From 12ef02f4b87148364d77b37e30154f7c1bc839aa Mon Sep 17 00:00:00 2001 From: mahehsma Date: Sat, 29 Jun 2024 15:22:18 +0200 Subject: [PATCH] saving models; added first attempt for hyperparameter tuning --- Experiments.ipynb | 1509 +++++++++++++++-- data/dataset_cleaned.csv | 298 ++++ .../2024-06-29T15-18-20/fold0model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold1model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold2model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold3model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold4model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold5model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold6model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold7model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold8model.keras | Bin 0 -> 35304 bytes .../2024-06-29T15-18-20/fold9model.keras | Bin 0 -> 35304 bytes 12 files changed, 1670 insertions(+), 137 deletions(-) create mode 100644 data/dataset_cleaned.csv create mode 100644 data/experiments/2024-06-29T15-18-20/fold0model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold1model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold2model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold3model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold4model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold5model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold6model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold7model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold8model.keras create mode 100644 data/experiments/2024-06-29T15-18-20/fold9model.keras diff --git a/Experiments.ipynb b/Experiments.ipynb index c7a8da7..504c353 100644 --- a/Experiments.ipynb +++ b/Experiments.ipynb @@ -253,7 +253,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "id": "2bbee865-c000-43da-84d9-ce7e04874110", "metadata": {}, "outputs": [], @@ -272,7 +272,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 24, "id": "38eb4f87-ca3c-4ecf-a8ca-29422822d933", "metadata": {}, "outputs": [ @@ -280,45 +280,48 @@ "name": "stdout", "output_type": "stream", "text": [ + "saving models under \"data/experiments/2024-06-29T15-18-20/\"\n", "Training 10 folds for 20 epochs\n", "Fold 0\n", "\tTrain samples:\t267\tTest samples:\t30\n", - "\tAccuracy: 90.000%\n", + "\tAccuracy: 86.667%\n", "Fold 1\n", "\tTrain samples:\t267\tTest samples:\t30\n", - "\tAccuracy: 86.667%\n", + "\tAccuracy: 80.000%\n", "Fold 2\n", "\tTrain samples:\t267\tTest samples:\t30\n", - "\tAccuracy: 90.000%\n", + "\tAccuracy: 86.667%\n", "Fold 3\n", "\tTrain samples:\t267\tTest samples:\t30\n", - "\tAccuracy: 93.333%\n", + "\tAccuracy: 90.000%\n", "Fold 4\n", "\tTrain samples:\t267\tTest samples:\t30\n", - "WARNING:tensorflow:5 out of the last 5 calls to .one_step_on_data_distributed at 0x0000024C840482C0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", - "\tAccuracy: 83.333%\n", + "\tAccuracy: 90.000%\n", "Fold 5\n", "\tTrain samples:\t267\tTest samples:\t30\n", - "WARNING:tensorflow:6 out of the last 6 calls to .one_step_on_data_distributed at 0x0000024C867CF920> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", - "\tAccuracy: 90.000%\n", + "\tAccuracy: 86.667%\n", "Fold 6\n", "\tTrain samples:\t267\tTest samples:\t30\n", - "\tAccuracy: 76.667%\n", + "\tAccuracy: 90.000%\n", "Fold 7\n", "\tTrain samples:\t268\tTest samples:\t29\n", - "\tAccuracy: 89.655%\n", + "\tAccuracy: 82.759%\n", "Fold 8\n", "\tTrain samples:\t268\tTest samples:\t29\n", - "\tAccuracy: 79.310%\n", + "\tAccuracy: 75.862%\n", "Fold 9\n", "\tTrain samples:\t268\tTest samples:\t29\n", "\tAccuracy: 79.310%\n", - "Avg accuracy 85.828%\n" + "Avg accuracy 84.793%\n" ] } ], "source": [ "import tensorflow as tf\n", + "import datetime as dt\n", + "import os\n", + "\n", + "save_model = True\n", "\n", "use_pca = True\n", "# number of components extracted from the pca\n", @@ -331,6 +334,12 @@ "# used to split the dataset into k folds\n", "kf = KFold(n_splits=k_folds)\n", "\n", + "if save_model:\n", + " timestamp = dt.datetime.now().strftime('%Y-%m-%dT%H-%M-%S')\n", + " base_path = f'data/experiments/{timestamp}/'\n", + " print(f'saving models under \"{base_path}\"')\n", + " os.makedirs(base_path)\n", + "\n", "accuracies = []\n", "print(f'Training {k_folds} folds for {epochs} epochs')\n", "for i, (train_idx, test_idx) in enumerate(kf.split(X)):\n", @@ -353,6 +362,9 @@ " model = get_model(n_features)\n", " model.fit(X_train, y_train, epochs=epochs, verbose=0)\n", "\n", + " if save_model:\n", + " model.save(base_path + f'fold{i}model.keras')\n", + "\n", " if use_pca:\n", " # transform test data using on the pca model trained on the train data\n", " X_test = pca.transform(X_test)\n", @@ -370,6 +382,40 @@ "print(f'Avg accuracy {avg_accuracy:.3%}')" ] }, + { + "cell_type": "code", + "execution_count": 29, + "id": "241cc0c7-f638-4481-afd3-e0f9d5e0dd59", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n", + "Patient 1 \n", + "prediction:\thealthy \n", + "ground truth:\thealthy\n" + ] + } + ], + "source": [ + "index = 0\n", + "\n", + "patient = X.iloc[[index]]\n", + "ground_truth = y[index]\n", + "\n", + "x = pca.transform(patient)\n", + "\n", + "prediction = model.predict([x])\n", + "def get_health_status(val): \n", + " return 'healthy' if val < 0.5 else 'sick'\n", + " \n", + "print(f'''Patient {index + 1} \n", + "prediction:\\t{get_health_status(prediction[0,0])} \n", + "ground truth:\\t{get_health_status(ground_truth[0])}''')" + ] + }, { "cell_type": "code", "execution_count": 5, @@ -382,93 +428,23 @@ "text": [ "Training 5 folds\n", "Fold 0\n", - "\tTrain samples:\t237\tTest samples:\t60\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n", - " warnings.warn(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\tTrain samples:\t237\tTest samples:\t60\n", "\tAccuracy 58.333%\n", "\n", "Fold 1\n", - "\tTrain samples:\t237\tTest samples:\t60\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n", - " warnings.warn(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\tTrain samples:\t237\tTest samples:\t60\n", "\tAccuracy 50.000%\n", "\n", "Fold 2\n", - "\tTrain samples:\t238\tTest samples:\t59\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n", - " warnings.warn(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\tTrain samples:\t238\tTest samples:\t59\n", "\tAccuracy 55.932%\n", "\n", "Fold 3\n", - "\tTrain samples:\t238\tTest samples:\t59\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n", - " warnings.warn(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\tTrain samples:\t238\tTest samples:\t59\n", "\tAccuracy 57.627%\n", "\n", "Fold 4\n", - "\tTrain samples:\t238\tTest samples:\t59\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n", - " warnings.warn(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\tTrain samples:\t238\tTest samples:\t59\n", "\tAccuracy 52.542%\n", "\n", "Avg accuracy 54.887%\n" @@ -543,21 +519,21 @@ "\n", "Fold 1\n", "\tTrain samples:\t237\tTest samples:\t60\n", - "\tAccuracy 90.000%\n", + "\tAccuracy 91.667%\n", "\n", "Fold 2\n", "\tTrain samples:\t238\tTest samples:\t59\n", - "\tAccuracy 84.746%\n", + "\tAccuracy 79.661%\n", "\n", "Fold 3\n", "\tTrain samples:\t238\tTest samples:\t59\n", - "\tAccuracy 76.271%\n", + "\tAccuracy 79.661%\n", "\n", "Fold 4\n", "\tTrain samples:\t238\tTest samples:\t59\n", "\tAccuracy 77.966%\n", "\n", - "Avg accuracy 82.797%\n" + "Avg accuracy 82.791%\n" ] } ], @@ -625,21 +601,417 @@ "id": "79631688-07cb-450d-9958-8d8341722d7d", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=2.\n", - " warnings.warn(\n" - ] - }, { "data": { "text/html": [ - "
KMeans(n_clusters=2, n_init='auto', random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + "
