2024-06-05 11:20:55 +02:00
|
|
|
|
{
|
|
|
|
|
"cells": [
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"execution_count": 2,
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"id": "initial_id",
|
|
|
|
|
"metadata": {
|
|
|
|
|
"jupyter": {
|
|
|
|
|
"is_executing": true
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"import pandas as pd\n",
|
|
|
|
|
"from sklearn.preprocessing import MinMaxScaler, StandardScaler"
|
2024-06-05 11:20:55 +02:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"execution_count": 14,
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"id": "67503952-9074-4cdb-9d7e-d9142f7c319c",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/html": [
|
|
|
|
|
"<div>\n",
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"</style>\n",
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
" <th>age</th>\n",
|
|
|
|
|
" <th>trestbps</th>\n",
|
|
|
|
|
" <th>chol</th>\n",
|
|
|
|
|
" <th>thalach</th>\n",
|
|
|
|
|
" <th>oldpeak</th>\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
" <th>sex_0</th>\n",
|
|
|
|
|
" <th>sex_1</th>\n",
|
|
|
|
|
" <th>cp_1</th>\n",
|
|
|
|
|
" <th>cp_2</th>\n",
|
|
|
|
|
" <th>cp_3</th>\n",
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
" <th>slope_1</th>\n",
|
|
|
|
|
" <th>slope_2</th>\n",
|
|
|
|
|
" <th>slope_3</th>\n",
|
|
|
|
|
" <th>thal_3.0</th>\n",
|
|
|
|
|
" <th>thal_6.0</th>\n",
|
|
|
|
|
" <th>thal_7.0</th>\n",
|
|
|
|
|
" <th>ca_0.0</th>\n",
|
|
|
|
|
" <th>ca_1.0</th>\n",
|
|
|
|
|
" <th>ca_2.0</th>\n",
|
|
|
|
|
" <th>ca_3.0</th>\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>0</th>\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
" <td>0.708333</td>\n",
|
|
|
|
|
" <td>0.481132</td>\n",
|
|
|
|
|
" <td>0.244292</td>\n",
|
|
|
|
|
" <td>0.603053</td>\n",
|
|
|
|
|
" <td>0.370968</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1</th>\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
" <td>0.791667</td>\n",
|
|
|
|
|
" <td>0.622642</td>\n",
|
|
|
|
|
" <td>0.365297</td>\n",
|
|
|
|
|
" <td>0.282443</td>\n",
|
|
|
|
|
" <td>0.241935</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>2</th>\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
" <td>0.791667</td>\n",
|
|
|
|
|
" <td>0.245283</td>\n",
|
|
|
|
|
" <td>0.235160</td>\n",
|
|
|
|
|
" <td>0.442748</td>\n",
|
|
|
|
|
" <td>0.419355</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>3</th>\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
" <td>0.166667</td>\n",
|
|
|
|
|
" <td>0.339623</td>\n",
|
|
|
|
|
" <td>0.283105</td>\n",
|
|
|
|
|
" <td>0.885496</td>\n",
|
|
|
|
|
" <td>0.564516</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>4</th>\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
" <td>0.250000</td>\n",
|
|
|
|
|
" <td>0.339623</td>\n",
|
|
|
|
|
" <td>0.178082</td>\n",
|
|
|
|
|
" <td>0.770992</td>\n",
|
|
|
|
|
" <td>0.225806</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
"</table>\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"<p>5 rows × 28 columns</p>\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"</div>"
|
|
|
|
|
],
|
|
|
|
|
"text/plain": [
|
2024-06-05 12:27:29 +02:00
|
|
|
|
" age trestbps chol thalach oldpeak sex_0 sex_1 cp_1 \\\n",
|
|
|
|
|
"0 0.708333 0.481132 0.244292 0.603053 0.370968 False True True \n",
|
|
|
|
|
"1 0.791667 0.622642 0.365297 0.282443 0.241935 False True False \n",
|
|
|
|
|
"2 0.791667 0.245283 0.235160 0.442748 0.419355 False True False \n",
|
|
|
|
|
"3 0.166667 0.339623 0.283105 0.885496 0.564516 False True False \n",
|
|
|
|
|
"4 0.250000 0.339623 0.178082 0.770992 0.225806 True False False \n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
" cp_2 cp_3 ... slope_1 slope_2 slope_3 thal_3.0 thal_6.0 thal_7.0 \\\n",
|
|
|
|
|
"0 False False ... False False True False True False \n",
|
|
|
|
|
"1 False False ... False True False True False False \n",
|
|
|
|
|
"2 False False ... False True False False False True \n",
