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Abstract. We present a new cryptosystem based on ideal arithmetic in quadratic
orders. The method of our trapdoor is different from the Diffie—Hellman key distribution
scheme or the RSA cryptosystem. The plaintexis encrypted bymp", wherep is a

fixed element and is a random integer, so our proposed cryptosystem is a probabilistic
encryption scheme and has the homomorphy property. The most prominent property of
our cryptosystem is the cost of the decryption, which is of quadratic bit complexity in
the length of the public key. Our implementation shows that it is comparably as fast as
the encryption time of the RSA cryptosystem with= 216 4+ 1. The security of our
cryptosystem is closely related to factoring the discriminant of a quadratic order. When
we choose appropriate sizes of the parameters, the currently known fast algorithms,
for example, the elliptic curve method, the number field sieve, the Hafner—McCurley
algorithm, are not applicable. We also discuss that the chosen ciphertext attack is not
applicable to our cryptosystem.

Key words. Public-key cryptosystem, Fast decryption, Quadratic order, Factoring
algorithm, Chosen ciphertext attack.

1. Overview

Plenty of public-key cryptosystems have been proposed, and the Diffie—Hellman key
distribution scheme or the RSA cryptosystem are mostly used throughout the world
[9], [22]. Typically, these public-key cryptosystems involve a modular exponentiation
with a large number, which is of cubic bit complexity in the bit length of the public
key and its computation is relatively slow. On the other side, for the sake of high secu-
rity the secret keys are stored on a smart card and the decryption computation is also

263



264 S. Paulus and T. Takagi

carried out over the smart card. So a cryptosystem with fast decryption is desired. To
our knowledge, there exists no practical public key cryptosystem which has quadratic
decryption time. In this paper we present a new cryptosystem with fast decryption time.
The decryption is of quadratic bit complexity; it involves an extended Euclidean algo-
rithm computation, an ideal reduction and a few basic operations like multiplication
and division with remainder of numbers. By the experiment of our implementation, our
cryptosystem is comparably as fast as the encryption time of the RSA cryptosystem with
e=2%41.

Our cryptosystem is constructed over an imaginary quadratic field. Buchmann and
Williams proposed the first algorithm which achieves the Diffie—Hellman key distribu-
tion scheme using the class group in an imaginary quadratic field [5]. Later, Hafner
and McCurley discovered the subexponential algorithm against the discrete logarithm
problem of the class group [13]. Since then cryptosystems over class groups have not
gained much attention in practice. Recentlyhrlein et al. proposed an ElGamal-
type public-key cryptosystem with a faster decryption process in class groups of imag-
inary quadratic fields [14]. Here we call it the HIPT cryptosystem. Denotellx)
andCI(A,) the class group of the nonmaximal order and that of the maximal order,
respectively. The technique used in the HIPT cryptosystem is to “switch” the ide-
als betweerCl(Ay) and ClI(A;). Note that the arithmetic of the switching is fast,
i.e., has quadratic complexity in the bit length of the public key. Nevertheless, the
HJPT cryptosystem has cubic decryption time because it is an ElIGamal-type public-
key cryptosystem and involves an exponentiation step. In our case, we encrypt the
plaintextm by E(m,r) = mp', wherep is an element in the kernel of the map
Cl(Aq) — Cl(Ap andr is a random integer. By this encryption, the decryption
process only involves the switching arithmetic, so the decryption has quadratic com-
plexity in the bit length of the public key. The encryption proc&ssn,r) = mp"
induces that our cryptosystem uses a probabilistic encryption and the homomorphy
property.

The security of our cryptosystem is based upon a new number-theoretic problem over
quadratic orders which is closely related to factoring the discrimizant= —pg?.

When we choose appropriate sizes of the parameters, the currently known fast algo-
rithms like the elliptic curve method [15], the number field sieve [16], and the Hafner—
McCurley algorithm [13] are not applicable. We also discuss the chosen ciphertext
attack. In our cryptosystem, the surjective one way 184\,) — CI(A) plays an
important role. Two public key cryptosystems which use such a surjective map are
known: Shamir'sRSA for paranoidsvhich uses(Z/nZ)* — (Z/pZ)* (n = pQ)

[25] and the Okamoto—Uchiyama cryptosystem which u$eanZz)* — (Z/pZ)*

(n = p?q) [20]. The chosen ciphertext attack is applicable to both public key
cryptosystems, and the attacker can easily factor the public modul(see, for
example, [12]). However, the chosen ciphertext attack is not applicable to our
cryptosystem.

