCD(M − M ′,n). We
call this attack thechosen ciphertext attack.1 Note that this chosen ciphertext can be
achieved becauseZ/nZ is not only a group but also a ring.

Consider the chosen ciphertext attack against our proposed cryptosystem. Letm′ be
a message ideal such thatN(m′) >

√|11|/3. If m is the regular message ideal which
is a reduced ideal with norm smaller than

√|11|/4 and in the same coset ofm′, then
we havem ∼ m′ps for some integers ≥ 0. This yields the knowledge of some other
p′ ∈ Ker(ϕq). As shown above, no algorithm is known to compute the factorization of
1q when polynomially many elements of the kernel are known. Next, we discuss the
case where the chosen ciphertext attack is applied several times. Denote byAL C the
oracle which, given as input an idealm′ in O1q , answers with the reduced idealm with
norm smaller than

√|11|/4 such thatϕq(m) = ϕ(m′) in Cl(11). By the answer of this
oracleAL C, we can to some extent deduce information about11. Indeed, we have the
following relations:

AL C(m
′) 6= m ⇒ N(m′) >

√|11|/4,
AL C(m

′) = m ⇒ N(m′) <
√|11|/3.

Note that if
√|11|/4< N(m′) <

√|11|/3, the oracleAL C may answer the same ideal
or a different ideal, depending onϕ(m′) being a reduced ideal or not. Since this range

1 Okamoto and Uchiyama proposed the public-key cryptosystem using the homomorphismϕOU :
(Z/nZ)∗ → (Z/pZ)+, wheren = p2q and p,q are primes [20]. This chosen ciphertext attack is also
applicable against the Okamoto–Uchiyama cryptosystem.
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Table 1. Average timings for the new cryptosystem compared with RSA(e= 216+1)over 100 randomly
chosen pairs of primes of the specified size on a SPARC station 4 (110 MHz) using the LiDIA library

log2(n) 768 1024 1536 2048

RSA encryption 6 ms 10 ms 19 ms 31 ms
RSA classical decryption 470 ms 1,032 ms 3,045 ms 7,006 ms

New CS precomputation forp ≈ q ≈ n1/3 3,759 ms 7,650 ms 21,682 ms 36,166 ms
New CS encryption forp ≈ q ≈ n1/3 3 ms 4 ms 8 ms 12 ms
New CS decryption forp ≈ q ≈ n1/3 8 ms 13 ms 22 ms 30 ms

New CS precomputation forp ≈ n1/4 — 8,766 ms 24,673 ms 36,276 ms
New CS encryption forp ≈ n1/4 — 4 ms 6 ms 10 ms
New CS decryption forp ≈ n1/4 — 12 ms 22 ms 32 ms

has size about 0.07735
√|11|, it would take an exponential number (in log2

√|11|) of
queries toAL C to detect a good approximation of either

√|11|/4 or
√|11|/3. Therefore,

the chosen ciphertext attack is not applicable to our proposed cryptosystem.

5. Practicality

The prominent property of the proposed cryptosystem is the running time of the decryp-
tion. Most prominent cryptosystems require decryption timeO((log2 n)3), wheren is the
size of the public key. The total running time of the decryption process of our cryptosys-
tem isO((log21q)

2) bit operations. In order to demonstrate the improved efficiency of
our decryption, we implemented our scheme using the LiDIA library [3]. It should be em-
phasized here that our implementation was not optimized for cryptographic purposes—it
is only intended to provide a comparison between decrypting in the nonmaximal order
and using our trapdoor decryption. The results are shown in Table 1.

Observe that we separated the fast exponentiation step of the encryption as a “precom-
putation” stage. Indeed, if we can securely store the valuespr , then the actual encryption
can be effected very rapidly, since it requires only one ideal multiplication and one
ideal reduction. Of course, one can use one of the well-known fixed-base exponentiation
techniques completely analogously as for ElGamal-type protocols as mentioned, e.g., in
Section 14.6.3 of [18].

It should be mentioned that the size of a message for our cryptosystem is smaller than
the size of a message for the RSA encryption (e.g., 256 bit versus 768 bit, or 341 bit
versus 1024 bit). In connection with the very fast decryption time, an excellent purpose
for our cryptosystem could be (symmetric) key distribution. In that setting, the short
message length is not a real drawback. On the other hand, the message length is longer
than for ElGamal encryption on “comparably” secure elliptic curves (e.g., 341 bit versus
180 bit).

Acknowledgments

We thank Johannes Buchmann for several helpful comments.



272 S. Paulus and T. Takagi

References

[1] L. M. Adleman and K. S. McCurley; Open problems in number theoretic complexity, IIProceedings of
ANTS-I, LNCS 877, Springer-Verlag, Berlin (1994), pp. 291–322.

[2] I. Biehl and J. Buchmann; An analysis of the reduction algorithms for binary quadratic forms, Technical
Report No. TI-26/97, Technische Universit¨at Darmstadt, Darmstadt (1997).

[3] I. Biehl, J. Buchmann, and T. Papanikolaou;LiDIA—A Library for Computational Number Theory, The
LiDIA Group, Universität des Saarlandes, Saarbr¨ucken (1995).

[4] J. Buchmann, S. D¨ullmann, and H. C. Williams; On the complexity and efficiency of a new key exchange
system,Advances in Cryptology – EUROCRYPT ’89, LNCS 434, Springer-Verlag, Berlin (1990), pp. 597–
616.

[5] J. Buchmann and H. C. Williams; A key-exchange system based on imaginary quadratic fields,Journal
of Cryptology, 1 (1988), 107–118.

[6] J. Buchmann and H. C. Williams;Quadratic fields and cryptography, London Mathematical Society
Lecture Note Series 154, Cambridge University Press, Cambridge (1990), pp. 9–26.

[7] J. Cowie, B. Dodson, R. Elkenbracht-Huizing, A. K. Lenstra, P. L. Montgomery, and J. Zayer; A world
wide number field sieve factoring record: on to 512 bits,Advances in Cryptology – ASIACRYPT ’96,
LNCS 1163, Springer-Verlag, Berlin (1996), pp. 382–394.

[8] D. A. Cox; Primes of the Form x2 + ny2, Wiley, New York (1989).
[9] W. Diffie and M. Hellman; New directions in cryptography,IEEE Transactions on Information Theory,

22 (1976), 472–492.
[10] ECMNET Project;http://www.loria.fr/~zimmerma/records/ecmnet.html .
[11] T. ElGamal; A public key cryptosystem and a signature scheme based on discrete logarithm inGF(p),

IEEE Transactions on Information Theory, 31 (1985), 469–472.
[12] H. Gilbert, D. Gupta, A. M. Odlyzko, and J.-J. Quisquater; Attacks on Shamir’s “RSA for paranoids,”

Preprint,http://www.research.att.com/~amo/doc/recent.html .
[13] J. L. Hafner and K. S. McCurley; A rigorous subexponential algorithm for computation of class groups,

Journal of the American Mathematical Society, 2 (1989), 837–850.
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