KMeans(n_clusters=2, random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ - "KMeans(n_clusters=2, n_init='auto', random_state=42)" + "KMeans(n_clusters=2, random_state=42)" ] }, "execution_count": 7, @@ -712,13 +1084,13 @@ " 4.17139647e-02 3.17012077e-02 2.52492654e-02 2.21354486e-02\n", " 1.84895571e-02 1.74748048e-02 8.28895271e-03 5.47222590e-03\n", " 4.87868838e-03 3.91078109e-03 3.44014667e-03 2.69161359e-03\n", - " 5.88469272e-33 3.26180402e-33 1.59388562e-33 1.39694325e-33\n", - " 1.30446173e-33 1.30446173e-33 1.30446173e-33 1.11776656e-34]\n" + " 7.10960871e-18 6.62254449e-18 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAIhCAYAAACsQmneAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwGklEQVR4nO3deZyN9fvH8feZfQwGM2PGGMbYyb5UCNmTopU2S6ivtFhaUDRoQYu0IRUioSKEypIlkcJYo2RJMRMGM/YxM5/fH35zcmY9a6PT6/l4nMdj5jqfc53rc9/nvs8199znPhZjjBEAAADgpXwKuwAAAADAk2h4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHhht+nTp8tisVhvfn5+iomJ0YMPPqjDhw8XdnlO+/nnnzVy5EgdPHgwx329evVShQoV/vGaHHHixAndc889Kl26tCwWi2677bYcY44dO6aAgADdc889eeZJTU1VkSJF1LlzZ7fUNXLkSFksFrfkKkzZX/fZb6tXr/b4c+f22vTkY93BYrFo5MiR+Y5ZvXq1LBaLPv/8c4/W4o59l6f3BVnLwpOvJ8nxeXz55Ze69dZbFRkZqYCAAJUqVUpt2rTRrFmzdOnSJc8V+h/xySefaMKECYVdxn+CX2EXgH+fadOmqXr16jp//rzWrl2rMWPGaM2aNdqxY4dCQkIKuzyH/fzzzxo1apRuvPHGHG8EI0aM0IABAwqnMDu98MIL+uKLLzR16lRVqlRJpUqVyjEmIiJCnTt31oIFC3Ty5EmVLFkyx5g5c+bo/Pnz6tOnj1vq6tu3r2666Sa35LoaZL3us6tZs2YhVFOwTp06acOGDSpTpkxhl3LVcGXf5el9QYMGDbRhw4ar5vVkjFHv3r01ffp03XzzzRo/frzKlSunlJQUrVq1Sv3799fx48ev+v3j1e6TTz7Rzp07NXDgwMIuxevR8MJhtWrVUqNGjSRJrVq1UkZGhl544QUtWLBA999/f66POXfunIoUKfJPllmgS5cuFXgEslKlSv9QNc7buXOnKlWqlOeyz9KnTx/NmzdPs2bN0mOPPZbj/qlTpyoyMlKdOnVyqZ6sdR0TE6OYmBiXcl1Nrnzd/xtEREQoIiKisMu4qriy7/L0vqB48eK6/vrrPfocjnj11Vc1ffp0jRo1Ss8//7zNfbfeequeeeYZ/fbbb4VUHeA4TmmAy7J20r///ruky/8yK1q0qHbs2KH27durWLFiatOmjaTL/37v37+/ypYtq4CAAFWsWFHPPfecLl68aJPTYrHoscce03vvvaeqVasqMDBQNWvW1Jw5c3I8/86dO9WlSxeVLFlSQUFBqlevnj766CObMVn/Lpw5c6aefPJJlS1bVoGBgfrggw909913S7r8Bpj1L8/p06db55L9qO+FCxc0bNgwxcXFKSAgQGXLltWjjz6qU6dO2YyrUKGCbrnlFn399ddq0KCBgoODVb16dU2dOtWu5VrQsjp48KAsFotWrFih3bt3F/gv9g4dOigmJkbTpk3Lcd/u3bu1ceNG9ejRQ35+flq+fLm6dOmimJgYBQUFqXLlyvrf//6n48eP2zwu67SFLVu26K677lLJkiWtjUFupzTMnTtX7du3V5kyZRQcHKwaNWpo6NChOnv2rM24rNfQb7/9pptvvllFixZVuXLl9OSTT+Z4rVy8eFGjR49WjRo1FBQUpLCwMLVq1Urr16+3jjHGaOLEiapXr56Cg4NVsmRJ3XXXXdq/f79d68Iec+bMkcVi0TvvvGMTj4+Pl6+vr5YvXy7p7/X2yiuv6KWXXlL58uUVFBSkRo0aaeXKlQU+j73rJrdTGm688UbVqlVLP/30k5o3b64iRYqoYsWKGjt2rDIzM20en5qaqqeeesrmdT5w4MAc6yo1NVUPPfSQwsLCVLRoUd1000369ddfHVl0unDhggYPHqyoqCgFBwerZcuWSkhIsN4/c+ZMWSwWbdiwIcdjR48eLX9/fx05csSh55Qc23flti/I2k/NnDlTNWrUUJEiRVS3bl0tXrw4x3Pt2bNH9957ryIjIxUYGKjy5curR48e1tdzbqc0ZNWza9cutWnTRiEhIYqIiNBjjz2mc+fO2eR/99131aJFC5UuXVohISGqXbu2XnnlFadOO7h06ZLGjRun6tWra8SIEbmOiYqK0g033GD93dF9+7Rp01StWjUFBwerUaNG+uGHH2SM0auvvqq4uDgVLVpUrVu3ztFUZ72Gv/vuO11//fUKDg5W2bJlNWLECGVkZNiMdbQme9bj3r17dd9996l06dIKDAxUjRo19O6779qMyVqXs2fP1nPPPafo6GgVL15cbdu21S+//GIzlyVLluj333+3OeUmy6RJk1S3bl0VLVpUxYoVU/Xq1fXss8/muj5gBwPYadq0aUaS+emnn2zib775ppFkpkyZYowxpmfPnsbf399UqFDBjBkzxqxcudJ888035vz586ZOnTomJCTEvPbaa2bZsmVmxIgRxs/Pz9x88802OSWZcuXKmZo1a5rZs2ebRYsWmZtuuslIMp999pl13J49e0yxYsVMpUqVzIwZM8ySJUvMvffeaySZcePGWcetWrXKSDJly5Y1d911l1m0aJFZvHixSUpKMi+//LKRZN59912zYcMGs2HDBnP06FHrXGJjY615MjMzTYcOHYyfn58ZMWKEWbZsmXnttddMSEiIqV+/vrlw4YJ1bGxsrImJiTE1a9Y0M2bMMN988425++67jSSzZs2afJe1PcvqwoULZsOGDaZ+/fqmYsWK1tpTUlLyzDt8+HAjyWzdutUm/vTTTxtJZvfu3cYYYyZNmmTGjBljFi1aZNasWWM++ugjU7duXVOtWjWTlpZmfVx8fLyRZGJjY82QIUPM8uXLzYIFC2zuu9ILL7xg3njjDbNkyRKzevVqM3nyZBMXF2datWplM65nz54mICDA1KhRw7z22mtmxYoV5vnnnzcWi8WMGjXKOu7SpUumVatWxs/Pzzz11FNm6dKlZtGiRebZZ581s2fPto576KGHjL+/v3nyySfN119/bT755BNTvXp1ExkZaZKSkvJdF1mv+x9++MFcunTJ5paenm4ztl+/fiYgIMC6jaxcudL4+PiY4cOHW8ccOHDA+vq+4YYbzLx588xnn31mGjdubPz9/c369etzPPeBAwesMXvXTW6PbdmypQkLCzNVqlQxkydPNsuXLzf9+/c3ksxHH31kHXf27FlTr149Ex4ebsaPH29WrFhh3nzzTRMaGmpat25tMjMzjTGXt4dWrVqZwMBA89JLL5lly5aZ+Ph4U7FiRSPJxMfH57tss7bLcuXKmS5dupgvv/zSfPzxx6Zy5cqmePHiZt++fcYYYy5evGiioqLM/fffb/P4S5cumejoaHP33Xfn+zyu7ruy7rtyX2DM5f1UhQoVzLXXXms+/fRTs3TpUnPjjTcaPz8/a+3GGLN161ZTtGhRU6FCBTN58mSzcuVK8/HHH5uuXbua1NRUm2WxatUq6+OytoPy5ctbl+/IkSONn5+fueWWW2xqGTRokJk0aZL5+uuvzbfffmveeOMNEx4ebh588EGbcbnNI7v169cbSWbIkCH5jsvi6L49NjbWNG3a1MyfP9988cUXpmrVqqZUqVJm0KBBpkuXLmbx4sVm1qxZJjIy0tSpU8f6ejPm79dwdHS0eeutt8w333xjnnjiCSPJPProo07XZM963LVrlwkNDTW1a9c2M2bMMMuWLTNPPvmk8fHxMSNHjrSOy1qXFSpUMPfff79ZsmSJmT17tilfvrypUqWKdb+xa9cu06xZMxMVFWXdf2/YsMEYY8zs2bONJPP444+bZcuWmRUrVpjJkyebJ554wq51gpxoeGG37G/8p0+fNosXLzYRERGmWLFi1sahZ8+eRpKZOnWqzeMnT55sJJlPP/3UJj5u3DgjySxbtswak2SCg4NtmpH09HRTvXp1U7lyZWvsnnvuMYGBgebQoUM2OTt27GiKFCliTp06ZYz5ewfUokWLHPP67LPPcrzRZMn+5vD1118bSeaVV16xGTd37lybN05jLje8QUFB5vfff7fGzp8/b0qVKmX+97//5XiuKzmyrFq2bGmuueaafPNl2b9/v7FYLDY7zUuXLpmoqCjTrFmzXB+TmZlpLl26ZH7//XcjySxcuNB6X1ZT+/zzz+d4XG4Nb25516xZYySZbdu2We/Leg1ln//NN99sqlWrZv19xowZRpJ5//3383yeDRs2GEnm9ddft4n/8ccfJjg42DzzzDN5PtaYv1/3ud18fX1txl64cMHUr1/fxMXFmZ9//tlERkaali1b2jTGWQ1vdHS0OX/+vDWemppqSpUqZdq2bZvjua9sWq+U37rJq+GVZDZu3GiTp2bNmqZDhw7W38eMGWN8fHxyNIiff/65kWSWLl1qjDHmq6++MpLMm2++aTPupZdecqjhbdCggU1Tc/DgQePv72/69u1rjcXHx5uAgADz119/WWNZ211Bf0C6uu/Kui+3hjcyMtLatBpjTFJSkvHx8TFjxoyxxlq3bm1KlChh/UM6v2WRveHNb/muW7cu11wZGRnm0qVLZsaMGcbX19ecOHEi33lkN2fOHCPJTJ48Od9xWRzdt0dFRZkzZ85YYwsWLDCSTL169WxeBxMmTDCSzPbt262xrNfwla91Yy7/Uevj42Pd3zpakz3rsUOHDiYmJibHQYXHHnvMBAUFWZdz1rrM3lh/+umnRpK1qTXGmE6dOuW6Ph577DFTokSJHHE4j1Ma4LDrr79e/v7+KlasmG655RZFRUXpq6++UmRkpM24O++80+b3b7/9ViEhIbrrrrts4r169ZKkHP/ObdOmjU1OX19fdevWTb/99pv+/PNPa842bdqoXLlyOXKeO3cux79As9fkqG+//dam5ix33323QkJCcsyhXr16Kl++vPX3oKAgVa1a1fov1Pyex5FlZa+4uDi1atVKs2bNUlpamiTpq6++UlJSknr37m0dd/ToUfXr10/lypWTn5+f/P39FRsbK+ny6Q/Z2btc9+/fr/vuu09RUVHy9fWVv7+/WrZsmWtei8WiW2+91SZWp04dm2X31VdfKSgoyKb27BYvXiyLxaIHHnhA6enp1ltUVJTq1q1r96fiZ8yYoZ9++snmtnHjRpsxgYGB+vTTT5WcnKwGDRrIGKPZs2fL19c3R7477rhDQUFB1t+LFSumW2+9VWvXrs3xr9krObpusouKitK1115rE8u+XBcvXqxatWqpXr16NsusQ4cONv92X7VqlSTlOP/1vvvuK7CO7OOv/FdubGysmjZtas0vSY888ogk6f3337fG3nnnHdWuXVstWrSw63mc3Xflp1WrVipWrJj198jISJUuXdq6PM+dO6c1a9aoa9euTp9TndfyvXL5JCQkqHPnzgoLC7NuWz169FBGRobDp5g4ytH9VatWrWw+JFijRg1JUseOHW1eB1nx7PvLYsWK5biazH333afMzEytXbvW6ZryW48XLlzQypUrdfvtt6tIkSI228XNN9+sCxcu6IcffrDJmb3GOnXq5Dqf3Fx77bU6deqU7r33Xi1cuDDHKUtwHB9ag8NmzJihGjVqyM/PT5GRkbl+CrxIkSIqXry4TSw5OVlRUVE5zussXbq0/Pz8lJycbBOPiorKkTcrlpycrJiYGCUnJ+f6/NHR0dZxV3L1E+vJycny8/PL8cZlsVgUFRWV4/nCwsJy5AgMDNT58+cLfB5HlpUj+vTpo/vvv1+LFi3SXXfdpWnTpqlo0aLq2rWrJCkzM1Pt27fXkSNHNGLECNWuXVshISHKzMzU9ddfn2vt9izXM2fOqHnz5goKCtKLL76oqlWrqkiRIvrjjz90xx135MhbpEgRm4ZQurzsLly4YP392LFjio6Olo9P3n+7//XXXzLG5GhqslSsWLHA2qXLb772fGitcuXKat68uZYsWaJHHnkkz2WT1+s7LS1NZ86cUWhoaI77nVk32dnzmvzrr7/022+/yd/fP9ccWW++WdtD9py5zS0/eS2Lbdu2WX+PjIxUt27d9N5772no0KHatWuXvvvuO7333nt2P4+z+678FLQ8T548qYyMDKc/wJnf8s3aDxw6dEjNmzdXtWrV9Oabb6pChQoKCgrSjz/+qEcffdSu18WVsv5IP3DggF3jHd1fZb+STEBAQL7xK7d5Sbluy9mXiaM1FbQek5OTlZ6errfffltvv/12jrGScjSl2XMGBgZKkl3ro3v37kpPT9f777+vO++8U5mZmWrcuLFefPFFtWvXrsDHIycaXjjMnjf+3K5+EBYWpo0bN8oYY3P/0aNHlZ6ervDwcJvxSUlJOXJkxbJ2JGFhYUpMTMwxLusDLNlzunpd2LCwMKWnp+vYsWM2Ta8xRklJSWrcuLFL+a98HkeWlSPuuOMOlSxZUlOnTlXLli21ePFi9ejRQ0WLFpV0+UOA27Zt0/Tp09WzZ0/r4/L7RLY9y/Xbb7/VkSNHtHr1autRXUk5PuzniIiICK1bt06ZmZl5Nr3h4eGyWCz67rvvrG84V8ot5ooPPvhAS5Ys0bXXXqt33nlH3bp103XXXZdjXF6v74CAAOu6yM6ZdeOM8PBwBQcH5/kBy6zXX9b2kJycbPPmntvc8pPXssjeMAwYMEAzZ87UwoUL9fXXX6tEiRIFXp3kSs7uu1xRqlQp+fr6Wv8r5aj8lm9WbMGCBTp79qzmz59vPdovSVu3bnXqORs1aqRSpUpp4cKFGjNmTIHLxJP7q9z89ddfOWK5vTe4s6aSJUvK19dX3bt316OPPprrmLi4OIdyFuTBBx/Ugw8+qLNnz2rt2rWKj4/XLbfcol9//dVmPcM+nNKAf0ybNm105swZLViwwCY+Y8YM6/1XWrlypc2OLSMjQ3PnzlWlSpWsR0vatGljbaSy5yxSpIhdl/lx5K/urBo//vhjm/i8efN09uzZHHNwlqPLyhFBQUG67777tGzZMo0bN06XLl2yOSUg680heyPoyJG03Hgib8eOHXXhwgXrVTVyc8stt8gYo8OHD6tRo0Y5brVr13b6+bPbsWOHnnjiCfXo0UPfffed6tSpo27duunkyZM5xs6fP9/myNXp06f15Zdfqnnz5rmeAiF5bt1kd8stt2jfvn0KCwvLdZllXa2gVatWkqRZs2bZPP6TTz5x6Plmz54tY4z1999//13r16/XjTfeaDOuYcOGatq0qcaNG6dZs2apV69eV/21v7OuOvHZZ585/W/pvJZv1vLJ7XVhjLE5/cMR/v7+GjJkiPbs2aMXXngh1zFHjx7V999/L8mz+6vcnD59WosWLbKJffLJJ/Lx8bGe3uLumooUKaJWrVopISFBderUyXW7yO0ocUHs+Y9fSEiIOnbsqOeee05paWnatWuXw88DjvDiH9SjRw+9++676tmzpw4ePKjatWtr3bp1evnll3XzzTerbdu2NuPDw8PVunVrjRgxQiEhIZo4caL27Nljc2my+Ph4LV68WK1atdLzzz+vUqVKadasWVqyZIleeeWVXP8tnF2tWrUkSVOmTFGxYsUUFBSkuLi4XHde7dq1U4cOHTRkyBClpqaqWbNm2r59u+Lj41W/fn11797dxaV0maPLylF9+vTRu+++q/Hjx6t69epq2rSp9b7q1aurUqVKGjp0qIwxKlWqlL788kvrZbWc1bRpU5UsWVL9+vVTfHy8/P39NWvWLJt/Wzvq3nvv1bRp09SvXz/98ssvatWqlTIzM7Vx40bVqFFD99xzj5o1a6aHH35YDz74oDZt2qQWLVooJCREiYmJWrdunWrXrm09PzQ/O3fuVHp6eo54pUqVFBERobNnz6pr166Ki4vTxIkTFRAQoE8//VQNGjTQgw8+mOON19fXV+3atdPgwYOVmZmpcePGKTU1VaNGjcqzBk+tm+wGDhyoefPmqUWLFho0aJDq1KmjzMxMHTp0SMuWLdOTTz6p6667Tu3bt1eLFi30zDPP6OzZs2rUqJG+//57zZw506HnO3r0qG6//XY99NBDSklJUXx8vIKCgjRs2LAcYwcMGKBu3brJYrGof//+7pqyR40fP1433HCDrrvuOg0dOlSVK1fWX3/9pUWLFum9996zOXc0u4CAAL3++us6c+aMGjdurPXr1+vFF19Ux44drZcFa9eunQICAnTvvffqmWee0YULFzRp0qRc/9Cy19NPP63du3crPj5eP/74o+677z7rF0+sXbtWU6ZM