The paper is organized as follows: we first recall the basic notions of class groups
of quadratic orders and describe how to “switch” from the nhonmaximal order to the
maximal order and vice versa. We then present the new cryptosystem and analyze
its security. Finally, we give some timings comparing our new cryptosystem with
RSA.
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2. Quadratic Orders

There are plenty of cryptographic primitives using quadratic fields and several public-
key cryptosystems are proposed [6]. We briefly explain the class group of a quadratic
order. A more complete treatment may be found in [8].

Let A € Z not a square such th&t = 0,1 (mod 4. We call A a (quadratio dis-
criminant A is called afundamentatliscriminant if A = 1 (mod 4 and is square-free,
orA/4 = 2,3 (mod 4 and is square-free. Every discriminantcan be represented by
A1 f2, whereA, is a fundamental discriminant arfdis an integer, and we denatg =
A1 2. We consider only negative discriminants in this paper. /&t = i,/|A¢|be the
square root ofA; on the upper half-plane. Then we cé@lk, = Z + (A + /A1) /2)Z
thequadratic orderof discriminantAs. Itis an integral domain. IA; is not a fundamen-
tal discriminant, theiW,, C Oa, andO,, has finite indext in O,,. Moreover, we have
Op, = Z + TO,,. The orderO,, is called thenonmaximal ordefwith conductor f,
and the orde®,, is called themaximal orderEvery element € O,, is represented by

a = (X+Y,/A1)/2, X,y € Z.Fora = (x+Yy,/At)/2,wedenote by’ = (x—y,/At)/2
its (complex) conjugate. Theormof « is defined adN () = aa’ = (X% — y2A¢)/4.
A subseta of O,, is an (integral) ideal 00, if « + 8 € a whenevery, 8 € a, and
a(Af 4+ /At)/2 € awhenevew € a. Every ideala of O, is given by

u:m(aZ+ LZ\/EZ) D

wherem € Z, a € Z-o, andb € Z such thato? = A; (mod 4a). This expression is
unique if we choose-a < b < a. Then(m, a, b) is called thestandard representation
of a. The norm of an ideala is defined byN(a) = am. a is said to beprimitive if
m = 1. In that case, we represanby (a, b). For two given ideals, b, we can define
their productib (see, for example, [5]). The computation of a representatiab akeds
O((log(max{N(a), N(b)}))?) bit operations.

We describe the class group®@4, . Anideala is calledprimeto f if GCD(N(a), f) =
1 holds. The ideals dD,, prime to f form an Abelian group; denote it k%, (). Two
idealsa andb are calledequivalentif there is ane € O,, such thatn = «b. Denote
this equivalence relation by ~ b. For an elemeny € Oy, the idealy O,, is called a
principal ideal. The principal ideal®,, (f) which are prime tof form a subgroup of
Za, (). The quotient grouffa, (f)/Pa, (T) is called theclass groupf O, ; denote it
byCl(A¢). The order of this group is denotedbgA ¢ ). For a primitive ideal in Zx, (),
we say thati = (a, b) isreducedf |b| < a < ¢ = (b?>— Ay)/4a and additionallyo > 0
if a = cora = |b|. There is only one reduced ideal in every equivalence class. Denote
by Red,, (a) the reduced ideal equivalent toe Z,, (f). An algorithm to compute
Red\, (a) from a is described in [5] and required((log(N(a)))?) bit operations. We
identify each class of the class group with the unique reduced ideal. It is easy to verify
thatN(a) < ,/|A¢|/3 holds for every reduced ideale Zx, (). Conversely, a primitive
ideala € Z,, (f) with small norm such thail (a) < ,/|A¢|/4 is always a reduced ideal.
It turns out that we can compute the representation of the product of two classes of the
class group ir0((log ,/]A])?) bit operations. See [2].
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2.1. The Map C(Aq) — Cl(Ap)

