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Active Shape Models for a fully automated 3D

segmentation of the liver – an evaluation on

clinical data ?

Tobias Heimann, Ivo Wolf, and Hans-Peter Meinzer

Medical and Biological Informatics, German Cancer Research Center, Heidelberg,
t.heimann@dkfz.de

Abstract. This paper presents an evaluation of the performance of a
three-dimensional Active Shape Model (ASM) to segment the liver in
48 clinical CT scans. The employed shape model is built from 32 sam-
ples using an optimization approach based on the minimum description
length (MDL). Three different gray-value appearance models (plain in-
tensity, gradient and normalized gradient profiles) are created to guide
the search. The employed segmentation techniques are ASM search with
10 and 30 modes of variation and a deformable model coupled to a shape
model with 10 modes of variation. To assess the segmentation perfor-
mance, the obtained results are compared to manual segmentations with
four different measures (overlap, average distance, RMS distance and
ratio of deviations larger 5mm). The only appearance model delivering
usable results is the normalized gradient profile. The deformable model
search achieves the best results, followed by the ASM search with 30
modes. Overall, statistical shape modeling delivers very promising re-
sults for a fully automated segmentation of the liver.

1 Introduction

The computerized planning of liver surgery has an enormous impact on the se-
lection of the therapeutic strategy [1]. Based on pre-operative analysis of image
data, it provides an individual impression of tumor location, the exact structure
of the vascular system and an identifiction of liver segments. The additional
information can potentially be life-saving for the patient, since anatomical par-
ticularities are far easier to spot in a 3D visualization. The limiting factor to
utilize operation planning in clinical routine is the time required for the seg-
mentation of the liver, an essential step in the planning workflow which takes
approximately one hour with conventional semi-automatic tools. For this rea-
son, there have been numerous attempts to automate the segmentation process
as much as possible.

? c© Springer-Verlag Berlin Heidelberg 2006. This paper was published in R. Larsen,
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as an electronic reprint for personal use only.



Soler et al. have presented a framework for a complete anatomical, patholog-
ical and functional segmentation of the liver [2], i.e. including detection of the
vascular system and lesions. The method is based on a shape constrained de-
formable model [3], which is initialized with a liver template shape and deformed
by a combination of global and local forces. Park et al. use an abdominal prob-
abilistic atlas to support voxel classification in CT images [4]. The underlying
classifier is based on a Gaussian tissue model with Markov Random Field regular-
ization. Lamecker et al. have built a 3D statistical shape model of 43 segmented
livers and utilize a modified Active Shape search for segmentation [5]. The point
correspondences for their model are determined by a semi-automatic geomet-
ric method. It is interesting to note that all these approaches use some kind of
shape information to guide the segmentation process: Due to its close proximity
to organs with similar gray-value and texture properties, segmentation methods
without prior information are prone to fail. At the same time, modeling shape
information of the liver poses a huge challenge, since the enormous anatomical
variance is hard to capture. Statistical Shape Models as introduced by Cootes
et al. [6] seem to be best-suited for this task: In constrast to an anatomical atlas
or a deformable model they do not only store information about the expected
mean shape, but also about the principal modes of variation.

Since Lamecker et al. evaluated a statistical shape model for liver segmen-
tation, there have been several advances in 3D model building and search algo-
rithms. The time seems ripe for a new evaluation of the approach, which we are
going to present in this paper.

2 Preliminaries

2.1 Statistical Shape Models

Statistical Shape Models capture shape information from a set of labeled training
data. A popular method to describe these shapes are point distribution mod-
els [6], where each input shape is specified by a set of n landmarks on the surface.
Applying principal component analysis to the covariance matrix of all landmarks
delivers the principal modes of variation pm in the training data and the cor-
responding eigenvalues λm. Restricting the model to the first c modes, all valid
shapes can be approximated by the mean shape x̄ and a linear combination of
displacement vectors. In general, c is chosen so that the model explains a certain
amount of the total variance, usually between 90% and 99%. In order to describe
the modeled shape and its variations correctly, landmarks on all training samples
have to be located at corresponding positions.

2.2 Gray-level appearance models

To fit the generated shape model to new image data, a model of the local appear-
ance around each landmark in the training data is necessary. For this purpose,
Cootes et al. suggest to sample profiles perpendicular to the model surface at each



landmark [7]. Typically, these profiles contain the immediate gray-level values
or their normalized derivatives. By collecting profiles from all training images,
a statistical appearance model featuring mean values and principal variations
can be constructed for each landmark. The probability that an arbitrary sample
is part of the modeled distribution can then be estimated by the Mahalanobis
distance between the sample and the mean profile.

2.3 Active Shape Model search

Starting from the mean shape and an initial global transform to the image, the
shape model is refined in an iterative manner: First, the fit of the gray-level
appearance model is evaluated at several positions along the surface normal for
each landmark. Subsequently, the global transform and the shape parameters ym

are updated to best match the positions with the lowest Mahalanobis distance.
To keep the variation in reasonable limits, the shape parameters are restricted
either to ±3

√
λm individually or to a hyperellipsoid for the entire shape vector y.