0ahRo9SsWTOP76+yCwsL0yOPPKJDhw6patWqWrp0qd5//3098sgj1tMxPFHTm2++qRtuuEHNmzfXI488ogoVKuj06dP67bff9OWXX1o/4+GI2rVra/78+Zo0aZIaNmwoHx8fNWrUSA899JCCg4PVrFkzlSlTRklJSRozZoxCQ0Pd9p/E/5zC+awc/o3yurRPdj179jQhISG53pecnGz69etnypQpY/z8/ExsbKwZNmyYzeW8jDHWS8xMnDjRVKpUyfj7+5vq1aubWbNm5ci5Y8cOc+utt5rQ0FATEBBg6tata6ZNm2YzJutTs1de0uxKEyZMMHFxccbX19dIsj4+t080nz9/3gwZMsTExsYaf39/U6ZMGfPII4+YkydP2oyLjY01nTp1yvFcLVu2NC1btsy1jivZu6wcuUrDlerXr5/rFSeMMebnn3827dq1M8WKFTMlS5Y0d999tzl06FCOT95nXYnh2LFjOXLkdpWG9evXmyZNmpgiRYqYiIgI07dvX7NlyxabZW5M3q+h3HKeP3/ePP/886ZKlSomICDAhIWFmdatW9tc3ssYY6ZOnWquu+46ExISYoKDg02lSpVMjx49zKZNm/JdTvldpUFXXCHigQceMEWKFDG7du2yeXzWVUDeeOMNY8zfV2kYN26cGTVqlImJiTEBAQGmfv361ktgZX/uK6+0YO+6yesqDbm9VnJ7nZ85c8YMHz7cVKtWzQQEBFgvxzRo0CCbq6ecOnXK9O7d25QoUcIUKVLEtGvXzuzZs8ehqzTMnDnTPPHEEyYiIsIEBgaa5s2b57leLl68aAIDA81NN92Ub+4ruWPflddVGq68FFaW2NhY07NnT5vYzz//bO6++24TFhZmvdRYr169rNtzXldpCAkJMdu3bzc33nijCQ4ONqVKlTKPPPKIzVUOjDHmyy+/NHXr1jVBQUGmbNmy5umnn7ZeRSN7zoKu0nClhQsXmk6dOpmIiAjj5+dnSpYsaVq1amUmT55sLl68aB3n6L79SlnbxKuvvmoTz22/nfUaXr16tWnUqJEJDAw0ZcqUMc8++6y5dOmSzeNdqcmY3NfjgQMHTO/evU3ZsmWNv7+/iYiIME2bNjUvvvhivnVfOc8r93UnTpwwd911lylRooSxWCzW/dtHH31kWrVqZSIjI01AQICJjo42Xbt2tbliBRxjMeaK/yMBVwmLxaJHH300x0X8gX+7gwcPKi4uTq+++qqeeuqpwi7nX+fLL79U586dtWTJEt18882FXY5H9erVS59//rnOnDlT2KVcNW688UYdP35cO3fuLOxS8C/DKQ0AgKvezz//rN9//11PPvmk6tWrp44dOxZ2SQD+RfjQGgDgqte/f3917txZJUuW1OzZs91+NQUA3o1TGgAAAODVOMILAAAAr0bDCwAAAK9GwwsAAACvxlUacpGZmakjR46oWLFifDACAADgKmSM0enTpxUdHZ3n18tnoeHNxZEjR1SuXLnCLgMAAAAF+OOPPxQTE5PvGBreXGR9zeMff/yh4sWLF3I1AAAAyC41NVXlypXL9+u5s9Dw5iLrNIbixYvT8AIAAFzF7Dn9lA+tAQAAwKvR8AIAAMCr0fACAADAq9HwAgAAwKvR8AIAAMCr0fACAADAq9HwAgAAwKvR8AIAAMCr0fACAADAq9HwAgAAwKvR8AIAAMCr0fACAADAq9HwAgAAwKvR8AIAAMCr0fACAADAq9HwAgAAwKvR8AIAAMCr0fACAADAq9HwAgAAwKv5FXYBuGxswnGXcwytH+6GSgAAALwLR3gBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NUKveGdOHGi4uLiFBQUpIYNG+q7777Lc+z8+fPVrl07RUREqHjx4mrSpIm++eabHOPmzZunmjVrKjAwUDVr1tQXX3zhySkAAADgKlaoDe/cuXM1cOBAPffcc0pISFDz5s3VsWNHHTp0KNfxa9euVbt27bR06VJt3rxZrVq10q233qqEhATrmA0bNqhbt27q3r27tm3bpu7du6tr167auHHjPzUtAAAAXEUsxhhTWE9+3XXXqUGDBpo0aZI1VqNGDd12220aM2aMXTmuueYadevWTc8//7wkqVu3bkpNTdVXX31lHXPTTTepZMmSmj17tl05U1NTFRoaqpSUFBUvXtyBGTlvbMJxl3MMrR/uhkoAAACufo70a37/UE05pKWlafPmzRo6dKhNvH379lq/fr1dOTIzM3X69GmVKlXKGtuwYYMGDRpkM65Dhw6aMGFCnnkuXryoixcvWn9PTU2VJKWnpys9PV2S5OPjIx8fH2VmZiozM9M6NiuekZGhK/92yCvu6+sri8VizWv1/2MsJtM2bPHJPe7jKxljE8/IyJCvr2+OGi0WS65xT8/J19fXWpc9cT8/PxljbOJ51c6cmBNzYk7MiTkxp//2nHL0UvkotIb3+PHjysjIUGRkpE08MjJSSUlJduV4/fXXdfbsWXXt2tUaS0pKcjjnmDFjNGrUqBzxhIQEhYSESJIiIiJUqVIlHThwQMeOHbOOiYmJUUxMjH799VelpKRY4xUrVlTp0qW1c+dOnT9/3hqvXr26SpQooYSEBJsV6OdbThk+fip7/BebGg6HV5NvZrqiTuyzxoyPjw6HV1fQpbMKP/X36R87dyapbt26On78uPbv32+Nh4aGqkaNGjpy5Ij+/PNPa9zTc6pTp44CAgK0adMmmzk1atRIaWlp2r59uzXm6+urxo0bKyUlRXv27LHGg4ODmRNzYk7MiTkxJ+bEnHLM6cpTWgtSaKc0HDlyRGXLltX69evVpEkTa/yll17SzJkzbVZAbmbPnq2+fftq4cKFatu2rTUeEBCgjz76SPfee681NmvWLPXp00cXLlzINVduR3jLlSun5ORk6yFyT/8V89r2k5JcO8L7VL3wf9VfZt741yZzYk7MiTkxJ+bEnP6ZOZ08eVJhYWFX9ykN4eGXm7PsR16PHj2a4whtdnPnzlWfPn302Wef2TS7khQVFeVwzsDAQAUGBuaI+/n5yc/PdhFlrazssha+vfHseWWxSJKMJffxucYtFpt41nPlVaOjcZfn5ETcYrHkGmdOzCm/OHNiTsyJOeUXZ07/nTnlpdCu0hAQEKCGDRtq+fLlNvHly5eradOmeT5u9uzZ6tWrlz755BN16tQpx/1NmjTJkXPZsmX55gQAAID3KrQjvJI0ePBgde/eXY0aNVKTJk00ZcoUHTp0SP369ZMkDRs2TIcPH9aMGTMkXW52e/TooTfffFPXX3+99UhucHCwQkNDJUkDBgxQixYtNG7cOHXp0kULFy7UihUrtG7dusKZJAAAAApVoV6Ht1u3bpowYYJGjx6tevXqae3atVq6dKliY2MlSYmJiTbX5H3vvfeUnp6uRx99VGXKlLHeBgwYYB3TtGlTzZkzR9OmTVOdOnU0ffp0zZ07V9ddd90/Pj8AAAAUvkK9Du/ViuvwAgAAXN0c6dcK/auFAQAAAE+i4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV/OzZ1D9+vVlsVjsSrhlyxaXCgIAAADcya6G97bbbrP+fOHCBU2cOFE1a9ZUkyZNJEk//PCDdu3apf79+3ukSAAAAMBZdjW88fHx1p/79u2rJ554Qi+88EKOMX/88Yd7qwMAAABc5PA5vJ999pl69OiRI/7AAw9o3rx5bikKAAAAcBeHG97g4GCtW7cuR3zdunUKCgpyS1EAAACAu9h1SsOVBg4cqEceeUSbN2/W9ddfL+nyObxTp07V888/7/YCAQAAAFc43PAOHTpUFStW1JtvvqlPPvlEklSjRg1Nnz5dXbt2dXuBAAAAgCscbnglqWvXrjS3AAAA+Fdw6osnTp06pQ8++EDPPvusTpw4Ieny9XcPHz7s1uIAAAAAVzl8hHf79u1q27atQkNDdfDgQfXt21elSpXSF198od9//10zZszwRJ0AAACAUxw+wjt48GD16tVLe/futbkqQ8eOHbV27Vq3FgcAAAC4yuGG96efftL//ve/HPGyZcsqKSnJLUUBAAAA7uJwwxsUFKTU1NQc8V9++UURERFuKQoAAABwF4cb3i5dumj06NG6dOmSJMlisejQoUMaOnSo7rzzTrcXCAAAALjC4Yb3tdde07Fjx1S6dGmdP39eLVu2VOXKlVWsWDG99NJLnqgRAAAAcJrDV2koXry41q1bp2+//VZbtmxRZmamGjRooLZt23qiPgAAAMAlTn3xhCS1bt1arVu3dmctAAAAgNs51fCuXLlSK1eu1NGjR5WZmWlz39SpU91SGAAAAOAODje8o0aN0ujRo9WoUSOVKVNGFovFE3UBAAAAbuFwwzt58mRNnz5d3bt390Q9AAAAgFs5fJWGtLQ0NW3a1BO1AAAAAG7ncMPbt29fffLJJ56oBQAAAHA7h09puHDhgqZMmaIVK1aoTp068vf3t7l//PjxbisOAAAAcJXDDe/27dtVr149SdLOnTtt7uMDbAAAALjaONzwrlq1yhN1AAAAAB7h8Dm8AAAAwL+JXUd477jjDk2fPl3FixfXHXfcke/Y+fPnu6UwAAAAwB3sanhDQ0Ot5+eGhoZ6tCAAAADAnexqeKdNm5brzwAAAMDVjnN4AQAA4NUcvkqDJH3++ef69NNPdejQIaWlpdnct2XLFrcUBgAAALiDw0d433rrLT344IMqXbq0EhISdO211yosLEz79+9Xx44dPVEjAAAA4DSHG96JEydqypQpeueddxQQEKBnnnlGy5cv1xNPPKGUlBRP1AgAAAA4zeGG99ChQ2ratKkkKTg4WKdPn5Ykde/eXbNnz3ZvdQAAAICLHG54o6KilJycLEmKjY3VDz/8IEk6cOCAjDHurQ4AAABwkcMNb+vWrfXll19Kkvr06aNBgwapXbt26tatm26//Xa3FwgAAAC4wuGrNEyZMkWZmZmSpH79+qlUqVJat26dbr31VvXr18/tBQIAAACucLjh9fHxkY/P3weGu3btqq5du7q1KAAAAMBd7Gp4t2/fbnfCOnXqOF0MAAAA4G52Nbz16tWTxWIp8ENpFotFGRkZbikMAAAAcAe7Gt4DBw54ug4AAADAI+xqeGNjYz1dBwAAAOARDn9oTZJ++eUXvf3229q9e7csFouqV6+uxx9/XNWqVXN3fQAAAIBLHL4O7+eff65atWpp8+bNqlu3rurUqaMtW7aoVq1a+uyzzzxRIwAAAOA0h4/wPvPMMxo2bJhGjx5tE4+Pj9eQIUN09913u604AAAAwFUOH+FNSkpSjx49csQfeOABJSUluaUoAAAAwF0cbnhvvPFGfffddzni69atU/Pmzd1SFAAAAOAuDp/S0LlzZw0ZMkSbN2/W9ddfL0n64Ycf9Nlnn2nUqFFatGiRzVgAAACgMFlMQd8mkc2VXyucb+J/8ZdQpKamKjQ0VCkpKSpevPg/8pxjE467nGNo/XA3VAIAAHD1c6Rfc/gIb2ZmptOFAQAAAP80h8/hzc+5c+fcmQ4AAABwmVMfWvvzzz9zxDdu3Kh69eq5oyYAAADAbRxueIsXL646depozpw5ki6f4jBy5Ei1aNGCD6kBAADgquPwObyLFi3S5MmT1bdvXy1atEgHDx7UoUOHtGTJErVt29YTNQIAAABOc7jhlaR+/frp999/17hx4+Tn56fVq1eradOm7q4NAAAAcJnDpzScPHlSd955pyZNmqT33ntPXbt2Vfv27TVx4kRP1AcAAAC4xOGGt1atWvrrr7+UkJCghx56SB9//LE+/PBDjRgxQp06dXK4gIkTJyouLk5BQUFq2LBhrt/iliUxMVH33XefqlWrJh8fHw0cODDHmOnTp8tiseS4XbhwweHaAAAA8O/ncMPbr18/rV27VnFxcdZYt27dtG3bNqWlpTmUa+7cuRo4cKCee+45JSQkqHnz5urYsaMOHTqU6/iLFy8qIiJCzz33nOrWrZtn3uLFiysxMdHmFhQU5FBtAAAA8A4Of9OaO1133XVq0KCBJk2aZI3VqFFDt912m8aMGZPvY2+88UbVq1dPEyZMsIlPnz5dAwcO1KlTp5yui29aAwAAuLp55JvWXnnlFT3++OMKDg6WJK1du1bXXXedAgMDJUmnT5/WkCFD7D6XNy0tTZs3b9bQoUNt4u3bt9f69evtLStXZ86cUWxsrDIyMlSvXj298MILql+/fp7jL168qIsXL1p/T01NlSSlp6crPT1d0uWvVPbx8VFmZqbNt81lxTMyMnTl3w55xX19fWWxWKx5rf5/jMXYfpOdsfjkHvfxlYyxiWdkZMjX1zdHjRaLJde4p+fk6+trrcueuJ+fn4wxNvG8amdOzIk5MSfmxJyY0397Tjl6qXzY3fAOGzZMvXr1sja8t9xyi7Zu3aqKFStKuvwta++9957dDe/x48eVkZGhyMhIm3hkZKSSkpLsLSuH6tWra/r06apdu7ZSU1P15ptvqlmzZtq2bZuqVKmS62PGjBmjUaNG5YgnJCQoJCREkhQREaFKlSrpwIEDOnbsmHVMTEyMYmJi9OuvvyolJcUar1ixokqXLq2dO3fq/PnzNvWVKFFCCQkJNivQz7ecMnz8VPb4LzY1HA6vJt/MdEWd2GeNGR8fHQ6vrqBLZxV+6u/TP3buTFLdunV1/Phx7d+/3xoPDQ1VjRo1dOTIEZsvDfH0nOrUqaOAgABt2rTJZk6NGjVSWlqatm/fbo35+vqqcePGSklJ0Z49e6zx4OBg5sScmBNzYk7MiTkxpxxzSkhIkL3sPqXBx8dHSUlJKl26tCSpWLFi2rZtm7Xh/euvvxQdHZ2jC8/LkSNHVLZsWa1fv15NmjSxxl966SXNnDnTZgXkJq9TGrLLzMxUgwYN1KJFC7311lu5jsntCG+5cuWUnJxsPUTu6b9iXtt+UpJrR3ifqhf+r/rLzBv/2mROzIk5MSfmxJyY0z8zp5MnTyosLMy9pzS4W3j45eYs+9Hco0eP5jjq6wofHx81btxYe/fuzXNMYGCg9dSMK/n5+cnPz3YRZa2s7LIWvr3x7HllsUiSjCX38bnGLRabeNZz5VWjo3GX5+RE3GKx5BpnTswpvzhzYk7MiTnlF2dO/5055cXhqzS4S0BAgBo2bKjly5fbxJcvX+7WL7Ewxmjr1q0qU6aM23ICAADg38OhI7wffPCBihYtKunyicLTp09XePjlKwOcPn3a4ScfPHiwunfvrkaNGqlJkyaaMmWKDh06pH79+km6fN7w4cOHNWPGDOtjtm7dKunyB9OOHTumrVu3KiAgQDVr1pQkjRo1Stdff72qVKmi1NRUvfXWW9q6daveffddh+sDAADAv5/dDW/58uX1/vvvW3+PiorSzJkzc4xxRLdu3ZScnKzRo0crMTFRtWrV0tKlSxUbGyvp8hdNZL8m75VXW9i8ebM++eQTxcbG6uDBg5KkU6dO6eGHH1ZSUpJCQ0NVv359rV27Vtdee61DtQEAAMA7FOp1eK9WXIcXAADg6uZIv1Zo5/ACAAAA/wQaXgAAAHg1Gl4AAAB4NRpeAAAAeDUaXgAAAHg1pxreffv2afjw4br33nt19OhRSdLXX3+tXbt2ubU4AAAAwFUON7xr1qxR7dq1tXHjRs2fP19nzpyRJG3fvl3x8fFuLxAAAABwhcMN79ChQ/Xiiy9q+fLlCggIsMZbtWqlDRs2uLU4AAAAwFUON7w7duzQ7bffniMeERGh5ORktxQFAAAAuIvDDW+JEiWUmJiYI56QkKCyZcu6pSgAAADAXRxueO+77z4NGTJESUlJslgsyszM1Pfff6+nnnpKPXr08ESNAAAAgNMcbnhfeukllS9fXmXLltWZM2dUs2ZNtWjRQk2bNtXw4cM9USMAAADgND9HH+Dv769Zs2bphRde0JYtW5SZman69eurSpUqnqgPAAAAcInDDW+WihUrqmLFiu6sBQAAAHA7h09puOuuuzR27Ngc8VdffVV33323W4oCAAAA3MWpL57o1KlTjvhNN92ktWvXuqUoAAAAwF0cbnjPnDlj84UTWfz9/ZWamuqWogAAAAB3cbjhrVWrlubOnZsjPmfOHNWsWdMtRQEAAADu4vCH1kaMGKE777xT+/btU+vWrSVJK1eu1OzZs/XZZ5+5vUAAAADAFQ43vJ07d9aCBQv08ssv6/PPP1dwcLDq1KmjFStWqGXLlp6oEQAAAHCaU5cl69SpU64fXAMAAACuNk5fhzctLU1Hjx