In [8] the relationship between ideals in the maximal or@gr and in the nonmaximal
order Oy, is investigated. Ifa is an ideal inZ,, (f), then = aO,, is an ideal in
Za,(f)yandN(a) = N(20). Similarly, if 2 is an ideal inZ,(f), thena = 2AN Oy, is
anideal inZ, (f) andN(2() = N(a). The mapp : a > aO,, induces an isomorphism
IAf(f)QIAl(f). The inverse of thismapis™ : % > AN O,, . Let f = g be a prime
and let\/|A1]/3 < q. Then all the reduced ideals @I (A;) are prime to the conductor
g [14]. Thus we can consider the following map basedon

¢q: Cl(Ag) — Cl(Ay),
a — ReCLl(CLOAl),

where we identify a class of both class groups with the unique reduced ideal in that class.
(Note that ifq > 4/]A1]/3 we can also define this map; we possibly have to compute an
ideal equivalent ta which is prime tog. See [14].) A practical algorithm to compute

@q is as follows:

Algorithm 1 (GoToMaxOrder)

Input A reduced ideah = (a, b) € CI(Ay), the discriminantAq, the funda-
mental discriminant\;, and the conductay.
Output A reduced idea®l = ¢q(a) = (A, B).

.A<a

. bp < Aqg mod 2

. Solve 1= pg+Arafor u, A € Z using the extended Euclidean algorithm
. B < bu +abnoi mod 22

. (A, B) < Red,, (A, B)

. RETURN(A, B)

OO WN PP

Note that the magoToMaxOrder is different from the map described in [14]. Every
step of this algorithm require®((log,/[Aq])?) bit operations, thus the complexity of
this algorithm is quadratic.

We discuss the “inverse” ma@l. The mappq : ClI(Aq) — CI(Ay) is surjective and
we haveh(Aq) = h(A1)(g— (A1/0)), where(A1/q) is the Kronecker-symbol (see, for
example, [8]). Denote by Képy) the kernel of the map, : ClI(Ag) — CI(A1) which
is a cyclic subgroup oEl(Aq) with orderq — (A1/q). So there is &g — (A1/q))-fold
ambiguity for the inverse of the maj. We distinguish a unique reduced ideal from these
preimages using the size of the norm of anideal. The norm of any reduced iGdéhi)
is smaller than/[A1[/3. By our assumptioR/JA1]/3 < g allideals inCI (A1) are prime
to the conductogq. Therefore, for a reduced idedlin CI(A1), a = ¢~ 1(2A) = AN Ox,
is a primitive ideal inZ,,(q), andN(2) = N(a). If the primitive ideala in Zx (q)
satisfiesN(a) < /[A1]/4, then botha and®l are reduced ideals. Consequently, if we
restrict ourselves to ideatsin Cl(Aq) such thatN(a) < /[A1]/4, thengg(a) N Ox,
is reduced (inZ,,(q)) and so we can compute a distinguished inverse of the ggap
namely,a. Note that the cardinality of this set is smaller than thaCbfA,). We denote
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by ga(;l this restricted inverse map and the practical algorithm to compute th@gﬁap
is as follows:

Algorithm 2 (Inverse)

Input A reduced ideall = (A, B) € Cl(Aj) such thatN(2l) < /[A41]/4,
the conductonq.
Output A reduced ideah € Cl(Aq) such thaty;*(2) = a = (a, b).

l.a< A
2. b <~ Bgmod 2
3. RETURN(a, b)

This algorithm obviously requires on®((log(+/[A1]))?) bit operations.

3. The New Cryptosystem

Generate two random primegs q > 4 such thatp = 3 (mod 4 and letA; = —p. Let
CI(A1) be the class group of the maximal order with discriminapend letCl(Aq) be
the class group of the nonmaximal order with condugtot will be public, whilst its
factorization intoA; andq will be kept private. The discriminamf, and the conductor
g are large primes to prevent breaking the cryptosystem by factavng

In the key generation, we choose an idefibm the kernel Kefipy) and make public.
The message ideal is a reduced ideal i€1(Aq) with norm smaller than/[A1[/4].
The encryption is carried over the class gr@lpA ) by computingRed,, (mp"), where
r is arandom integer smaller thgn- (A1/q). Then, by the knowledge of the conductor,
we can go to the maximal order and the image of the messagepig@alin the maximal
orderis revealed, singg (mp") = ¢q(M)@q(»"') = pq(M)Oa, = ¢q(m). We can recover
the message by computing the unique preimagg, @f), namelym = (pq_l((p(m)).