|
|
|
|
|
"3 False True ... False False True True False False \n",
|
|
|
|
|
"4 True False ... True False False True False False \n",
|
|
|
|
|
"\n",
|
|
|
|
|
" ca_0.0 ca_1.0 ca_2.0 ca_3.0 \n",
|
|
|
|
|
"0 True False False False \n",
|
|
|
|
|
"1 False False False True \n",
|
|
|
|
|
"2 False False True False \n",
|
|
|
|
|
"3 True False False False \n",
|
|
|
|
|
"4 True False False False \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"[5 rows x 28 columns]"
|
2024-06-05 11:20:55 +02:00
|
|
|
|
]
|
|
|
|
|
},
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"execution_count": 14,
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"df = pd.read_csv('./data/dataset_cleaned.csv')\n",
|
|
|
|
|
"df.dropna(inplace=True)\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"# extract all columns except 'goal' --> X\n",
|
|
|
|
|
"X = df.loc[:, df.columns != 'goal']\n",
|
|
|
|
|
"# extract only the column 'goal' --> y\n",
|
|
|
|
|
"y = df.loc[:, 'goal']\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# add new axis to y, new shape: (n, 1)\n",
|
|
|
|
|
"y = y.to_numpy()\n",
|
|
|
|
|
"y = y.reshape((len(y),1))\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# binarize y\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"y[y>0] = 1\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"factor_columns = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'thal', 'ca']\n",
|
|
|
|
|
"numeric_columns = [column for column in X.columns if column not in factor_columns]\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# transform factors into onehot vectors\n",
|
|
|
|
|
"X = pd.get_dummies(X, columns=factor_columns)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# min max scaling of numeric columns\n",
|
|
|
|
|
"scaler = MinMaxScaler()\n",
|
|
|
|
|
"X[numeric_columns] = scaler.fit_transform(X[numeric_columns])\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"X.head()"
|
2024-06-05 11:20:55 +02:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"execution_count": 18,
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"id": "2bbee865-c000-43da-84d9-ce7e04874110",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"def get_model(n_features):\n",
|
|
|
|
|
" model = tf.keras.models.Sequential([\n",
|
|
|
|
|
" tf.keras.layers.InputLayer(shape=(n_features,)),\n",
|
|
|
|
|
" tf.keras.layers.Dense(30, activation='relu'),\n",
|
|
|
|
|
" tf.keras.layers.Dense(30, activation='relu'),\n",
|
|
|
|
|
" tf.keras.layers.Dense(1, activation='sigmoid')\n",
|
|
|
|
|
" ], name='test')\n",
|
|
|
|
|
" model.compile(optimizer=tf.keras.optimizers.Adam(), \n",
|
|
|
|
|
" loss=tf.keras.losses.BinaryCrossentropy())\n",
|
|
|
|
|
" return model"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"execution_count": 20,
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"id": "38eb4f87-ca3c-4ecf-a8ca-29422822d933",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"Training fold 0 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t267\n",
|
|
|
|
|
"Test samples:\t30\n",
|
|
|
|
|
"Accuracy of fold 0: 0.8666666666666667\n",
|
|
|
|
|
"Training fold 1 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t267\n",
|
|
|
|
|
"Test samples:\t30\n",
|
|
|
|
|
"Accuracy of fold 1: 0.8666666666666667\n",
|
|
|
|
|
"Training fold 2 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t267\n",
|
|
|
|
|
"Test samples:\t30\n",
|
|
|
|
|
"Accuracy of fold 2: 0.8666666666666667\n",
|
|
|
|
|
"Training fold 3 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t267\n",
|
|
|
|
|
"Test samples:\t30\n",
|
|
|
|
|
"Accuracy of fold 3: 0.9333333333333333\n",
|
|
|
|
|
"Training fold 4 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t267\n",
|
|
|
|
|
"Test samples:\t30\n",
|
|
|
|
|
"Accuracy of fold 4: 0.8666666666666667\n",
|
|
|
|
|
"Training fold 5 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t267\n",
|
|
|
|
|
"Test samples:\t30\n",
|
|
|
|
|