By repeating these steps, the model converges toward the best local fit. To make
the method more robust regarding the initial position, usually a multi-resolution
framework is employed [7]: The model is first matched to coarser versions of the
image with a larger search radius for the new landmark positions.

3 Material and methods

3.1 Image data

The data used in the experiments has been collected over a period of five years
of computerized operation planning and clinical studies at our research center.
All images are abdominal CT scans enhanced with contrast agent and recorded
in the venous phase, though the exact protocol used for acquisition changed over
time. The resolution of all volumes is 512x512 voxels in-plane with the number
of slices varying between 60 and 130. The voxel spacing varies between 0.55mm
and 0.8mm in-plane, the inter-slice distance is mostly 3mm with a few exceptions
recorded with 5mm slice distance.

From 99 scans that have been labeled by radiologic experts, eight had to
be taken out of the experiments because of abnormal anatomy, e.g. in cases
where parts of the liver have been removed by surgery or where tumors ex-
ceeding the volume of one liter deform the surroundings. The quality of the
individual segmentations, created with a selection of different manual and semi-
automatic tools, varies depending on the application they were created for. For
some datasets the V.Cava is segmented as part of the liver, for others it is left
out. We wanted to build a model without the V.Cava (as it is used for operation
planning) and elected 32 datasets with high quality segmentations as training
samples for the shape model. The chosen segmentations were smoothed with a 3D
Gaussian kernel and converted to a polygonal representation by the Marching-
Cubes algorithm. The resulting meshes were then decimated to contain around
1500–2000 vertices and forwarded to the model-building process. The remaining
59 CT volumes were treated as candidates for the evaluation process.



3.2 Model building

While Lamecker et al. use a semi-automatic procedure to determine correspon-
dences, we employ a fully automated approach that minimizes a cost function
based on the description length of the model [8], which should deliver better
generalization ability and specificity. The shape model was built with 2562 land-
marks which were distributed equally over the model surface employing the
landmark reconfiguration scheme we recently presented in [9]. For the gray-level
appearance models, a multi-resolution image pyramid was created for each CT
volume that was used during the creation of the shape model. We opted for six
different levels of resolution R0 to R5, where Rn corresponds to the n-th down-
sampling step (with R0 as the original resolution). For each down-sampling step,
x- and y-resolution were halved, leading to a doubled voxel spacing. When the
xy-spacing reached the same values as the (originally much higher) z-spacing,
the z-resolution was halved as well. Finally, we calculated three different gray-
level appearance models for each resolution: A plain intensity profile, a gradient
profile and a normalized gradient profile.

3.3 Evaluation of gray-level appearance models

To evaluate the performance of the different appearance models, we employ the
following procedure: For all training images, the fit of the gray-level appearance
models is evaluated at the true landmark positions and at three positions on
each side of the surface. To simulate the conditions during model search (where
landmarks are most probably not located at the correct positions), we randomize
the landmark position with a standard deviation of 1mm in R0 along the surface
(doubled at each following resolution). At the same time, the direction of the
normal vector is randomized with a standard deviation of approximately ten
degrees. This way, 20 samples are extracted for each landmark in each image.
The index of the position with the best fit (ranging from -3 to 3) is stored and
used to generate a histogram of the displacements for each resolution. Ideally,
the appearance model should always achieve the best fit at the true position
(displacement 0), in practice we expect to see a Gaussian distribution with a
certain variance.

3.4 Alternative model search algorithm

In the classical ASM approach, the model is strictly constrained to the variations
learned from the training data. To allow additional degrees of freedom, Weese et
al. presented a search method with shape constrained deformable models [10].
They calculate the external energy from the fit of gray-value profiles (similar
to the original ASM search) and the internal energy based on the length differ-
ence between corresponding edges in the deformable mesh and the closest shape
model. A conjugate gradient algorithm is used to minimize the weighted sum of
both energies, varying the position of all vertices.



We adopt the idea of allowing free deformations guided by the difference in
edge length, but simplify the method for an easier integration into the ASM
search algorithm as described in Sec. 2.3: When the new landmark candidates
are found, a spring-model deformable mesh is initialized on these points with
the neutral positions for all springs set to the corresponding edge length of the
closest shape model. This mesh is then iteratively relaxed according to:

xt+1
i = xt

i +
∑

j∈N(i)

di,jδ
|di,j | − |mi,j |

|di,j |
(1)

where xi are the coordinates of the ith point, N(i) denotes the neighbours of
vertex i, and di,j and mi,j are directed edges of the deformable mesh and the
model, respectively. δ is set to 0.05 in our experiments, and a number of 100
iterations is run for relaxation.

3.5 Evaluation of model search

Initially, the shape model is scaled to a fixed size (around the average liver size)
and translated to the upper left part of the image volume (corresponding to the
right side of the patient). Without any further interaction, this procedure leads
to the model being attracted by the liver in the vast majority of cases. In 11
cases, however, the image volume was recorded at a different patient position or
slightly rotated, so that the search would not converge towards the liver. Instead
of devising special initial transforms for these images, we decided to drop them
from the evaluation set and ended up with 48 volumes for the final validation.