1. Key generation: Generate two random primgs q > 4 with p = 3 (mod 4
and/p/3 < q.LetA; = —pandAq = A10%. Letk andl be the bit lengths of
[V1A1]/4] andg — (A1/0), respectively. Choose an idgain Cl(Ag), where

@q(p) is a principal ideal iNOy, . 2

Then(p, Ag, k, ) are the system parameters, aigd g are the secret keys.

2. Encryption: Letm be the plaintext, wheren is a reduced ideal i€1(Aq) with
log, N(m) < k. Pick up a randonh — 1 bit integer and encrypt the plaintext as
follows using binary exponentiation techniques:

¢ = Red, (mp"). 3)

Thenc is the ciphertext.
3. Decryption: Using the secret keyai, q, we computeR = GoToMaxOrder(c).
The plaintextm can be recovered by computing= Inverse(f).

The embedding of a number into a message ideal may be simply done as follows: let
be a message and lebe a random number of lengkh— 2 — [log, X |. Denote byx.t
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the concatenation of andt as bitstrings. We determine the smallest prinf@rger than
X.t with (Aq/l) = 1. It follows that log | < k — 1. This can be done effectively using
a few trials of a primality test and Jacobi symbol computations. Then, conysueh
thatAq = b?mod4, —| < b <. This can also be done effectively using the RESSOL
algorithm of Shanks [26]. Them= (I, b) is a reduced ideal with lgg\ (a) < k.

The key generation simply works as follows: choose a nuraberO,, with norm
less than /| Aq|/4, compute the standard representation of the idé€al,, and compute
p = ¢ H@O,,). This is explained in [14]. Thep € kerg,. The encryption takes
O((Iog1/|Aq|)3) bit operations because of the binary exponentiation. The decryption
involves two algorithms of quadratic complexity, so it requires o@l§(log/[Aq])?)
bit operations.

4. Security Considerations

The security of our cryptosystem depends on the difficulty of factoring the discriminant
Aq. If the discriminantAy can be factored, our proposed cryptosystem is completely
broken. First, we consider the size of the secret paramateasidq to prevent breaking

the cryptosystem by factoringy,. On the other hand, an attacker may somehow compute
the imageg(a) in the maximal ordei0,, for some ideala of O,,. We prove that

to compute the map(a) is as intractable as factoringq. In our cryptosystem, we
make public an ideal in Ker(¢q). We discuss that according to current knowledge the
knowledge of such an ideal does not bring any advantage for factoring the discriminant.
Finally, we argue that a chosen ciphertext attack as presented in [12] against Shamir’'s
RSA variant [25] will not give us substantially more knowledge than was previously
known.

4.1. The Size of the Secret Parametears q

We discuss the size of the secret parametgrs= — p andq which prevents attacks by
the known factoring algorithms. Léty[s, ¢] = exp((c+ 0(1)) logs(N) log logtS(N)).
The number field sieve [16] and the elliptic curve method [15] are the different types of
factoring algorithms which have to be taken care of; other factoring algorithms are more
or less slower [18], [23]. The number field sieve is the fastest factoring algorithm, and
the running time depends on the total bit length of the composite numiyérit is of
the order oﬂ.,Aq‘[%, (%4)1/3]. Currently the fastest implementation for the number field
sieve factored a 130-digit( 431-bit) RSA modulus [7]. If we choos&q to be larger
than 768 bits, the number field sieve becomes infeasible. On the other hand, the elliptic
curve method depends on the size of the pripes q and the expected running time is
L, [%, 21/2], wherer is p or q. The fastest implementation for the elliptic curve method
found a 48-digit & 159-bit) prime factor [10]. If we choosgandq to be larger than 256
bits, the elliptic curve method becomes infeasible. Therefore, the 768-bit discriminant
Aq with 256-bit p, q is secure for cryptographic purposes.

We wonder if there exists a special algorithm for factoring a composite number with
a squared prime factor. To our knowledge, the only algorithm for this problem presented
is by Peralta and Okamoto [21]. They improve the elliptic curve method by a constant
factor by considering the distribution of the Jacobi symbol. For example, for finding
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the 40-digit & 133-hit) prime factor, the algorithm is 25 times faster than the original
elliptic curve method. Its improvement is negligible and is not a real threat.