5VZmamTbx8+fIuFwUAAAC4i8MN7969e9W7d2+tX7/eJm6MkcViUUZGhtuKAwAAAFzlcMPbq1cv+fn5afHixSpTpowsFosn6gIAAADcwuGGd+vWrdq8ebOqV6/uiXoAAAAAt3L4Orw1a9bU8ePHPVELAAAA4HYON7zjxo3TM888o9WrVys5OVmpqak2NwAAAOBq4vApDW3btpUktWnTxibOh9YAAABwNXK44V21apUn6gAAAAA8wuGGl29TAwAAwL+J0188ce7cOR06dEhpaWk28Tp16rhcFAAAAOAuDje8x44d04MPPqivvvoq1/s5hxcAAABXE4ev0jBw4ECdPHlSP/zwg4KDg/X111/ro48+UpUqVbRo0SJP1AgAAAA4zeEjvN9++60WLlyoxo0by8fHR7GxsWrXrp2KFy+uMWPGqFOnTp6oEwAAAHCKw0d4z549q9KlS0uSSpUqpWPHjkmSateurS1btri3OgAAAMBFDje81apV0y+//CJJqlevnt577z0dPnxYkydPVpkyZdxeIAAAAOAKh09pGDhwoBITEyVJ8fHx6tChg2bNmqWAgABNnz7d3fUBAAAALnG44b3//vutP9evX18HDx7Unj17VL58eYWHh7u1OAAAAMBVTl+HN0uRIkXUoEEDd9QCAAAAuJ1dDe/gwYP1wgsvKCQkRIMHD8537Pjx491SGFw3NuG4S48fWp8j9gAA4N/ProY3ISFBly5dkiRt2bJFFosl13F5xQEAAIDCYlfDu2rVKuvPq1ev9lQtAAAAgNs5dFmy9PR0+fn5aefOnZ6qBwAAAHArhxpePz8/xcbGKiMjw1P1AAAAAG7l8BdPDB8+XMOGDdOJEyc8UQ8AAADgVg5fluytt97Sb7/9pujoaMXGxiokJMTmfr5eGAAAAFcThxve2267zQNlAAAAAJ7hcMMbHx/viToAAAAAj3D4HF4AAADg38ThI7wZGRl644039Omnn+rQoUNKS0uzuZ8PswEAAOBq4vAR3lGjRmn8+PHq2rWrUlJSNHjwYN1xxx3y8fHRyJEjPVAiAAAA4DyHG95Zs2bp/fff11NPPSU/Pz/de++9+uCDD/T888/rhx9+8ESNAAAAgNMcbniTkpJUu3ZtSVLRokWVkpIiSbrlllu0ZMkS91YHAAAAuMjhhjcmJkaJiYmSpMqVK2vZsmWSpJ9++kmBgYHurQ4AAABwkcMN7+23366VK1dKkgYMGKARI0aoSpUq6tGjh3r37u32AgEAAABX2H2VhgkTJqhHjx4aO3asNXbXXXcpJiZG69evV+XKldW5c2ePFAkAAAA4y+4jvKNGjVJ0dLS6deumZcuWyRgjSbr++us1ePBgml0AAABclexueJOSkvThhx8qOTlZHTt2VGxsrOLj43XgwAFP1gcAAAC4xO6GNzAwUPfff79WrFihffv26cEHH9SMGTNUpUoVtW3bVrNnz9bFixc9WSsAAADgMKe+WrhChQoaNWqUDhw4oK+//lqRkZHq27evoqOj3V0fAAAA4BKnGl6bBD4+slgsMsYoMzPTHTUBAAAAbuNUw/v7779r1KhRiouLU/v27XXkyBG9//771uvzAgAAAFcLuy9LduHCBc2bN09Tp07VmjVrVKZMGfXs2VO9e/dWxYoVPVkjAAAA4DS7G96oqChduHBBt9xyi7788kt16NBBPj4unxEBAAAAeJTdDe/zzz+vHj16KDw83JP1AAAAAG5ld8M7ePBgT9YBAAAAeATnJAAAAMCr0fACAADAq9l1SkNqaqqKFy/u6VpwlRubcNylxw+tz/nfAADgn2fXEd6SJUvq6NGjkqTWrVvr1KlTnqwJAAAAcBu7Gt6iRYsqOTlZkrR69WpdunTJo0UBAAAA7mLXKQ1t27ZVq1atVKNGDUnS7bffroCAgFzHfvvtt+6rDgAAAHCRXQ3vxx9/rI8++kj79u3TmjVrdM0116hIkSKerg0AAABwmV0Nb3BwsPr16ydJ2rRpk8aNG6cSJUp4si4AAADALez+4oksq1atsv5sjJEkWSwW91UEAAAAuJFT1+GdMWOGateureDgYAUHB6tOnTqaOXOmu2sDAAAAXObwEd7x48drxIgReuyxx9SsWTMZY/T999+rX79+On78uAYNGuSJOgEAAACnONzwvv3225o0aZJ69OhhjXXp0kXXXHONRo4cScMLAACAq4rDpzQkJiaqadOmOeJNmzZVYmKiW4oCAAAA3MXhhrdy5cr69NNPc8Tnzp2rKlWquKUoAAAAwF0cPqVh1KhR6tatm9auXatmzZrJYrFo3bp1WrlyZa6NMAAAAFCYHD7Ce+edd2rjxo0KDw/XggULNH/+fIWHh+vHH3/U7bff7okaAQAAAKc5fIRXkho2bKiPP/7Y3bUAAAAAbufUdXjdaeLEiYqLi1NQUJAaNmyo7777Ls+xiYmJuu+++1StWjX5+Pho4MCBuY6bN2+eatasqcDAQNWsWVNffPGFh6oHAADA1a5QG965c+dq4MCBeu6555SQkKDmzZurY8eOOnToUK7jL168qIiICD333HOqW7durmM2bNigbt26qXv37tq2bZu6d++url27auPGjZ6cCgAAAK5Shdrwjh8/Xn369FHfvn1Vo0YNTZgwQeXKldOkSZNyHV+hQgW9+eab6tGjh0JDQ3MdM2HCBLVr107Dhg1T9erVNWzYMLVp00YTJkzw4EwAAABwtXLqHF53SEtL0+bNmzV06FCbePv27bV+/Xqn827YsCHHl1906NAh34b34sWLunjxovX31NRUSVJ6errS09MlST4+PvLx8VFmZqYyMzOtY7PiGRkZMsYUGPf19ZXFYrHmtfr/MRaTaRu2+OQe9/GVjLGJZ2RkyNfX11qjJTPj8h0Wy+U8JlOWK2oxFouUTzx77TJGslguP6fNeJ/L8azny6P2rDn7+vpa672Sn5+fjDE2cYvFYjOnguKeXk951c6cmBNzYk7MiTkxp392Tjl6qXwUWsN7/PhxZWRkKDIy0iYeGRmppKQkp/MmJSU5nHPMmDEaNWpUjnhCQoJCQkIkSREREapUqZIOHDigY8eOWcfExMQoJiZGv/76q1JSUqzxihUrqnTp0tq5c6fOnz9vjVevXl0lSpRQQkKCzQr08y2nDB8/lT3+i00Nh8OryTczXVEn9lljxsdHh8OrK+jSWYWf+vv0j507k1S3bl0dP35c+/fvV9mUNEnShYAQHS8Rq+LnklX87N+1nw0uoZPFolXyTJJCzp+yxlNDIpQaEpFjTiGZYTobXFKRJw/IL/3vPxCOlyivCwFFFX1iryxXvOCTSlWymdOmTQGSpEaNGiktLU3bt2+3jvX19VXjxo2VkpKiPXv2WOPBwcE2c8oSGhqqGjVq6MiRI/rzzz+tcU+vpzp16iggIECbNm2yWU/MiTkxJ+bEnJgTc/pn55SQkCB7WYzNIbyCnT17VmPHjtXKlSt19OhRm45eks0Cys+RI0dUtmxZrV+/Xk2aNLHGX3rpJc2cOdNmBeTmxhtvVL169XIcuQ0ICNBHH32ke++91xqbNWuW+vTpowsXLuSaK7cjvOXKlVNycrKKFy8uyfN/xby2/aQk147wPlUv3OYvsNe3JV++w8kjvE/XKWlT+2vbT7p0hPfJumHWZSB551+bzIk5MSfmxJyYE3P6Z+Z08uRJhYWFKSUlxdqv5cXhI7x9+/bVmjVr1L17d5UpU0YWi8XRFJKk8PDLzVn2I69Hjx7NcYTWEVFRUQ7nDAwMVGBgYI64n5+f/PxsF1HWysoua+HbG8+eV/+/HI0l9/G5xi0Wm3jWc2XVaHyyPcbiI5Pb6sojnqN2a40+Ui7jczxfttqzzznHMtDljSq3eF7L3dG4y+vJiThzYk4Sc8qrRkfjzIk5ScwprxodjXvjnPLicMP71VdfacmSJWrWrJmjD7UREBCghg0bavny5TZfWLF8+XJ16dLF6bxNmjTR8uXLbc7jXbZsmZo2bepSvQAAAPh3crjhLVmypEqVKuWWJx88eLC6d++uRo0aqUmTJpoyZYoOHTqkfv36SZKGDRumw4cPa8aMGdbHbN26VZJ05swZHTt2TFu3blVAQIBq1qwpSRowYIBatGihcePGqUuXLlq4cKFWrFihdevWuaVmAAAA/Ls43PC+8MILev755/XRRx+pSJEiLj15t27dlJycrNGjRysxMVG1atXS0qVLFRsbK+nyF01kvyZv/fr1rT9v3rxZn3zyiWJjY3Xw4EFJUtOmTTVnzhwNHz5cI0aMUKVKlTR37lxdd911LtUKAACAfyeHP7RWv3597du3T8YYVahQQf7+/jb3b9myxa0FFobU1FSFhobadRK0u4xNOO5yjqH1w92a09P5AAAAnOVIv+bwEd7bbrvN2boAAACAf5zDDW98fLwn6gAAAAA8wukvnti8ebN2794ti8WimjVr2pxbCwAAAFwtHG54jx49qnvuuUerV69WiRIlZIxRSkqKWrVqpTlz5igiIsITdQIAAABOyXmV4AI8/vjjSk1N1a5du3TixAmdPHlSO3fuVGpqqp544glP1AgAAAA4zeEjvF9//bVWrFihGjVqWGM1a9bUu+++q/bt27u1OAAAAMBVDh/hzczMzHEpMkny9/e3+R5lAAAA4GrgcMPbunVrDRgwQEeOHLHGDh8+rEGDBqlNmzZuLQ4AAABwlcMN7zvvvKPTp0+rQoUKqlSpkipXrqy4uDidPn1ab7/9tidqBAAAAJzm8Dm85cqV05YtW7R8+XLt2bNHxhjVrFlTbdu29UR9AAAAgEucvg5vu3bt1K5dO3fWAgAAALidXQ3vW2+9pYcfflhBQUF666238h3LpckAAABwNbGr4X3jjTd0//33KygoSG+88Uae4ywWCw0vAAAArip2NbwHDhzI9WcAAADgaufwVRpGjx6tc+fO5YifP39eo0ePdktRAAAAgLs43PCOGjVKZ86cyRE/d+6cRo0a5ZaiAAAAAHdx+CoNxhhZLJYc8W3btqlUqVJuKQr/DWMTjrucY2j9cDdUAgAAvJndDW/JkiVlsVhksVhUtWpVm6Y3IyNDZ86cUb9+/TxSJAAAAOAsuxveCRMmyBij3r17a9SoUQoNDbXeFxAQoAoVKqhJkyYeKRIAAABwlt0Nb8+ePZWeni5Jatu2rWJiYjxWFAAAAOAuDn1ozc/PT/3791dGRoan6gEAAADcyuGrNFx33XVKSEjwRC0AAACA2zl8lYb+/fvrySef1J9//qmGDRsqJCTE5v46deq4rTgAAADAVQ43vN26dZMkm68Qtlgs1suVcboDAAAAriYON7x8tTAAAAD+TRxueGNjYz1RBwAAAOARDje8krRv3z5NmDBBu3fvlsViUY0aNTRgwABVqlTJ3fUBAAAALnH4Kg3ffPONatasqR9//FF16tRRrVq1tHHjRl1zzTVavny5J2oEAAAAnObwEd6hQ4dq0KBBGjt2bI74kCFD1K5dO7cVBwAAALjK4SO8u3fvVp8+fXLEe/furZ9//tktRQEAAADu4nDDGxERoa1bt+aIb926VaVLl3ZHTQAAAIDbOHxKw0MPPaSHH35Y+/fvV9OmTWWxWLRu3TqNGzdOTz75pCdqBAAAAJzmcMM7YsQIFStWTK+//rqGDRsmSYqOjtbIkSNtvowCAAAAuBo43PBaLBYNGjRIgwYN0unTpyVJxYoVc3thAAAAgDs4dR1eSTp69Kh++eUXWSwWVatWTREREe6sC3DK2ITjLj1+aP1wN1UCAACuFg5/aC01NVXdu3dXdHS0WrZsqRYtWig6OloPPPCAUlJSPFEjAAAA4DSHG96+fftq48aNWrJkiU6dOqWUlBQtXrxYmzZt0kMPPeSJGgEAAACnOXxKw5IlS/TNN9/ohhtusMY6dOig999/XzfddJNbiwMAAABc5fAR3rCwMIWGhuaIh4aGqmTJkm4pCgAAAHAXhxve4cOHa/DgwUpMTLTGkpKS9PTTT2vEiBFuLQ4AAABwlcOnNEyaNEm//fabYmNjVb58eUnSoUOHFBgYqGPHjum9996zjt2yZYv7KgUAAACc4HDDe9ttt3mgDAAAAMAzHG544+PjPVEHAAAA4BFOf/HE5s2btXv3blksFtWsWVP169d3Z10AAACAWzjc8B49elT33HOPVq9erRIlSsgYo5SUFLVq1Upz5szhG9cAAABwVXH4Kg2PP/64UlNTtWvXLp04cUInT57Uzp07lZqaqieeeMITNQIAAABOc/gI79dff60VK1aoRo0a1ljNmjX17rvvqn379m4tDgAAAHCVw0d4MzMz5e/vnyPu7++vzMxMtxQFAAAAuIvDDW/r1q01YMAAHTlyxBo7fPiwBg0apDZt2ri1OAAAAMBVDje877zzjk6fPq0KFSqoUqVKqly5suLi4nT69Gm9/fbbnqgRAAAAcJrD5/CWK1dOW7Zs0fLly7Vnzx4ZY1SzZk21bdvWE/UBAAAALnGo4U1PT1dQUJC2bt2qdu3aqV27dp6qCwAAAHALh05p8PPzU2xsrDIyMjxVDwAAAOBWDp/DO3z4cA0bNkwnTpzwRD0AAACAWzl8Du9bb72l3377TdHR0YqNjVVISIjN/Vu2bHFbcQAAAICrHG54u3TpIovF4olaAAAAALdzuOEdOXKkB8oAAAAAPMPuc3jPnTunRx99VGXLllXp0qV133336fjx456sDQAAAHCZ3Q1vfHy8pk+frk6dOumee+7R8uXL9cgjj3iyNgAAAMBldp/SMH/+fH344Ye65557JEkPPPCAmjVrpoyMDPn6+nqsQAAAAMAVdh/h/eOPP9S8eXPr79dee638/Px05MgRjxQGAAAAuIPdDW9GRoYCAgJsYn5+fkpPT3d7UQAAAIC72H1KgzFGvXr1UmBgoDV24cIF9evXz+ZavPPnz3dvhUAhGpvg2gczh9YPd1MlAADAWXY3vD179swRe+CBB9xaDODtaKABAPjn2d3wTps2zZN1AAAAAB5h9zm8AAAAwL8RDS8AAAC8Gg0vAAAAvBoNLwAAALwaDS8AAAC8Gg0vAAAAvBoNLwAAALwaDS8AAAC8Gg0vAAAAvBoNLwAAALwaDS8AAAC8Gg0vAAAAvBoNLwAAALwaDS8AAAC8Gg0vAAAAvJpfYRcAwHljE467nGNo/XA3VAIAwNWLI7wAAADwajS8AAAA8GqF3vBOnDhRcXFxCgoKUsOGDfXdd9/lO37NmjVq2LChgoKCVLFiRU2ePNnm/unTp8tiseS4XbhwwZPTAAAAwFWqUBveuXPnauDAgXruueeUkJCg5s2bq2PHjjp06FCu4w8cOKCbb75ZzZs3V0JCgp599lk98cQTmjdvns244sWLKzEx0eYWFBT0T0wJAAAAV5lC/dDa+PHj1adPH/Xt21eSNGHCBH3zzTeaNGmSxowZk2P85MmTVb58eU2YMEGSVKNGDW3atEmvvfaa7rzzTus4i8WiqKiof2QOAAAAuLoVWsOblpamzZs3a+jQoTbx9u3ba/369bk+ZsOGDWrfvr1NrEOHDvrwww916dIl+fv7S5LOnDmj2NhYZWRkqF69enrhhRdUv379PGu5ePGiLl68aP09NTVVkpSenq709HRJko+Pj3x8fJSZmanMzEzr2Kx4RkaGjDEFxn19fWWxWKx5rf5/jMVk2oYtPrnHfXwlY2ziGRkZ8vX1tdZoycy4fIfFcjmPyZTlilqMxSLlE89eu4yRLJbLz2kz3udyPOv58qg9a86+vr6X49nH5zKnv2vPPZ59fchk5junPGv///iVNVrsmFNB8cuLzSgjI+PvORcwp/zW05WvGx+fK54znznliGef0/+PyaoxS9Z6yh738/OzmdPl0i02r72C4p7envKqnTkxJ+bEnJiT98wpRy+Vj0JreI8fP66MjAxFRkbaxCMjI5WUlJTrY5KSknIdn56eruPHj6tMmTKqXr26pk+frtq1ays1NVVvvvmmmjVrpm3btqlKlSq55h0zZoxGjRqVI56QkKCQkBBJUkREhCpVqqQDBw7o2LFj1jExMTGKiYnRr7/+qpSUFGu8YsWKKl26tHbu3Knz589b49WrV1eJEiWUkJBgswL9fMspw8dPZY//YlPD4fBq8s1MV9SJfdaY8fHR4fDqCrp0VuGn/j79Y+fOJNWtW1fHjx/X/v37VTYlTZJ0ISBEx0vEqvi5ZBU/+3ftZ4NL6GSxaJU8k6SQ86es8dSQCKWGROSYU0hmmM4Gl1TkyQPyS//7D4TjJcrrQkBRRZ/YK8sVL/ikUpVs5rRpU