Initial experiments suggested that the best starting resolution for the search
is R4, since many profiles leave the image volume in R5, reducing the informa-
tion of the appearance model. We run a fixed number of 10 iterations for R4 and
R3 each, which usually brings the model pretty close to the liver. To deal with
the remaining cases, the search in R2 is run until convergence, which is defined
as a maximum landmark movement of 0.5mm. Subsequently, 10 iterations in
R1 and R0 each are sufficient to fine-tune the model to the image data. This
method was performed with three different search strategies: The ASM search
with 10 modes of variation for the model (1), the ASM search with an increased
30 modes of variation in R2 to R0 (2) and the deformable model search with 10
modes of variation (3). In the latter case, the deformable model was only used in
R1 and R0, the previous resolutions were handled as in method 1. For all meth-
ods, the shape parameter vector y was restricted to lie inside a hyperellipsoid
(size determined by the χ2 distribution). Originally, we planned to evaluate a
combination of these methods with all created appearance models, but it quickly
became evident that only the normalized gradient appearance model delivered
usable results (see Sec. 4.2).

After the last iteration in R0 terminates, the resulting mesh is rasterized into
a volume of the same resolution and compared to the existing segmentation. A
number of different comparison measures is used for this purpose: The Tanimoto
coefficient which quantifies the overlap of two volumes as CT = |A∩B|/|A∪B|,



Fig. 1. Visualization of the variance of the created shape model: The left column shows
the variation of the largest eigenmode between ±3

√
λ1, the medium and right column

of the second and third largest eigenmode, respectively.

average and RMS surface distance and the ratio of the surface area with a
deviation larger than 5mm. All surface metrics were calculated in both direction
to guarantee symmetry.

4 Results

4.1 Model building

For a detailed evaluation of the model building process, we refer the reader to [9].
The three largest modes of variation are displayed in Fig. 1 and seem to capture
the encountered shape variability adequately. 90 percent of the total variance is
explained by the first 10 modes of variation (used for search methods 1 and 3),
while the 30 modes used for method 2 account for 99.9 percent.

4.2 Evaluation of gray-level appearance models

The results of the displacement from true position analysis are displayed in Fig. 2.
While we expected a Gaussian distribution for all appearance models, only the
normalized gradient profile produces symmetric displacements. In contrast, the
plain intensity and gradient profiles feature a clear shift to the inside of the shape
model (negative displacement values).

4.3 Evaluation of model Search

Figure 3 displays boxplots of the results of the automatic segmentation using the
three different search techniques. The results of the volumetric error are specified



Fig. 2. Histograms showing the displacements from the true landmark positions at
different resolutions R0 to R5. From left to right: Intensity, gradient and normalized
gradient profile appearance models.

Fig. 3. Results of the segmentation using the normalized gradient appearance model
(1=ASM with 10 modes, 2=ASM with 30 modes, 3=deformable model with 10 modes).
The box connects the 1st and 3rd quartiles of all values with the dot representing the
median, the whiskers span the interval between the 0.05 and 0.95 quantiles.

as 100(1 − CT ) (CT being the Tanomoto coefficient). For all four measures of
segmentation quality, the ASM search with 30 modes of variance yields better
results than the search with 10 modes. For one test dataset, the search with
30 modes did not converge in R2, this image was omitted from the statistics of
method 2. The best overall results are accomplished with the deformable model
search.

5 Discussion

Comparing our results to the ones obtained in [5] (2.3–3.0mm average surface
distance, 3.1–3.9mm RMS distance and 9.0–17.1% deviations larger 5mm for a
varying number of parameters during model search) does not reveal significant



differences. However, it is hard to draw any conclusions from this, mainly because
different training and evaluation data was used in the experiments. Consequently,
the here presented numbers should only be interpreted relative to each other.

Having evaluated our shape model on nearly 50 clinical datasets, we are confi-
dent that a statistical shape modeling approach is able to solve the segmentation
problem for liver operation planning for the vast majority of cases in the near
future. However, we also noticed several problems: While 32 training shapes do
not build the most extensive shape model, it is a sufficiently high number to
draw the conclusion that the necessary shape variability for an exact segmenta-
tion of the liver will probably not be reached by the strictly constrained ASM
model. Approaches using deformable meshes based on the shape model seem
to have a much higher potential of solving this task. Considering the simplicity
of the deformable model enhancement, the obtained improvements for already
acceptable results of the ASM are excellent. Since the deformable model was
only used in the two highest resolutions, it could not save the performance in
the worst case results, as is noticeable by the upper whiskers in the boxplots. A
better initialization of the shape model and restriction of the allowed geometric
transformations (rotation and scale) seem to be necessary in these cases. We
were surprised by the disappointing results from the intensity and unnormalized
gradient appearance models, which are probably due to the skew distribution
visible in the displacement histograms. However, there are many more possi-
bilites to model the local appearance (e.g. [11]) which will most likely improve
the obtained results. Our future work will focus on evaluating these alternative
appearance models and on improving the deformable model search with more
sophisticated search and relaxation schemes.
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