"Accuracy of fold 5: 0.8333333333333334\n",
|
|
|
|
|
"Training fold 6 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t267\n",
|
|
|
|
|
"Test samples:\t30\n",
|
|
|
|
|
"Accuracy of fold 6: 0.8666666666666667\n",
|
|
|
|
|
"Training fold 7 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t268\n",
|
|
|
|
|
"Test samples:\t29\n",
|
|
|
|
|
"Accuracy of fold 7: 0.896551724137931\n",
|
|
|
|
|
"Training fold 8 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t268\n",
|
|
|
|
|
"Test samples:\t29\n",
|
|
|
|
|
"Accuracy of fold 8: 0.7931034482758621\n",
|
|
|
|
|
"Training fold 9 for 20 epochs\n",
|
|
|
|
|
"Train samples:\t268\n",
|
|
|
|
|
"Test samples:\t29\n",
|
|
|
|
|
"Accuracy of fold 9: 0.7931034482758621\n",
|
|
|
|
|
"Avg accuracy 0.8582758620689654\n"
|
2024-06-05 11:20:55 +02:00
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from sklearn.model_selection import KFold\n",
|
|
|
|
|
"from sklearn import decomposition\n",
|
|
|
|
|
"import tensorflow as tf\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# number of components extracted from the pca\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"n_features = 8\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"epochs = 20\n",
|
|
|
|
|
"k_folds = 10\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"\n",
|
|
|
|
|
"# used to split the dataset into k folds\n",
|
2024-06-05 12:27:29 +02:00
|
|
|
|
"kf = KFold(n_splits=k_folds)\n",
|
2024-06-05 11:20:55 +02:00
|
|
|
|
"\n",
|
|
|
|
|
"accuracies = []\n",
|
|
|
|
|
"for i, (train_idx, test_idx) in enumerate(kf.split(X)):\n",
|
|
|
|
|
" print(f'Training fold {i} for {epochs} epochs')\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" # extract train and test data from the cleaned dataset\n",
|
|
|
|
|
" X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]\n",
|
|
|
|
|
" y_train, y_test = y[train_idx], y[test_idx]\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" print(f'Train samples:\\t{len(X_train)}')\n",
|
|
|
|
|
" print(f'Test samples:\\t{len(X_test)}')\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" # do pca based on the train data of the given fold to extract 'n_features'\n",
|
|
|
|
|
" pca = decomposition.PCA(n_components=n_features)\n",
|
|
|
|
|
" pca.fit(X_train)\n",
|
|
|
|
|
" X_train = pca.transform(X_train)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" # train the model using the components extracted from pca\n",
|
|
|
|
|
" model = get_model(n_features)\n",
|
|
|
|
|
" model.fit(X_train, y_train, epochs=epochs, verbose=0)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" # transform test data using on the pca model trained on the train data\n",
|
|
|
|
|
" X_test = pca.transform(X_test)\n",
|
|
|
|
|
" y_pred = model.predict(X_test, verbose=0)\n",
|
|
|
|
|
" y_pred = y_pred > 0.5\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" # calculate the accuracy of the train data for the current fold\n",
|
|
|
|
|
" accuracy = sum(y_pred == y_test)[0] / len(y_pred)\n",
|
|
|
|
|
" accuracies.append(accuracy)\n",
|
|
|
|
|
" print(f'Accuracy of fold {i}: {accuracy}')\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# calculate the average accuracy over all folds\n",
|
|
|
|
|
"avg_accuracy = sum(accuracies) / len(accuracies)\n",
|
|
|
|
|
"print(f'Avg accuracy {avg_accuracy}')"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"kernelspec": {
|
|
|
|
|
"display_name": "Python 3 (ipykernel)",
|
|
|
|
|
"language": "python",
|
|
|
|
|
"name": "python3"
|
|
|
|
|
},
|
|
|
|
|
"language_info": {
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
|
"name": "ipython",
|
|
|
|
|
"version": 3
|
|
|
|
|
},
|
|
|
|
|
"file_extension": ".py",
|
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
|
"name": "python",
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
|
"version": "3.11.7"
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"nbformat": 4,
|
|
|
|
|
"nbformat_minor": 5
|
|
|
|
|
}
|