4.2. Security ofp

Only the person who knows the conductpcan compute the mag, and then recover

any message ideal. The map consists ofp; = Red,, o ¢. If attackers somehow can
compute the ideab(a) in the maximal order which is the image of an ideah Cl(Ay),

then the message ideal may be recovered. Here, we can prove that the discriminant
Aq can be factored using few iterations of any algorithm which computes the image
of .

Theorem 1. Assume that there exists an algorittd, which computes for the prim-
itive ideala = (ay, &) € Z,,(q) a primitive ideal = (A1, A2) € Zx,(q) such that
A = ¢(a) without knowing the conductor. @y using the algorithni\L , as an oracle
the discriminantAq = Ag? can be factored in random polynomial time

Proof. Leta = (a, b) be a primitive ideal irf,,(q). By using the algorithnAL ,, we
can comput&l = (A, B) such thatl = ¢(a). The relation between the idealand®l
is as follows:

a=A, B=bg! (moda). (4)

Therefore, we can compute= bB~! (mod a) becaus€B, a) = (b, a) = 1. We apply

this algorithm for several prime ideagls = (pi, by, ), wherep; is prime with(p; /Aq) =

1, which require random polynomial time in generating them. After polynomially many
iterations in log Ay, we can recover the conductqgrusing the Chinese Remainder
Theorem. It is easy to check the rightby computing the greatest common divisor
with Ag. O

This theorem means that nobody can “switch” the primitive ideab) to the maximal
order without the knowledge of the conductpr

4.3. Knowledge op

Let p be the public key which is the element in Kgg). We argue that the knowledge
of p does not substantially help to factay using currently known fast algorithms.
For simplicity, we assume is the generator of the group Keg), so the order op
is g — (9/A1). A nontrivial ambiguous ideal is an idefin Cl(Aq) such thatf? ~ 1
andf 7 1. If a nontrivial ambiguous ideal in the ordér,, is known, we can factor
the discriminantAq [24]. For the discriminanizg of our cryptosystem, there is only
one nontrivial ambiguous ideal iB1(Aq). Moreover, the nontrivial ambiguous ideal
lies in the group Kelipg), so the probability thag" for a randonr will be a nontrivial
ambiguous ideal is negligible. It is unknown whether other ideals id¢¢rexcept the
ambiguous ideals can be used for factoring the discrimingnt

In our cryptosystem, we publish the idgal A possible attack to find a nontrivial
ambiguous ideal for a givep is to compute the order of in the groupCIl(Ag). The
fastest algorithm to compute the ordepah the groupCl(Ay) is the Hafner—McCurley
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algorithm[13]. Its running time ism[ﬂ[l, 21/2)which is much slower than factoringg.
This shows that with the currently known algorithms, knowledgeades not with high
probability help in factoringAy. The same reasoning applies for polynomially many
elements of Keipy).

4.4. Chosen Ciphertext Attack

Let G1, G, be finite abelian groups and consider a surjective homomorphisf; —

G.. If two elementsg, h in G; satisfyp(g) = ¢(h), then we assume theto be in

the same coseDur cryptosystem is constructed using the surjective homomorphism
@q - Cl(Aq) — CI(A1). The message ideal is encrypted by = Red, (mp"). Then

the ciphertext “represents” all elements of the cosetwin the groupCl(Ag).

Similarly, Shamir proposed an RSA type public key cryptosystem using the homomor-
phismes : (Z/nZ)* — (Z/pZ)*, wheren = pqg andp, q are primes [25]. In the key
generationg, d are generated by the relatied = 1 (mod p — 1). The messag®l must
be smaller tharp. For the encryption we compu@ = M€ (mod n), and the message
can be recovered byl = CY (mod p). For an elemena € (Z/nZ)*, all elements of
the coset ok for the mapys are represented g, a+ p,a+2p,...,a+ (q— 1) p}.
Therefore, if we know two elemends, a, in the same coset, we can factor the modulus
by computing GCa; — ap, n) = p. This is equivalent to the fact thatcan be factored
if we know an elementin the kernel . Using this Gilbert et al. proposed the following
attack against this cryptosystem [12]. Lt be a message larger thanand letC be
the ciphertext corresponding i'. If an attacker can know the plaintext corresponding
to C, sayM, then the modulua can be factored by computing GCHE — M’, n). We
call this attack thechosen ciphertext attackNote that this chosen ciphertext can be
achieved becausg/nZ is not only a group but also a ring.