4AkqVGjRkpLS7OZa15zSvcLVFKpSgq5cEolTyda41lzOnLkiP78809rvGRakXznFJbyh4LSzlrjJ4uVsZlTVo1Z66mgORW0nqRIpaSkaM+ePZKksilpBc4pv/W0adN+azwmJkZSUIFzKmg9nT9fTAEBAdq0aZPNnLLW0/bt260xX19fNW7c2GZOkhQcHGzz2ssSGhqqGjVq5FhPnt6e6tSpw5yYE3NiTszJy+eUkJAge1mMzSG8f86RI0dUtmxZrV+/Xk2aNLHGX3rpJc2cOdNmBWSpWrWqHnzwQQ0bNswa+/7773XDDTcoMTEx19MYMjMz1aBBA7Vo0UJvvfVWrrXkdoS3XLlySk5OVvHixSV5/q+Y17aflOTaEd6n6oXb/AX2+rbky3c4eYT36TolbWp/bftJl47wPlk3zLoMJOmVLUcLnFNBR0OfqVvKZn28tv2ES0d4r6zRYrFo3Oa/8p1TQfEhDSNt/oJ+fVuyS0d4n6pTyhr38fHRK9tOuHyE95kGpSX9t44KMCfmxJyYE3P698/p5MmTCgsLU0pKirVfy0uhHeEND7/cnGU/mnv06NEcR3GzREVF5Trez89PYWFhuT7Gx8dHjRs31t69e/OsJTAwUIGBgTnifn5+8vOzXURZKyu7rIVvbzx7XlkskiRjyX18rnGLxSae9VxZNRqfbI+x+MhYckmeRzxH7dYafaRcxud4vmy1Z59zruOzzamgeI718f+NZ15zyrP2/4/bVaMcW08Wi8Wa1yZfnnPNez3leN2o4DnliGebk+X/12tuufOKXzmnK+W1fTgad3l7ciLOnJiTxJzyqtHROHNiTlLhzCkvhXaVhoCAADVs2FDLly+3iS9fvlxNmzbN9TFNmjTJMX7ZsmVq1KiR9fzd7Iwx2rp1q8qUKeOewgEAAPCvUqiXJRs8eLA++OADTZ06Vbt379agQYN06NAh9evXT5I0bNgw9ejRwzq+X79++v333zV48GDt3r1bU6dO1YcffqinnnrKOmbUqFH65ptvtH//fm3dulV9+vTR1q1brTkBAADw31KolyXr1q2bkpOTNXr0aCUmJqpWrVpaunSpYmNjJUmJiYk21+SNi4vT0qVLNWjQIL377ruKjo7WW2+9ZXNJslOnTunhhx9WUlKSQkNDVb9+fa1du1bXXnvtPz4/AAAAFL5CbXglqX///urfv3+u902fPj1HrGXLltqyZUue+d544w298cYb7ioPAAAA/3KF/tXCAAAAgCfR8AIAAMCr0fACAADAq9HwAgAAwKvR8AIAAMCr0fACAADAq9HwAgAAwKvR8AIAAMCrFfoXTwC4uoxNOO7S44fWD3dTJQAAuAdHeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODVaHgBAADg1Wh4AQAA4NX8CrsAAN5tbMJxlx4/tH64myoBAPxXcYQXAAAAXo2GFwAAAF6NhhcAAABejYYXAAAAXo2GFwAAAF6NhhcAAABejYYXAAAAXo2GFwAAAF6NhhcAAABejYYXAAAAXo2GFwAAAF7Nr7ALAABHjE047tLjh9YPd1MlAIB/C47wAgAAwKvR8AIAAMCr0fACAADAq9HwAgAAwKvR8AIAAMCrcZUGAP9prl71QeLKDwBwteMILwAAALwaDS8AAAC8Gg0vAAAAvBoNLwAAALwaDS8AAAC8Gg0vAAAAvBqXJQMAN3P1Umdc5gwA3IsjvAAAAPBqHOEFgKscR4wBwDUc4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBXo+EFAACAV6PhBQAAgFej4QUAAIBX8yvsAgAA/6yxCcddzjG0frgbKgGAfwZHeAEAAODVaHgBAADg1Wh4AQAA4NVoeAEAAODV+NAaAMBlrn4Qjg/BAfAkjvACAADAq3GEFwBw1eGIMQB3ouEFAHg9Gmjgv42GFwAAB/HlHcC/C+fwAgAAwKtxhBcAgKsAp10AnlPoR3gnTpyouLg4BQUFqWHDhvruu+/yHb9mzRo1bNhQQUFBqlixoiZPnpxjzLx581SzZk0FBgaqZs2a+uKLLzxVPgAAAK5yhdrwzp07VwMHDtRzzz2nhIQENW/eXB07dtShQ4dyHX/gwAHdfPPNat68uRISEvTss8/qiSee0Lx586xjNmzYoG7duql79+7atm2bunfvrq5du2rjxo3/1LQAAABwFSnUhnf8+PHq06eP+vbtqxo1amjChAkqV66cJk2alOv4yZMnq3z58powYYJq1Kihvn37qnfv3nrttdesYyZMmKB27dpp2LBhql69uoYNG6Y2bdpowoQJ/9CsAAAAcDUptHN409LStHnzZg0dOtQm3r59e61fvz7Xx2zYsEHt27e3iXXo0EEffvihLl26JH9/f23YsEGDBg3KMSa/hvfixYu6ePGi9feUlBRJ0okTJ5Seni5J8vHxkY+PjzIzM5WZmWkdmxXPyMiQMabAuK+vrywWizVvlgunUyVJFpNpEzcWn9zjPr6SMTbxkyd95evra63xYuqpy3dYLJfzmExZrqjFWCxSPvGTJ31tar9wOlWyWC4/p814n8vxzIx8az9xwse6DCT9XV8+c/q79tzjp0752ayPC6dT8p1TnrX/f/zKGi0WS84a81ofecRTUwNkjFFGRsbfcy5gTvmtp6z6pMuvsQtnThc4pxzxbOspJcVfkmxrzG+uBaynK2u0WCy6cOa0w6+9K2s/ccLHZnu6cp3Y+9q7Mp6S4m+da9Z8nXntXVn7lTXabHt5zMmm9lziqakBNvuIi6mnHH7tXTmnrHVisVjk6+urC6dTHX7tZY+npgbY7N+sNTq5j7jydZNrjSr4tWfP/tCR196Vtee5P3TgtZc9fuKEj/z8/Kz7iJz7bMf2Edn3h+56f8raZ1+53eQXv3JOf5dusVkfBcU9/Z7LnLxjTidPnpQkm1x5MoXk8OHDRpL5/vvvbeIvvfSSqVq1aq6PqVKlinnppZdsYt9//72RZI4cOWKMMcbf39/MmjXLZsysWbNMQEBAnrXEx8cbSdy4cePGjRs3btz+Zbc//vijwL6z0K/SYLFYbH43xuSIFTQ+e9zRnMOGDdPgwYOtv2dmZurEiRMKCwvL93H/pNTUVJUrV05//PGHihcvTr6rIOd/LZ8ncl7t+TyR87+WzxM5r/Z8nsj5X8vniZz/tXyeyOmJGl1hjNHp06cVHR1d4NhCa3jDw8Pl6+urpKQkm/jRo0cVGRmZ62OioqJyHe/n56ewsLB8x+SVU5ICAwMVGBhoEytRooS9U/lHFS9e3K0vsv9aPk/k/K/l80TOqz2fJ3L+1/J5IufVns8TOf9r+TyR87+WzxM5PVGjs0JDQ+0aV2gfWgsICFDDhg21fPlym/jy5cvVtGnTXB/TpEmTHOOXLVumRo0ayd/fP98xeeUEAACAdyvUUxoGDx6s7t27q1GjRmrSpImmTJmiQ4cOqV+/fpIun2pw+PBhzZgxQ5LUr18/vfPOOxo8eLAeeughbdiwQR9++KFmz55tzTlgwAC1aNFC48aNU5cuXbRw4UKtWLFC69atK5Q5AgAAoHAVasPbrVs3JScna/To0UpMTFStWrW0dOlSxcbGSpISExNtrskbFxenpUuXatCgQXr33XcVHR2tt956S3feead1TNOmTTVnzhwNHz5cI0aMUKVKlTR37lxdd911//j83CkwMFDx8fE5Tr0gX+Hl/K/l80TOqz2fJ3L+1/J5IufVns8TOf9r+TyR87+WzxM5PVHjP8VijD3XcgAAAAD+nQr9q4UBAAAAT6LhBQAAgFej4QUAAIBXo+EFAACAV6PhvcqtXbtWt956q6Kjo2WxWLRgwQKnc40ZM0aNGzdWsWLFVLp0ad1222365ZdfXKpv0qRJqlOnjvUi1E2aNNFXX33lUs4rjRkzRhaLRQMHDnTq8SNHjpTFYrG5RUVFuVzX4cOH9cADDygsLExFihRRvXr1tHnzZqdyVahQIUeNFotFjz76qFP50tPTNXz4cMXFxSk4OFgVK1bU6NGjbb7n3FGnT5/WwIEDFRsbq+DgYDVt2lQ//fST3Y8v6HVsjNHIkSMVHR2t4OBg3Xjjjdq1a5fT+ebPn68OHTooPDxcFotFW7dudbq+S5cuaciQIapdu7ZCQkIUHR2tHj166MiRIy7NeeTIkapevbpCQkJUsmRJtW3bVhs3bnQ635X+97//yWKxaMKECU7n69WrV47X5PXXX+9Sfbt371bnzp0VGhqqYsWK6frrr7e5Eo+jOXPbbiwWi1599VWn8p05c0aPPfaYYmJiFBwcrBo1amjSpElO1/fXX3+pV69eio6OVpEiRXTTTTdp7969eeazZx/tyLZiTz5HtpWC8jmzrdhToyPbiqPvcwVtK/bkc3RbsbdGe7cXe/I5sq3Yk8/RbeVqQMN7lTt79qzq1q2rd955x+Vca9as0aOPPqoffvhBy5cvV3p6utq3b6+zZ886nTMmJkZjx47Vpk2btGnTJrVu3VpdunTJt1mx108//aQpU6aoTp06LuW55pprlJiYaL3t2LHDpXwnT55Us2bN5O/vr6+++ko///yzXn/9dae/ne+nn36yqS/ri1Puvvtup/KNGzdOkydP1jvvvKPdu3frlVde0auvvqq3337bqXyS1LdvXy1fvlwzZ87Ujh071L59e7Vt21aHDx+26/EFvY5feeUVjR8/Xu+8845++uknRUVFqV27djp9+rRT+c6ePatmzZpp7NixLtd37tw5bdmyRSNGjNCWLVs0f/58/frrr+rcubPTOSWpatWqeuedd7Rjxw6tW7dOFSpUUPv27XXs2DGn8mVZsGCBNm7cWOBXbdqT76abbrJ5bS5dutTpfPv27dMNN9yg6tWra/Xq1dq2bZtGjBihoKAgp3NeWVtiYqKmTp0qi8Vic6lKR/INGjRIX3/9tT7++GPt3r1bgwYN0uOPP66FCxc6nM8Yo9tuu0379+/XwoULlZCQoNjYWLVt2zbPfa49+2hHthV78jmyrRSUz5ltxZ4aHdlWHHmfs2dbsTefI9uKPTkd2V7syefItmJPPke3lauCwb+GJPPFF1+4Ld/Ro0eNJLNmzRq35TTGmJIlS5oPPvjApRynT582VapUMcuXLzctW7Y0AwYMcCpPfHy8qVu3rku1ZDdkyBBzww03uDXnlQYMGGAqVapkMjMznXp8p06dTO/evW1id9xxh3nggQecynfu3Dnj6+trFi9ebBOvW7euee655xzOl/11nJmZaaKioszYsWOtsQsXLpjQ0FAzefJkh/Nd6cCBA0aSSUhIcLq+3Pz4449Gkvn999/dljMlJcVIMitWrHA6359//mnKli1rdu7caWJjY80bb7zhdH09e/Y0Xbp0sevx9uTr1q2b06/BvHJm16VLF9O6dWun811zzTVm9OjRNrEGDRqY4cOHO5zvl19+MZLMzp07rbH09HRTqlQp8/7779tVY/Z9tKvbSn77fGe2FXveQxzdVuzJ6ci2klc+Z7eV3PK5sq3kldOV7cWeZejItpJbPle2lcLCEd7/sJSUFElSqVKl3JIvIyNDc+bM0dmzZ9WkSROXcj366KPq1KmT2rZt63Jde/fuVXR0tOLi4nTPPfdo//79LuVbtGiRGjVqpLvvvlulS5dW/fr19f7777tcpySlpaXp448/Vu/evWWxWJzKccMNN2jlypX69ddfJUnbtm3TunXrdPPNNzuVLz09XRkZGTmOLAQHB7vlGwwPHDigpKQktW/f3hoLDAxUy5YttX79epfze0JKSoosFovTR/WzS0tL05QpUxQaGqq6des6lSMzM1Pdu3fX008/rWuuucYtda1evVqlS5dW1apV9dBDD+no0aNO17ZkyRJVrVpVHTp0UOnSpXXddde5dIpWdn/99ZeWLFmiPn36OJ3jhhtu0KJFi3T48GEZY7Rq1Sr9+uuv6tChg8O5Ll68KEk2242vr68CAgLs3m6y76Nd3Vbcvc+3J5+j20pBOR3dVnLL58q2kld9rmwr2XO6ur0UtAwd3VZyy+fObeUfU9gdN+wnNx7hzczMNLfeeqtbjlRu377dhISEGF9fXxMaGmqWLFniUr7Zs2ebWrVqmfPnzxtjjEtHeJcuXWo+//xzs337duvR4sjISHP8+HGn6wsMDDSBgYFm2LBhZsuWLWby5MkmKCjIfPTRR07nzDJ37lzj6+trDh8+7HSOzMxMM3ToUGOxWIyfn5+xWCzm5ZdfdqmuJk2amJYtW5rDhw+b9PR0M3PmTGOxWEzVqlUdzpX9dfz9998bSTnm/NBDD5n27ds7nO9KnjjCe/78edOwYUNz//33u5zzyy+/NCEhIcZisZjo6Gjz448/Op3v5ZdfNu3atbP+Z8DVI7xz5swxixcvNjt27DCLFi0ydevWNddcc425cOGCw/kSExONJFOkSBEzfvx4k5CQYMaMGWMsFotZvXq10zVeady4caZkyZLW/YYz+S5evGh69OhhJBk/Pz8TEBBgZsyY4VS+tLQ0Exsba+6++25z4sQJc/HiRTNmzBgjya7XdW77aFe2lYL2+Y5uK/a8hzi6reSX05ltJa98zm4reeVzZVvJLacr24s968WRbSWvfK5sK4WFhvdfxJ0Nb//+/U1sbKz5448/XM518eJFs3fvXvPTTz+ZoUOHmvDwcLNr1y6nch06dMiULl3abN261RpzpeHN7syZMyYyMtK8/vrrTufw9/c3TZo0sYk9/vjj5vrrr3e1PNO+fXtzyy23uJRj9uzZJiYmxsyePdts377dzJgxw5QqVcpMnz7d6Zy//fabadGihZFkfH19TePGjc39999vatSo4XCuvBreI0eO2Izr27ev6dChg8P5ruTuhjctLc106dLF1K9f36SkpLic88yZM2bv3r1mw4YNpnfv3qZChQrmr7/+cjjfpk2bTGRkpE0j5GrDm92RI0eMv7+/mTdvnsP5Dh8+bCSZe++912bcrbfeau655x631FitWjXz2GOP2ZUrr3yvvvqqqVq1qlm0aJHZtm2befvtt03RokXN8uXLncq3adMmU7duXet206FDB9OxY0fTsWPHAvPlto92ZVspaJ/v6LZSUD5ntpX8cjqzreSWz5Vtxd73TUe2ldxyurK92FOjI9tKXvlc2VYKCw3vv4i7Gt7HHnvMxMTEmP3797teVC7atGljHn74Yace+8UXX1jfHLJukozFYjG+vr4mPT3d5fratm1r+vXr5/Tjy5cvb/r06WMTmzhxoomOjnaproMHDxofHx+zYMECl/LExMSYd955xyb2wgsvmGrVqrmU15jLbzpZb7Zdu3Y1N998s8M5sr+O9+3bZySZLVu22Izr3Lmz6dGjh8P5ruTOhjctLc3cdtttpk6dOg7/h8Debbdy5cp2HY3Pnu+NN96wbiNXbjc+Pj4mNjbWrfVdef6ovfkuXrxo/Pz8zAsvvGAz7plnnjFNmzYtMF9BNa5du9ZIsvlD2dF8586dM/7+/jnOVe/Tp4/Lf3idOnXKHD161BhjzLXXXmv69++fb6689tHObiv27PMd2VYKyufMtuLo+1JB20pe+ZzdVpypr6BtJa+czm4v9tToyLaSVz5Xt5XCwjm8/yHGGD322GOaP3++vv32W8XFxXnsebLOX3NUmzZttGPHDm3dutV6a9Soke6//35t3bpVvr6+LtV28eJF7d69W2XKlHE6R7NmzXJcouXXX39VbGysS7VNmzZNpUuXVqdOnVzKc+7cOfn42G7avr6+Ll2WLEtISIjKlCmjkydP6ptvvlGXLl1czhkXF6eoqCjr1Smky+fprVmzRk2bNnU5vztcunRJXbt21d69e7VixQqFhYV55Hmc3Xa6d++u7du322w30dHRevrpp/XNN9+4pbbk5GT98ccfTm07AQEBaty4sUe2G0n68MMP1bBhQ6fPf5Yur+NLly55ZNsJDQ1VRESE9u7dq02bNuW53RS0j3Z0W3H3Pt+efI5uK87WmNe2UlA+R7cVZ+oraFspKKej24sjNdqzrRSUz5PbikcVSpsNu50+fdokJCSYhIQEI8l6Po+9n3i90iOPPGJCQ0PN6tWrTWJiovV27tw5p+sbNmyYWbt2rTlw4IDZvn27efbZZ42Pj49ZtmyZ0zmzc+WUhieffNKsXr3a7N+/3/zwww/mlltuMcWKFTMHDx50up4ff/zR+Pn5mZdeesns3bvXzJo1yxQpUsR8/PHHTufMyMgw5cuXN0OGDHE6R5aePXuasmXLmsWLF5sDBw6Y+fPnm/DwcPPMM884nfPrr782X331ldm/f79ZtmyZqVu3rrn22mtNWlqaXY8v6HU8duxYExoaaubPn2927Nhh7r33XlOmTBmTmprqVL7k5GSTkJBglixZYiSZOXPmmISEBJOYmOhwvkuXLpnOnTubmJgYs3XrVptt5+LFi07N+cyZM2bYsGFmw4YN5uDBg2bz5s2mT58+JjAw0OZT/Y7MObuC/k2bX77Tp0+bJ5980qxfv94cOHDArFq1yjRp0sSULVvW6XUyf/584+/vb6ZMmWL27t1r3n77bePr62u+++47p2rMkpKSYooUKWImTZqUZx5787Vs2dJcc801ZtWqVWb//v1m2rRpJigoyEycONGpfJ9++qlZtWqV2bdvn1mwYIGJjY01d9xxR5712bOPdmRbsSefI9tKQfmc2VYKyunotuLM+1x+20pB+ZzZVuyp0ZHtxd4527ut2JPP0W3lakDDe5VbtWqVkZTj1rNnT4dz5ZZHkpk2bZrT9fXu3dvExsaagIAAExERYdq0aePWZtcY1xrebt26mTJlyhh/f38THR1t7rjjDqfPL77Sl19+aWrVqmUCAwNN9erVzZQpU1zK98033xhJ5pdffnG5ttTUVDNgwABTvnx5ExQUZCpWrGiee+65fJuzgsydO9dUrFjRBAQEmKioKPPoo4+aU6dO2f34gl7HmZmZJj4+3kRFRZnAwEDTokULs2PHDqfzTZs2Ldf74+PjHc6X9a/e3G6rVq1yqsbz58+b22+/3URHR5uAgABTpkwZ07lz53w/iOPovqCghje/fOfOnTPt27c3ERERxt/f35QvX9707NnTHDp0yKX6PvzwQ1O5cmUTFBRk6tatW+DpO/bkfO+990xwcLBdr8eC8iUmJppevXqZ6OhoExQUZKpVq2Zef/31PC8RWFC+N99808TExFiX4fDhw/PdDu3ZRzuyrdiTz5FtpaB8zmwrBeV0dFtx5n0uv22loHzObCv21mjv9mJvPnu3FXvyObqtXA0sxhgjAAAAwEtxDi8AAAC8Gg0vAAAAvBoNLwAAALwaDS8AAAC8Gg0vAAAAvBoNLwAAALwaDS8AAAC8Gg0vAAAAvBoNLwBIuvHGGzVw4EC35Rs5cqTq1avntnySdPDgQVksFm3dutWteQHA29HwAvAqvXr1ksVikcVikb+/vypWrKinnnpKZ8+ezfdx8+fP1wsvvOC2Op566imtXLnSbfkc8dtvv+nBBx9UTEyMAgMDFRcXp3vvvVebNm0qlHquVu7+IwfA1YuGF4DXuemmm5SYmKj9+/frxRdf1MSJE/XUU0/lOvbSpUuSpFKlSqlYsWJuq6Fo0aIKCwtzWz57bdq0SQ0bNtSvv/6q9957Tz///LO++OILVa9eXU8++eQ/Xg8AXA1oeAF4ncDAQEVFRalcuXK67777dP/992vBggWS/j7VYOrUqapYsaICAwNljMlxtK9ChQp6+eWX1bt3bxUrVkzly5fXlClTbJ7nzz//1D333KNSpUopJCREjRo10saNG22eJ0uvXr102223adSoUSpdurSKFy+u//3vf0pLS7OO+frrr3XDDTeoRIkSCgsL0y233KJ9+/bZPW9jjHr16qUqVarou+++U6dOnVSpUiXVq1dP8fHxWrhwoXXsjh071Lp1awUHByssLEwPP/ywzpw5k6Pel19+WZGRkSpRooRGjRql9PR0Pf300ypVqpRiYmI0depU62OyTrmYM2eOmjZtqqCgIF1zzTVavXq1TZ1r1qzRtddeq8DAQJUpU0ZDhw5Venq69f4bb7xRTzzxhJ555hmVKlVKUVFRGjlypE2OlJQUPfzww9Zl2bp1a23bts16f9bynzlzpipUqKDQ0FDdc889On36tHV+a9as0Ztvvmn9j8DBgwftXtYA/l1oeAF4veDgYOuRXOnyv/w//fRTzZs3L9/zYV9//XU1atRICQkJ6t+/vx555BHt2bNHknTmzBm1bNlSR44c0aJFi7Rt2zY988wzyszMzDPfypUrtXv3bq1atUqzZ8/WF198oVGjRlnvP3v2rAYPHqyffvpJK1eulI+Pj26//fZ8c15p69at2rVrl5588kn5+OTcvZcoUUKSdO7cOd10000qWbKkfvrpJ3322WdasWKFHnvsMZvx3377rY4cOaK1a9dq/PjxGjlypG655RaVLFlSGzduVL9+/dSvXz/98ccfNo97+umn9eSTTyohIUFNmzZV586dlZycLEk6fPiwbr75ZjVu3Fjbtm3TpEmT9OGHH+rFF1+0yfHRRx8pJCREGzdu1CuvvKLRo0dr+fLlki439p06dVJSUpKWLl2qzZs3q0GDBmrTpo1OnDhhzbFv3z4tWLBAixcv1uLFi7VmzRqNHTtWkvTmm2+qSZMmeuihh5SYmKjExESVK1fOruUM4F/IAIAX6dmzp+nSpYv1940bN5qwsDDTtWtXY4wx8fHxxt/f3xw9etTmcS1btjQDBgyw/h4bG2seeOAB6++ZmZmmdOnSZtKkScYYY9577z1TrFgxk5ycnGsd8fHxpm7dujZ1lSpVypw9e9YamzRpkilatKjJyMjINcfRo0eNJLNjxw5jjDEHDhwwkkxCQkKu4+fOnWskmS1btuR6f5YpU6aYkiVLmjNnzlhjS5YsMT4+PiYpKclab2xsrE1t1apVM82bN7f+np6ebkJCQszs2bNt6hs7dqx1zKVLl0xMTIwZN26cMcaYZ5991lSrVs1kZmZax7z77rs2y6Fly5bmhhtusKm5cePGZsiQIcYYY1auXGmKFy9uLly4YDOmUqVK5r333jPGXF7+RYoUMampqdb7n376aXPddddZf8++zgF4L47wAvA6ixcvVtGiRRUUFKQmTZqoRYsWevvtt633x8bGKiIiosA8derUsf5ssVgUFRWlo0ePSrp8NLV+/foqVaqU3XXVrVtXRYoUsf7epEkTnTlzxnqEdN++fbrvvvtUsWJFFS9eXHFxcZKkQ4cO2ZXfGGOtNT+7d+9W3bp1FRISYo01a9ZMmZmZ+uWXX6yxa665xuZIcWRkpGrXrm393dfXV2FhYdZlcuW8svj5+alRo0bavXu39bmbNGliU2OzZs105swZ/fnnn9bYlcteksqUKWN9ns2bN+vMmTMKCwtT0aJFrbcDBw7YnAJSoUIFm/Oyr8wB4L/Fr7ALAAB3a9WqlSZNmiR/f39FR0fL39/f5v4rG738ZH+cxWKxnl4QHBzsnmL1d4N66623qly5cnr//fcVHR2tzMxM1apVy+Y83/xUrVpV0uWmMr9Lohlj8myKr4znNv/8lkl+svLm9ty5Ner5PU9mZqbKlCmT49xg6e/TNgrKAeC/hSO8ALxOSEiIKleurNjY2BxNj7vUqVNHW7dutTlntCDbtm3T+fPnrb//8MMPKlq0qGJiYpScnKzdu3dr+PDhatOmjWrUqKGTJ086VFO9evVUs2ZNvf7667k2dqdOnZIk1axZU1u3brW5VNv3338vHx8fa9Psih9++MH6c3p6ujZv3qzq1atbn3v9+vXWJleS1q9fr2LFiqls2bJ25W/QoIGSkpLk5+enypUr29zCw8PtrjMgIEAZGRl2jwfw70XDCwBOuPfeexUVFaXbbrtN33//vfbv36958+Zpw4YNeT4mLS1Nffr00c8//6yvvvpK8fHxeuyxx+Tj46OSJUsqLCxMU6ZM0W+//aZvv/1WgwcPdqgmi8WiadOm6ddff1WLFi20dOlS7d+/X9u3b9dLL72kLl26SJLuv/9+BQUFqWfPntq5c6dWrVqlxx9/XN27d1dkZKRLy0WS3n33XX3xxRfas2ePHn30UZ08eVK9e/eWJPXv319//PGHHn/8ce3Zs0cLFy5UfHy8Bg8enOsH7XLTtm1bNWnSRLfddpu++eYbHTx4UOvXr9fw4cMdutZwhQoVtHHjRh08eFDHjx/n6C/gxWh4AcAJAQEBWrZsmUqXLq2bb75ZtWvX1tixY+Xr65vnY9q0aaMqVaqoRYsW6tq1q2699Vbr5bZ8fHw0Z84cbd68WbVq1dKgQYP06quvOlzXtddeq02bNqlSpUp66KGHVKNGDXXu3Fm7du3ShAkTJElFihTRN998oxMnTqhx48a666671KZNG73zzjvOLIocxo4dq3Hjxqlu3br67rvvtHDhQuuR17Jly2rp0qX68ccfVbduXfXr1099+vTR8OHD7c5vsVi0dOlStWjRQr1791bVqlV1zz336ODBgw417E899ZR8fX1Vs2ZNRURE2H2uNIB/H4u58v9KAACP6NWrl06dOmW9HrA3OnjwoOLi4pSQkOD2r1UGAFdwhBcAAABejYYXAAAAXo1TGgAAAODVOMILAAAAr0bDCwAAAK9GwwsAAACvRsMLAAAAr0bDCwAAAK9GwwsAAACvRsMLAAAAr0bDCwAAAK/2f6mb1vjOdfuTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAIjCAYAAADhisjVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB010lEQVR4nO3dd1xT1/sH8M8l7K3soaC4F26Ku5UvOL7uuutAv7Z11IF1tVUcbd2zWls71Lptax0dWsXVKg4UtVoHKoqCC2UoCAg5vz/8cUtMgCwE08/79cpLOTl58pybm5snJyc3khBCgIiIiIjIRJmVdgJERERERCWJBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS9RMfz9/TF48ODSTqNIcXFxCA0NhZOTEyRJwvbt20s7JQCAJEmYPn16aafxylqzZg0kScKNGzd0vu3gwYPh7+9v9Jy0oW3egwcPhr29/ctJygA3btyAJElYs2ZNid3HyzjOlOY+QVTaWPCSTvJfyPIv1tbWqFatGkaNGoV79+6Vdnp6O3r0KKZPn47U1NTSTkUvgwYNwl9//YVPPvkE69atQ+PGjdX6LFq0CJIkYd++fYXG+eqrryBJEnbu3FmS6b5S8oudwi5z5swp7RSpGP7+/iqPmbu7O1q2bImffvqptFMr03766Se0b98erq6usLS0hLe3N3r16oX9+/eXdmqvvMzMTEyfPh0HDx4s7VT+NcxLOwF6Nc2cOROVKlVCVlYW/vzzT6xcuRK//vorzp8/D1tb29JOT2dHjx7FjBkzMHjwYDg7O6tcd/nyZZiZld33hk+fPkV0dDQ+/PBDjBo1qtB+ffr0wYQJE7Bx40aEhIRo7LNx40a4uLigffv2RsvN3Nw0DjN9+/ZFhw4d1NobNGhQCtkU76uvvoJSqSztNMqM+vXrY/z48QCApKQkfPnll+jevTtWrlyJd999t8jb+vn54enTp7CwsCix/MrScUYIgSFDhmDNmjVo0KABIiIi4OnpiTt37uCnn35C27ZtceTIETRr1qy0U31lZWZmYsaMGQCANm3alG4y/xKm8UpEL1379u3lWcT//e9/cHFxwaJFi7Bjxw707dtX420yMjJgZ2f3MtMsljY5WVlZvaRs9PPgwQMAUCvUX+Tt7Y3XX38d27Ztw8qVK9XGlZiYiMOHD+Ptt9826IVdqVQiJycH1tbWsLa21jtOWdOwYUO89dZbpZ2G1kqyOHsV+fj4qDx+AwcORJUqVbB48eJCC97c3FwolUpYWlqW+L5clo4zCxcuxJo1azB27Fj5k6F8H374IdatW2cyb2Tp36NsvJ2kV94bb7wBAIiPjwfwz9q8a9euoUOHDnBwcED//v0BPC8yx48fjwoVKsDKygrVq1fHggULIIRQiSlJEkaNGoUNGzagevXqsLa2RqNGjXD48GG1+4+NjUX79u3h6OgIe3t7tG3bFseOHVPpk78c49ChQxgxYgTc3d3h6+uL6dOnY8KECQCASpUqyR975q8/1LS27vr16+jZsyfKly8PW1tbvPbaa/jll19U+hw8eBCSJGHr1q345JNP4OvrC2tra7Rt2xZXr17VarsWN67p06fDz88PADBhwgRIklTkGr233noLaWlparkCwObNm6FUKuXHacGCBWjWrBlcXFxgY2ODRo0a4YcfflC7XcHHqXbt2rCyssLu3bvl6wqu4b158yZGjBiB6tWrw8bGBi4uLujZs6faWs/8x+rIkSOIiIiAm5sb7Ozs0K1bN7nAL+i3335D69at4eDgAEdHRzRp0gQbN25U6XP8+HG0a9cOTk5OsLW1RevWrXHkyJFCt5Wu9u/fDzMzM0ybNk2lfePGjZAkCStXrpTbdNm3X7Rjxw507NgR3t7esLKyQkBAAGbNmoW8vDyVfi+u18xfmrFgwQKsWrUKAQEBsLKyQpMmTXDy5Em1+7l06RLefPNNlC9fHtbW1mjcuLHGpS4XLlzAG2+8ARsbG/j6+uLjjz/WeWb5+vXrCAsLg52dHby9vTFz5kz5eCCEgL+/P7p06aJ2u6ysLDg5OeGdd97R6f4AwNPTEzVr1pSPWQW3z5IlS+Tt8/fff2tcw5t/jEtMTETXrl1hb28PNzc3vP/++2qPhVKpxNKlS1G3bl1YW1vDzc0N7dq1Q0xMjNznxeNM/nPg8OHDeOedd+Di4gJHR0cMHDgQKSkpKvG13Se08fTpU8yePRs1atTAggULVIrdfAMGDEDTpk3lv3U9Hs6YMQM+Pj5wcHDAm2++ibS0NGRnZ2Ps2LFwd3eHvb09wsPDkZ2drRKjpF4TdDnOtGzZEnZ2dnBwcEDHjh1x4cIFlT7a7Bc3btyAm5sbAGDGjBnya07+sfLu3bsIDw+Hr68vrKys4OXlhS5duui1lp/+wbdoZBTXrl0DALi4uMhtubm5CAsLQ4sWLbBgwQLY2tpCCIHOnTvjwIEDGDp0KOrXr489e/ZgwoQJSExMxOLFi1XiHjp0CFu2bMHo0aNhZWWFzz//HO3atcOJEydQp04dAM9fcFu2bAlHR0dMnDgRFhYW+PLLL9GmTRscOnQIQUFBKjFHjBgBNzc3TJs2DRkZGWjfvj2uXLmCTZs2YfHixXB1dQUA+YD0onv37qFZs2bIzMzE6NGj4eLigrVr16Jz58744Ycf0K1bN5X+c+bMgZmZGd5//32kpaVh3rx56N+/P44fP17kNtVmXN27d4ezszPGjRsnf+Re1JeAunfvjuHDh2Pjxo3o3r27ynUbN26En58fmjdvDgBYunQpOnfujP79+yMnJwebN29Gz5498fPPP6Njx44qt92/fz+2bt2KUaNGwdXVtdCi++TJkzh69Cj69OkDX19f3LhxAytXrkSbNm3w999/qy2Hee+991CuXDlERkbixo0bWLJkCUaNGoUtW7bIfdasWYMhQ4agdu3amDJlCpydnREbG4vdu3ejX79+cn7t27dHo0aNEBkZCTMzM6xevRpvvPEG/vjjD5UX78JkZmYiOTlZrd3Z2Rnm5uZ44403MGLECMyePRtdu3ZFw4YNcefOHbz33nsICQlRm0XUZt/WZM2aNbC3t0dERATs7e2xf/9+TJs2Denp6Zg/f36x49i4cSMeP36Md955B5IkYd68eejevTuuX78uzwpfuHABzZs3h4+PDyZPngw7Ozts3boVXbt2xY8//ijv43fv3sXrr7+O3Nxcud+qVatgY2NTbB758vLy0K5dO7z22muYN28edu/ejcjISOTm5mLmzJmQJAlvvfUW5s2bh0ePHqF8+fLybXft2oX09HS9Zt6fPXuGW7duqRyzAGD16tXIysrC22+/DSsrK5QvX77QAj4vLw9hYWEICgrCggULsG/fPixcuBABAQEYPny43G/o0KFYs2YN2rdvj//973/Izc3FH3/8gWPHjmlcb1/QqFGj4OzsjOnTp+Py5ctYuXIlbt68KReQgOH7REF//vknHj16hLFjx0KhUBTbX9fj4ezZs2FjY4PJkyfj6tWr+Oyzz2BhYQEzMzOkpKRg+vTpOHbsGNasWYNKlSqpvYEsidcEbY4z69atw6BBgxAWFoa5c+ciMzMTK1euRIsWLRAbG6tyzCtuv3Bzc8PKlSsxfPhwdOvWTT4W16tXDwDQo0cPXLhwAe+99x78/f1x//597N27FwkJCfzSoSEEkQ5Wr14tAIh9+/aJBw8eiFu3bonNmzcLFxcXYWNjI27fvi2EEGLQoEECgJg8ebLK7bdv3y4AiI8//lil/c033xSSJImrV6/KbQAEABETEyO33bx5U1hbW4tu3brJbV27dhWWlpbi2rVrcltSUpJwcHAQrVq1Usu9RYsWIjc3V+X+58+fLwCI+Ph4tTH7+fmJQYMGyX+PHTtWABB//PGH3Pb48WNRqVIl4e/vL/Ly8oQQQhw4cEAAEDVr1hTZ2dly36VLlwoA4q+//lLfwAVoO674+HgBQMyfP7/IePl69uwprK2tRVpamtx26dIlAUBMmTJFbsvMzFS5XU5OjqhTp4544403VNoBCDMzM3HhwgW1+wIgIiMjC40phBDR0dECgPjuu+/ktvzHKiQkRCiVSrl93LhxQqFQiNTUVCGEEKmpqcLBwUEEBQWJp0+fqsTNv51SqRRVq1YVYWFhKrEyMzNFpUqVxH/+8x/1jVRA/vYt7BIdHS33zcjIEFWqVBG1a9cWWVlZomPHjsLR0VHcvHlTbbtos2/nb4eC+6WmbfjOO+8IW1tbkZWVJbcNGjRI+Pn5qY3DxcVFPHr0SG7fsWOHACB27dolt7Vt21bUrVtXJZ5SqRTNmjUTVatWldvynwvHjx+X2+7fvy+cnJwKfT4VlH+ceO+991Tup2PHjsLS0lI8ePBACCHE5cuXBQCxcuVKldt37txZ+Pv7qzyumvj5+YnQ0FDx4MED8eDBA3H27FnRp08flfvO3z6Ojo7i/v37KrfPv2716tVquc+cOVOlb4MGDUSjRo3kv/fv3y8AiNGjR6vlVTDvF48z+Y99o0aNRE5Ojtw+b948AUDs2LFDbtN3n9Ak//j0008/Fdkvn67Hwzp16qiMp2/fvkKSJNG+fXuVuMHBwWq5ltRrQnHHmcePHwtnZ2cxbNgwlXzu3r0rnJycVNq13S8ePHigdnwUQoiUlBSdjuekPS5pIL2EhITAzc0NFSpUQJ8+fWBvb4+ffvoJPj4+Kv0KznIAwK+//gqFQoHRo0ertI8fPx5CCPz2228q7cHBwWjUqJH8d8WKFdGlSxfs2bMHeXl5yMvLw++//46uXbuicuXKcj8vLy/069cPf/75J9LT01ViDhs2TKuZi8L8+uuvaNq0KVq0aCG32dvb4+2338aNGzfw999/q/QPDw+HpaWl/HfLli0BPP8YsDD6jEtbb731FrKysrBt2za5Lf/j//zlDABUZulSUlKQlpaGli1b4vTp02oxW7dujVq1ahV73wVjPnv2DA8fPkSVKlXg7OysMe7bb7+t8pFqy5YtkZeXh5s3bwIA9u7di8ePH2Py5Mlqayzzb3fmzBnExcWhX79+ePjwIZKTk5GcnIyMjAy0bdsWhw8f1uoj+Lfffht79+5VuxQct62tLdasWYOLFy+iVatW+OWXX7B48WJUrFhRLV5x+3ZhCm7Dx48fIzk5GS1btkRmZiYuXbpU7Dh69+6NcuXKyX+/uD8+evQI+/fvR69eveT4ycnJePjwIcLCwhAXF4fExEQAz58Lr732msoMuZubm8p+pI2CX7bM/9g6JydHPqNItWrVEBQUhA0bNsj9Hj16hN9++w39+/fX+LH7i37//Xe4ubnBzc0NgYGB+P777zFgwADMnTtXpV+PHj0K/XRHkxdn7lu2bKny3P7xxx8hSRIiIyPVbqtN3i+uqR8+fDjMzc3x66+/ym2G7hMF5R9XHBwctOqv6/Fw4MCBKuMJCgqSvyRXUFBQEG7duoXc3FyV9pJ4TdDmOJOamoq+ffvKz4fk5GQoFAoEBQXhwIEDatuluP2iMDY2NrC0tMTBgwfVlq6QYbikgfSyYsUKVKtWDebm5vDw8ED16tXVvmFsbm4OX19flbabN2/C29tb7WBas2ZN+fqCqlatqnbf1apVQ2ZmprzGKjMzE9WrV1frV7NmTSiVSty6dQu1a9eW2ytVqqTDSNXdvHlT7SOxF8dQ8CPpF4ud/GKjqIPZgwcPdB6Xttq3b4/y5ctj48aN8prBTZs2ITAwUCXezz//jI8//hhnzpxRWUun6UVa222avz5w9erVSExMVFm3nZaWpta/uG2Xv5SmqCUAcXFxAJ6fuq0waWlpKkWgJlWrVi307BYFNW/eHMOHD8eKFSsQFham9kJeMN6LCu7bnp6eGm934cIFfPTRR9i/f7/aC7embfii4rbp1atXIYTA1KlTMXXqVI0x7t+/Dx8fn0KfC5r228KYmZmpFCbA8+0AQGXN4sCBAzFq1CjcvHkTfn5++P777/Hs2TMMGDBAq/sJCgrCxx9/DEmSYGtri5o1a2r8oqcux4f89bgFlStXTuW5fe3aNXh7e6ssxdDFi/uJvb09vLy8VLaNoftEQY6OjgCeF87aMPR46OTkBACoUKGCWrtSqURaWprKspOSeE0o7jmRfwzJ/67Ki/K3WT5t9ovCWFlZYe7cuRg/fjw8PDzw2muv4b///S8GDhxY6DGBtMOCl/TStGnTYteeWVlZlZnT7BSky/pCYyhsNlm88CW9l8XCwgK9evXCV199hXv37iEhIQFxcXGYN2+e3OePP/5A586d0apVK3z++efw8vKChYUFVq9erfZlMED7bfree+9h9erVGDt2LIKDg+UfyujTp4/GWVZjbLv8uPPnz0f9+vU19jHmjx9kZ2fL59a8du0aMjMzjXaqvtTUVLRu3RqOjo6YOXMmAgICYG1tjdOnT2PSpElazVQXt03zY7z//vsICwvT2LdKlSp6jkB/ffr0wbhx47BhwwZ88MEHWL9+PRo3bqx1ce3q6qrVGxZdjg+GfFJkLMbYJwqqUaMGAOCvv/5C165djZ5vYdusNI+T2j4n1q1bp7HofPGMFYbuF2PHjkWnTp2wfft27NmzB1OnTsXs2bOxf//+MnsaxFcBC156qfz8/LBv3z48fvxYZZY3/2O3/DMO5Mt/Z13QlStXYGtrK7+DtrW1xeXLl9X6Xbp0CWZmZmozB5po89FiwTEUdn/51xvKzc3NKOMqTP/+/fHFF19gy5YtiI+PhyRJKqeT+/HHH2FtbY09e/aonC5p9erVet8nAPzwww8YNGgQFi5cKLdlZWXp/YMfAQEBAIDz588XWoTl93F0dNSq4DFUZGQkLl68iAULFmDSpEmYPHkyli1bptZPm337RQcPHsTDhw+xbds2tGrVSm7PP9OAMeTPtlpYWBS7vfz8/DSOQ9N+WxilUonr16/Ls7rA8+0AQOULOuXLl0fHjh2xYcMG9O/fH0eOHMGSJUu0vp/SEhAQgD179qh94U5bcXFxeP311+W/nzx5gjt37sjnhDb2PtGiRQuUK1cOmzZtwgcffFBs8fYyjocFvazXhILyjyHu7u5GO4YU95oTEBCA8ePHY/z48YiLi0P9+vWxcOFCrF+/3ij3/29U9qbfyKR16NABeXl5WL58uUr74sWLIUmS2g8eREdHq6ztvHXrFnbs2IHQ0FAoFAooFAqEhoZix44dKh/x3bt3Dxs3bkSLFi3UPm7SJP9cvNoUXh06dMCJEycQHR0tt2VkZGDVqlXw9/fXai1rcYw1rsI0b94c/v7+WL9+PbZs2YLWrVurLD9RKBSQJEllLemNGzcM/slihUKhNmPz2Wef6XX6JAAIDQ2Fg4MDZs+ejaysLJXr8u+nUaNGCAgIwIIFC/DkyRO1GJpOP6Sv48ePY8GCBRg7dizGjx+PCRMmYPny5Th06JBa3+L2bU3y2wtuw5ycHHz++edGG4O7uzvatGmDL7/8Enfu3FG7vuD26tChA44dO4YTJ06oXF9wra02Ch4PhBBYvnw5LCws0LZtW5V+AwYMwN9//40JEyZAoVCgT58+Ot1PaejRoweEEPKPDBSkzezlqlWr8OzZM/nvlStXIjc3Vz5WGnufsLW1xaRJk3Dx4kVMmjRJY47r16+XH/OXcTws6GW9JhQUFhYGR0dHfPrppyqPRT59jiH5n/q8+JqTmZmpdiwLCAiAg4OD2mnaSDec4aWXqlOnTnj99dfx4Ycf4saNGwgMDMTvv/+OHTt2YOzYsfI76Xx16tRBWFiYyiloAKi8eHz88cfYu3cvWrRogREjRsDc3BxffvklsrOzVT6mL0r+lyA+/PBD9OnTBxYWFujUqZPGH6WYPHkyNm3ahPbt22P06NEoX7481q5di/j4ePz4449GW8ZhjHEVRpIk9OvXD59++imA57+cV1DHjh2xaNEitGvXDv369cP9+/exYsUKVKlSBefOndP7fv/73/9i3bp1cHJyQq1atRAdHY19+/apnRpKW46Ojli8eDH+97//oUmTJujXrx/KlSuHs2fPIjMzE2vXroWZmRm+/vprtG/fHrVr10Z4eDh8fHyQmJiIAwcOwNHREbt27Sr2vk6fPq1xdiUgIADBwcHIysrCoEGDULVqVXzyyScAnu+nu3btQnh4OP766y+V/UmbfftFzZo1Q7ly5TBo0CCMHj0akiRh3bp1Rv/Yd8WKFWjRogXq1q2LYcOGoXLlyrh37x6io6Nx+/ZtnD17FgAwceJErFu3Du3atcOYMWPk05L5+flpvZ9YW1tj9+7dGDRoEIKCgvDbb7/hl19+wQcffKA2092xY0e4uLjg+++/R/v27eHu7m7UcZeE119/HQMGDMCyZcsQFxeHdu3aQalU4o8//sDrr79e5K8jAs+L17Zt26JXr164fPkyPv/8c7Ro0QKdO3cGUDL7xIQJE3DhwgUsXLgQBw4cwJtvvglPT0/cvXsX27dvx4kTJ3D06FEAL+94mO9lvSYU5OjoiJUrV2LAgAFo2LAh+vTpAzc3NyQkJOCXX35B8+bN1SZximNjY4NatWphy5YtqFatGsqXL486deogNzdXfrxr1aoFc3Nz/PTTT7h3794r8QavTHvJZ4WgV1z+aVxOnjxZZL9BgwYJOzs7jdc9fvxYjBs3Tnh7ewsLCwtRtWpVMX/+fLVTCwEQI0eOFOvXrxdVq1YVVlZWokGDBuLAgQNqMU+fPi3CwsKEvb29sLW1Fa+//ro4evSoTrnPmjVL+Pj4CDMzM5VTKr14uiAhhLh27Zp48803hbOzs7C2thZNmzYVP//8s0qf/NPwfP/99yrtmk5xVBhtxqXracnyXbhwQQAQVlZWIiUlRe36b775Rt7uNWrUEKtXrxaRkZHixcNG/uOkCV447U5KSooIDw8Xrq6uwt7eXoSFhYlLly4VekqmFx+r/G364j6wc+dO0axZM2FjYyMcHR1F06ZNxaZNm1T6xMbGiu7duwsXFxdhZWUl/Pz8RK9evURUVFSR26m405Ll551/KqOCp+gSQoiYmBhhbm4uhg8frrbNitu3NZ2W7MiRI+K1114TNjY2wtvbW0ycOFHs2bNHbbsUdloyTfvJi4+TEM/38YEDBwpPT09hYWEhfHx8xH//+1/xww8/qPQ7d+6caN26tbC2thY+Pj5i1qxZ4ptvvtH6tGR2dnbi2rVrIjQ0VNja2goPDw8RGRkpn87qRSNGjBAAxMaNG4uMXZCfn5/o2LFjkX2K2j6FnZZM0zFO03MkNzdXzJ8/X9SoUUNYWloKNzc30b59e3Hq1CmVHDU9Bw4dOiTefvttUa5cOWFvby/69+8vHj58qBJf332iOD/88IMIDQ0V5cuXF+bm5sLLy0v07t1bHDx4UKWfIcfDwp7r+dsx/9R0Qry814TCjjMHDhwQYWFhwsnJSVhbW4uAgAAxePBgldOk6bJfHD16VDRq1EhYWlrKz8Hk5GQxcuRIUaNGDWFnZyecnJxEUFCQ2Lp1q1pM0o0kRCl9c4aoGJIkYeTIkTq/cyYq67hv62/cuHH45ptvcPfuXaN9GbAsWrNmDcLDw3Hy5MlivyD8b8HnDRmCa3iJiOiVkJWVhfXr16NHjx4mXewSkfFxDS8REZVp9+/fx759+/DDDz/g4cOHGDNmTGmnRESvGBa8RERUpv3999/o378/3N3dsWzZskLPp0xEVBiu4SUiIiIik8Y1vERERERk0ljwEhEREZFJ4xpeDZRKJZKSkuDg4KDTT84SERER0cshhMDjx4/h7e1d7I+csODVICkpSeff2iYiIiKil+/WrVvw9fUtsg8LXg0cHBwAPN+Auv7mNhERERGVvPT0dFSoUEGu24rCgleD/GUMjo6OLHiJiIiIyjBtlp/yS2tEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmzby0E6Dn5sQmG3T7yQ1cjZQJERERkWnhDC8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJKxMF74oVK+Dv7w9ra2sEBQXhxIkThfb96quv0LJlS5QrVw7lypVDSEiIWn8hBKZNmwYvLy/Y2NggJCQEcXFxJT0MIiIiIiqDSr3g3bJlCyIiIhAZGYnTp08jMDAQYWFhuH//vsb+Bw8eRN++fXHgwAFER0ejQoUKCA0NRWJiotxn3rx5WLZsGb744gscP34cdnZ2CAsLQ1ZW1ssaFhERERGVEZIQQpRmAkFBQWjSpAmWL18OAFAqlahQoQLee+89TJ48udjb5+XloVy5cli+fDkGDhwIIQS8vb0xfvx4vP/++wCAtLQ0eHh4YM2aNejTp0+xMdPT0+Hk5IS0tDQ4OjoaNkAtzYlNNuj2kxu4GikTIiIiorJPl3rN/CXlpFFOTg5OnTqFKVOmyG1mZmYICQlBdHS0VjEyMzPx7NkzlC9fHgAQHx+Pu3fvIiQkRO7j5OSEoKAgREdHayx4s7OzkZ2dLf+dnp4OAMjNzUVubq6cl5mZGZRKJZRKpUq+ZmZmyMvLQ8H3DoW1KxQKSJIkx5X9fx9JKFWbJTPN7WYKQAi5PTc3F5IkQaFQqOVYWHtJj0mhUAB4/qZEm3Zzc3MIIVTaOSaOiWPimDgmjolj4pg0tavVUkUo1YI3OTkZeXl58PDwUGn38PDApUuXtIoxadIkeHt7ywXu3bt35Rgvxsy/7kWzZ8/GjBkz1NpjY2NhZ2cHAHBzc0NAQADi4+Px4MEDuY+vry98fX1x5coVpKWlye2VK1eGu7s7zp8/j6dPn8rtNWrUgLOzM2JjY1UeQHNFBeSZmcMn+bJKDomu1aFQ5sLz0TW5TZiZIdG1BqyfZcA1NQEAEBNjCRsbGwQGBiI5ORnXr1+X+zs5OaFmzZpISkrC7du35faSHlO9evVgaWmJmJgYlTE1btwYOTk5OHfunNymUCjQpEkTpKWlqTz2HBPHxDFxTBwTx8QxcUyaxhQbGwttleqShqSkJPj4+ODo0aMIDg6W2ydOnIhDhw7h+PHjRd5+zpw5mDdvHg4ePIh69eoBAI4ePYrmzZsjKSkJXl5ect9evXpBkiRs2bJFLY6mGd4KFSrg4cOH8hR5Sb+LWXAuBYD+M7zjA11euXdmpvhuk2PimDgmjolj4pg4ppczppSUFLi4uJT9JQ2urq5QKBS4d++eSvu9e/fg6elZ5G0XLFiAOXPmYN++fXKxC0C+3b1791QK3nv37qF+/foaY1lZWcHKykqt3dzcHObmqpso/8F6Uf7G17b9xbiQJACAkDT319guSXJ7wXiF5ahru8Fj0qNdkiSN7RwTx1RUO8fEMXFMHFNR7RzTv2dMhSnVszRYWlqiUaNGiIqKktuUSiWioqJUZnxfNG/ePMyaNQu7d+9G48aNVa6rVKkSPD09VWKmp6fj+PHjRcYkIiIiItNUqjO8ABAREYFBgwahcePGaNq0KZYsWYKMjAyEh4cDAAYOHAgfHx/Mnj0bADB37lxMmzYNGzduhL+/v7wu197eHvb29pAkCWPHjsXHH3+MqlWrolKlSpg6dSq8vb3RtWvX0homEREREZWSUi94e/fujQcPHmDatGm4e/cu6tevj927d8tfOktISFCZJl+5ciVycnLw5ptvqsSJjIzE9OnTATxfA5yRkYG3334bqampaNGiBXbv3g1ra+uXNi4iIiIiKhtK/Ty8ZRHPw0tERERUtulSr5X6L60REREREZUkFrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSTPXplP37t21Drht2za9kyEiIiIiMjatZnidnJzki6OjI6KiohATEyNff+rUKURFRcHJyanEEiUiIiIi0odWM7yrV6+W/z9p0iT06tULX3zxBRQKBQAgLy8PI0aMgKOjY8lkSURERESkJ53X8H777bd4//335WIXABQKBSIiIvDtt98aNTkiIiIiIkPpXPDm5ubi0qVLau2XLl2CUqk0SlJERERERMai1ZKGgsLDwzF06FBcu3YNTZs2BQAcP34cc+bMQXh4uNETJCIiIiIyhM4F74IFC+Dp6YmFCxfizp07AAAvLy9MmDAB48ePN3qCRERERESG0LngNTMzw8SJEzFx4kSkp6cDAL+sRkRERERlll4/PJGbm