Consider the chosen ciphertext attack against our proposed cryptosystemi.dest
a message ideal such thdtm’) > /JA1[/3. If m is the regular message ideal which
is a reduced ideal with norm smaller thafiA1]/4 and in the same coset of , then
we havem ~ m'p® for some integes > 0. This yields the knowledge of some other
p’ € Ker(gg). As shown above, no algorithm is known to compute the factorization of
Aq when polynomially many elements of the kernel are known. Next, we discuss the
case where the chosen ciphertext attack is applied several times. Denatecbihe
oracle which, given as input an ideal in O,,, answers with the reduced idealwith
norm smaller thar/[A1]/4 such thatpg(m) = ¢(m') in CI(A1). By the answer of this
oracleAL ¢, we can to some extent deduce information abdutindeed, we have the
following relations:

ALcm)#m = Nm) > J/[A1]/4,
ALcm)=m = N@m) < [A1]/3.

Note that if\/[A1]/4 < N(w') < /[A1]/3, the oracléAL ¢ may answer the same ideal
or a different ideal, depending amnm’) being a reduced ideal or not. Since this range

1 Okamoto and Uchiyama proposed the public-key cryptosystem using the homomorpbism:
(Z/nZ)* — (Z/pZ)*, wheren = p?q and p, q are primes [20]. This chosen ciphertext attack is also
applicable against the Okamoto—Uchiyama cryptosystem.
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Table1. Average timings forthe new cryptosystem compared with R&A 2164-1) over 100 randomly
chosen pairs of primes of the specified size on a SPARC station 4 (110 MHz) using the LiDIA library

log,(n) 768 1024 1536 2048

RSA encryption 6 ms 10 ms 19 ms 31ms
RSA classical decryption 470 ms 1,032 ms 3,045 ms 7,006 ms
New CS precomputation fqu ~ q ~ n1/3 3,759 ms 7,650 ms 21,682 ms 36,166 ms
New CS encryption fop ~ q ~ n1/3 3ms 4ms 8ms 12 ms
New CS decryption fop ~ q ~ n1/3 8ms 13 ms 22 ms 30 ms
New CS precomputation fqu ~ n1/4 — 8,766 ms 24,673 ms 36,276 ms
New CS encryption fop ~ nl/4 — 4ms 6 ms 10 ms
New CS decryption fop ~ n%/4 — 12 ms 22ms 32ms

has size about.07735/[A], it would take an exponential number (in log[A;]) of
queries tAL ¢ to detect a good approximation of eithgrA|/4 or/|A1]/3. Therefore,
the chosen ciphertext attack is not applicable to our proposed cryptosystem.

5. Practicality

The prominent property of the proposed cryptosystem is the running time of the decryp-
tion. Most prominent cryptosystems require decryption t@{€log, n)*), wheren is the

size of the public key. The total running time of the decryption process of our cryptosys-
tem isO((log, Aq)z) bit operations. In order to demonstrate the improved efficiency of
our decryption, we implemented our scheme using the LiDIA library [3]. It should be em-
phasized here that our implementation was not optimized for cryptographic purposes—it
is only intended to provide a comparison between decrypting in the nonmaximal order
and using our trapdoor decryption. The results are shown in Table 1.

Observe that we separated the fast exponentiation step of the encryption as a “precom-
putation” stage. Indeed, if we can securely store the valudken the actual encryption
can be effected very rapidly, since it requires only one ideal multiplication and one
ideal reduction. Of course, one can use one of the well-known fixed-base exponentiation
techniques completely analogously as for EIGamal-type protocols as mentioned, e.g., in
Section 14.6.3 of [18].

It should be mentioned that the size of a message for our cryptosystem is smaller than
the size of a message for the RSA encryption (e.g., 256 bit versus 768 bit, or 341 bit
versus 1024 bit). In connection with the very fast decryption time, an excellent purpose
for our cryptosystem could be (symmetric) key distribution. In that setting, the short
message length is not a real drawback. On the other hand, the message length is longer
than for EIGamal encryption on “comparably” secure elliptic curves (e.g., 341 bit versus
180 bit).
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