4t9+/Zh06ZNkCQJAJCUlIQnT54YNTkiIiIiIkPpPMN78+ZNtGvXDgkJCcjOzsZ//vMfODg4YO7cucjOzsYXX3xREnkSEREREelF5xneMWPGoHHjxkhJSYGNjY3c3q1bN0RFRRk1OSIiIiIiQ+k8w/vHH3/g6NGjsLS0VGn39/dHYmKi0RIjIiIiIjIGnWd4lUol8vLy1Npv374NBwcHoyRFRERERGQsOhe8oaGhWLJkify3JEl48uQJIiMj0aFDB2PmRkRERERkMJ2XNCxcuBBhYWGoVasWsrKy0K9fP8TFxcHV1RWbNm0qiRyJiIiIiPSmc8Hr6+uLs2fPYvPmzTh37hyePHmCoUOHon///ipfYiMiIiIiKgt0LngBwNzcHG+99ZaxcyEiIiIiMjq9Ct64uDgcOHAA9+/fh1KpVLlu2rRpRkmMiIiIiMgYdC54v/rqKwwfPhyurq7w9PSUf2kNeP4FNha8RERERFSW6Fzwfvzxx/jkk08wadKkksiHiIiIiMiodD4tWUpKCnr27FkSuRARERERGZ3OBW/Pnj3x+++/l0QuRERERERGp/OShipVqmDq1Kk4duwY6tatCwsLC5XrR48ebbTkiIiIiIgMJQkhhC43qFSpUuHBJAnXr183OKnSlp6eDicnJ6SlpcHR0fGl3Oec2GSDbj+5gauRMiEiIiIq+3Sp13Se4Y2Pj9c7MSIiIiKil03nNbxERERERK8SrWZ4IyIiMGvWLNjZ2SEiIqLIvosWLTJKYkRERERExqBVwRsbG4tnz57J/y9MwR+hICIiIiIqC7QqeA8cOKDx/0REREREZR3X8BIRERGRSdP5LA0AEBMTg61btyIhIQE5OTkq123bts0oiRERERERGYPOM7ybN29Gs2bNcPHiRfz000949uwZLly4gP3798PJyakkciQiIiIi0pvOBe+nn36KxYsXY9euXbC0tMTSpUtx6dIl9OrVCxUrViyJHImIiIiI9KZzwXvt2jV07NgRAGBpaYmMjAxIkoRx48Zh1apVRk+QiIiIiMgQOhe85cqVw+PHjwEAPj4+OH/+PAAgNTUVmZmZxs2OiIiIiMhAOn9prVWrVti7dy/q1q2Lnj17YsyYMdi/fz/27t2Ltm3blkSORERERER607ngXb58ObKysgAAH374ISwsLHD06FH06NEDH330kdETJCIiIiIyhM4Fb/ny5eX/m5mZYfLkyUZNiIiIiIjImLQqeNPT07UO6OjoqHcyRERERETGplXB6+zsDEmSiuwjhIAkScjLyzNKYkRERERExqBVwXvgwIGSzoOIiIiIqERoVfC2bt26pPMgIiIiIioROn9pDQBSUlLwzTff4OLFiwCAWrVqITw8XOULbUREREREZYHOPzxx+PBh+Pv7Y9myZUhJSUFKSgqWLVuGSpUq4fDhwyWRIxERERGR3nSe4R05ciR69+6NlStXQqFQAADy8vIwYsQIjBw5En/99ZfRkyQiIiIi0pfOM7xXr17F+PHj5WIXABQKBSIiInD16lWjJkdEREREZCidC96GDRvKa3cLunjxIgIDA42SFBERERGRsei8pGH06NEYM2YMrl69itdeew0AcOzYMaxYsQJz5szBuXPn5L716tUzXqZERERERHqQhBBClxuYmRU9KSxJ0iv/IxTp6elwcnJCWlraS/vluDmxyQbdfnIDVyNlQkRERFT26VKv6TzDGx8fr3diREREREQvm84Fr5+fX6HX5c/sEhERERGVFTp/aW3w4MHIyMhQa79x4wZatWpllKSIiIiIiIxF54L37NmzqFevHqKjo+W2tWvXIjAwEK6uXEdKRERERGWLzksaTpw4gQ8++ABt2rTB+PHjcfXqVfz2229YtGgRhg0bVhI5EhERERHpTeeC18LCAvPnz4etrS1mzZoFc3NzHDp0CMHBwSWRHxERERGRQXRe0vDs2TOMHz8ec+fOxZQpUxAcHIzu3bvj119/LYn8iIiIiIgMonPB27hxY+zcuRMHDx7EJ598goMHD2Ls2LHo3r07RowYoXMCK1asgL+/P6ytrREUFIQTJ04U2vfChQvo0aMH/P39IUkSlixZotZn+vTpkCRJ5VKjRg2d8yIiIiIi06BXwXvmzBn5V9YkScKkSZMQHR2Nw4cP6xRry5YtiIiIQGRkJE6fPo3AwECEhYXh/v37GvtnZmaicuXKmDNnDjw9PQuNW7t2bdy5c0e+/PnnnzrlRURERESmQ+eC95tvvoGdnZ1ae4MGDXDq1CmdYuV/0S08PBy1atXCF198AVtbW3z77bca+zdp0gTz589Hnz59YGVlVWhcc3NzeHp6yheePYKIiIjo30vrL61t3boVXbt2haWlJQDg9u3b8Pb2ln9qODMzE8uXL8fEiRO1ipeTk4NTp05hypQpcpuZmRlCQkJUTnmmj7i4OHh7e8Pa2hrBwcGYPXs2KlasWGj/7OxsZGdny3+np6cDAHJzc5GbmyvnZmZmBqVSCaVSqZKzmZkZ8vLyUPBXmgtrVygUkCRJjiv7/z6SUKo2S2aa280UgBBye25uLiRJgkKhUMuxsPaSHpNCoQAAtZ+YLqzd3NwcQgiVdo6JY+KYOCaOiWPimDgmTe1qtVQRtC54+/btizt37sDd3R0AUKtWLZw5cwaVK1cGADx+/BhTpkzRuuBNTk5GXl4ePDw8VNo9PDxw6dIlbdNSExQUhDVr1qB69eq4c+cOZsyYgZYtW+L8+fNwcHDQeJvZs2djxowZau2xsbHybLabmxsCAgIQHx+PBw8eyH18fX3h6+uLK1euIC0tTW6vXLky3N3dcf78eTx9+lRur1GjBpydnREbG6vyAJorKiDPzBw+yZdVckh0rQ6FMheej67JbcLMDImuNWD9LAOuqQkAgJgYS9jY2CAwMBDJycm4fv263N/JyQk1a9ZEUlISbt++LbeX9Jjq1asHS0tLxMTEqIypcePGyMnJwblz5+Q2hUKBJk2aIC0tTeXx55g4Jo6JY+KYOCaOiWPSNKbY2FhoSxIFS+wimJmZ4e7du3LB6+DggLNnz8oF77179+Dt7a1WhRcmKSkJPj4+OHr0qMopzSZOnIhDhw7h+PHjRd7e398fY8eOxdixY4vsl5qaCj8/PyxatAhDhw7V2EfTDG+FChXw8OFDODo6Aij5dzELzqUA0H+Gd3ygyyv3zswU321yTBwTx8QxcUwcE8f0csaUkpICFxcXpKWlyfVaYXQ+D6+xuLq6QqFQ4N69eyrt9+7dK/ILabpydnZGtWrVcPXq1UL7WFlZaVwTbG5uDnNz1U2U/2C9KH/ja9v+YlxIEgBASJr7a2yXJLm9YLzCctS13eAx6dEuSZLGdo6JYyqqnWPimDgmjqmodo7p3zOmwuj8pTVjsbS0RKNGjRAVFSW3KZVKREVFGfVHLJ48eYJr167By8vLaDGJiIiI6NWh0wzvnj174OTkBOCf4vT8+fMAni8d0FVERAQGDRqExo0bo2nTpliyZAkyMjIQHh4OABg4cCB8fHwwe/ZsAM+/6Pb333/L/09MTMSZM2dgb2+PKlWqAADef/99dOrUCX5+fkhKSkJkZCQUCgX69u2rc35ERERE9OrTqeAdNGiQyt/vvPOOyt/S/38sr63evXvjwYMHmDZtGu7evYv69etj9+7d8hfZEhISVKbIk5KS0KBBA/nvBQsWYMGCBWjdujUOHjwI4PnZI/r27YuHDx/Czc0NLVq0wLFjx+Dm5qZTbkRERERkGrT+0tq/SXp6OpycnLRaBG0sc2KTDbr95AY81zARERH9e+hSr5XaGl4iIiIiopeBBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCZNr4I3NTUVX3/9NaZMmYJHjx4BAE6fPo3ExESjJkdEREREZCidf1r43LlzCAkJgZOTE27cuIFhw4ahfPny2LZtGxISEvDdd9+VRJ5ERERERHrReYY3IiICgwcPRlxcHKytreX2Dh064PDhw0ZNjoiIiIjIUDoXvCdPnlT7hTUA8PHxwd27d42SFBERERGRsehc8FpZWSE9PV2t/cqVK/z5XiIiIiIqc3QueDt37oyZM2fi2bNnAABJkpCQkIBJkyahR48eRk+QiIiIiMgQOhe8CxcuxJMnT+Du7o6nT5+idevWqFKlChwcHPDJJ5+URI5ERERERHrT+SwNTk5O2Lt3L44cOYKzZ8/iyZMnaNiwIUJCQkoiPyIiIiIig+hc8OZr3rw5mjdvbsxciIiIiIiMTuclDaNHj8ayZcvU2pcvX46xY8caIyciIiIiIqPRueD98ccfNc7sNmvWDD/88INRkiIiIiIiMhadC96HDx/CyclJrd3R0RHJyclGSYqIiIiIyFh0LnirVKmC3bt3q7X/9ttvqFy5slGSIiIiIiIyFp2/tBYREYFRo0bhwYMHeOONNwAAUVFRWLhwIZYsWWLs/IiIiIiIDKJzwTtkyBBkZ2fjk08+waxZswAA/v7+WLlyJQYOHGj0BImIiIiIDKHXacmGDx+O4cOH48GDB7CxsYG9vb2x8yIiIiIiMgq9z8MLAG5ubsbKg4iIiIioROj8pbV79+5hwIAB8Pb2hrm5ORQKhcqFiIiIiKgs0XmGd/DgwUhISMDUqVPh5eUFSZJKIi8iIiIiIqPQueD9888/8ccff6B+/folkA4RERERkXHpvKShQoUKEEKURC5EREREREanc8G7ZMkSTJ48GTdu3CiBdIiIiIiIjEvnJQ29e/dGZmYmAgICYGtrCwsLC5XrHz16ZLTkiIiIiIgMpXPBy19TIyIiIqJXic4F76BBg0oiDyIiIiKiEmHQD09kZWUhJydHpc3R0dGghIiIiIiIjEnnL61lZGRg1KhRcHd3h52dHcqVK6dyISIiIiIqS3QueCdOnIj9+/dj5cqVsLKywtdff40ZM2bA29sb3333XUnkSERERESkN52XNOzatQvfffcd2rRpg/DwcLRs2RJVqlSBn58fNmzYgP79+5dEnkREREREetF5hvfRo0eoXLkygOfrdfNPQ9aiRQscPnzYuNkRERERERlI54K3cuXKiI+PBwDUqFEDW7duBfB85tfZ2dmoyRERERERGUrngjc8PBxnz54FAEyePBkrVqyAtbU1xo0bhwkTJhg9QSIiIiIiQ+i8hnfcuHHy/0NCQnDp0iWcOnUKVapUQb169YyaHBERERGRoQw6Dy8A+Pn5wc/Pzxi5EBEREREZnVYF77Jly/D222/D2toay5YtK7Lv6NGjjZIYGWZObLLBMSY3cDVCJkRERESlS6uCd/Hixejfvz+sra2xePHiQvtJksSCl4iIiIjKFK0K3vyzMrz4fyIiIiKisk6nszQ8e/YMAQEBuHjxYknlQ0RERERkVDoVvBYWFsjKyiqpXIiIiIiIjE7n8/COHDkSc+fORW5ubknkQ0RERERkVDqfluzkyZOIiorC77//jrp168LOzk7l+m3bthktOSIiIiIiQ+lc8Do7O6NHjx4lkQsRERERkdHpXPCuXr26JPIgIiIiIioROq/hJSIiIiJ6lej108I//PADtm7dioSEBOTk5Khcd/r0aaMkRkRERERkDDrP8C5btgzh4eHw8PBAbGwsmjZtChcXF1y/fh3t27cviRyJiIiIiPSmc8H7+eefY9WqVfjss89gaWmJiRMnYu/evRg9ejTS0tJKIkciIiIiIr3pXPAmJCSgWbNmAAAbGxs8fvwYADBgwABs2rTJuNkRERERERlI54LX09MTjx49AgBUrFgRx44dAwDEx8dDCGHc7IiIiIiIDKRzwfvGG29g586dAIDw8HCMGzcO//nPf9C7d29069bN6AkSERERERlC67M0/Pzzz+jQoQNWrVoFpVIJ4PnPDLu4uODo0aPo3Lkz3nnnnRJLlIiIiIhIH1oXvF27doWHhwcGDx6MIUOGICAgAADQp08f9OnTp8QSJCIiIiIyhNZLGuLj4/HOO+9g8+bNqFatGlq3bo1169bh6dOnJZkfEREREZFBtC54K1SogGnTpuHatWvYt28f/P39MXz4cHh5eeHdd9/FyZMnSzJPIiIiIiK96PXTwq+//jrWrl2LO3fuYP78+fjrr7/w2muvITAw0Nj5EREREREZRK+fFs7n4OCAtm3b4ubNm7h06RL+/vtvY+VFRERERGQUes3wPn36FN999x3atGmDqlWrYvPmzYiIiMCNGzeMnB4RERERkWF0muE9duwYvv32W2zduhU5OTno3r079u3bh9dff72k8iMiIiIiMojWBW+tWrVw+fJlNGjQALNnz0a/fv3g5ORUkrkRERERERlM64I3JCQEmzZt4hfTiIiIiOiVonXBu2zZspLMg4iIiIioROj1pTUiIiIiolcFC14iIiIiMmkGnYeX/l3mxCYbdPvJDVyNlAkRERGR9rSa4S1fvjySk58XO0OGDMHjx49LNCkiIiIiImPRquDNyclBeno6AGDt2rXIysoq0aSIiIiIiIxFqyUNwcHB6Nq1Kxo1agQhBEaPHg0bGxuNfb/99lujJkhEREREZAitCt7169dj8eLFuHbtGiRJQlpaGmd5iYiIiOiVoFXB6+HhgTlz5gAAKlWqhHXr1sHFxaVEEyMiIiIiMgadz9IQHx9fEnkQEREREZUIvc7De+jQIXTq1AlVqlRBlSpV0LlzZ/zxxx/Gzo2IiIiIyGA6F7zr169HSEgIbG1tMXr0aPkLbG3btsXGjRtLIkciIiIiIr3pvKThk08+wbx58zBu3Di5bfTo0Vi0aBFmzZqFfv36GTVBIiIiIiJD6DzDe/36dXTq1EmtvXPnzlzfS0RERERljs4Fb4UKFRAVFaXWvm/fPlSoUMEoSRERERERGYvOSxrGjx+P0aNH48yZM2jWrBkA4MiRI1izZg2WLl1q9ASJiIiIiAyhc8E7fPhweHp6YuHChdi6dSsAoGbNmtiyZQu6dOli9ASJiIiIiAyhc8ELAN26dUO3bt2MnQsRERERkdHpdR5eY1qxYgX8/f1hbW2NoKAgnDhxotC+Fy5cQI8ePeDv7w9JkrBkyRKDYxIRERGRaSvVgnfLli2IiIhAZGQkTp8+jcDAQISFheH+/fsa+2dmZqJy5cqYM2cOPD09jRKTiIiIiExbqRa8ixYtwrBhwxAeHo5atWrhiy++gK2tLb799luN/Zs0aYL58+ejT58+sLKyMkpMIiIiIjJteq3hNYacnBycOnUKU6ZMkdvMzMwQEhKC6OjolxozOzsb2dnZ8t/p6ekAgNzcXOTm5spxzMzMoFQqoVQqVeKbmZkhLy8PQohi2xUKBSRJkuPK/r+PJJSqzZKZ5nYzBSCE3J6bmwtJkqBQKKBUKiEp8/7pLEnP4wglpAK5CEkCimh/MXcIAUjS8/tU6W/2vL3gfWrIPX/MCoUCAJCXp9rf3NwcQgiV9oJjKrjdC2sv6cepsNw5Jo6JY+KYOCaOiWN6uWNSq6WKUGoFb3JyMvLy8uDh4aHS7uHhgUuXLr3UmLNnz8aMGTPU2mNjY2FnZwcAcHNzQ0BAAOLj4/HgwQO5j6+vL3x9fXHlyhWkpaXJ7ZUrV4a7uzvOnz+Pp0+fyu01atSAs7MzYmNjVR5Ac0UF5JmZwyf5skoOia7VoVDmwvPRNblNmJkh0bUGrJ9lwDU1AQAQE2MJGxsbBAYGIjk5WSVOlqUdkp394Jj5EI4Z/+SeYeOMFAdvlHtyF3ZPU+X2dDs3pNu5qY3JTumCDJty8EiJh3nuP28Qkp0rIsvSHt6P4iAV2OHvlg9QGVNMjCUAoHHjxsjJycG5c+fkvgqFAk2aNEFaWprKY1VwTNevX5fbnZycULNmTSQlJeH27dtye0k/TvXq1YOlpSViYmJUHieOiWPimDgmjolj4phe7phiY2OhLUmoTOEVLy8vD2vWrEFUVBTu37+vUtEDwP79+7WKk5SUBB8fHxw9ehTBwcFy+8SJE3Ho0CEcP368yNv7+/tj7NixGDt2rMExNc3wVqhQAQ8fPoSjoyOAkn8Xs+BcCgD9Z3jHB7qovAObH/vPjqfvDO+EeuVUcl9wLsWgGd7xgS7yNgBM890mx8QxcUwcE8fEMXFML2dMKSkpcHFxQVpamlyvFUbnGd4xY8ZgzZo16NixI+rUqQNJknQNAQBwdXWFQqHAvXv3VNrv3btX6BfSSiqmlZWVxjXB5ubmMDdX3UT5D9aL8je+tu0vxsX/b0chae6vsV2S5PaC8czMzJ4XxGr9zSA0PVyFtKvlLudoBmjor/E+C+T+4pjVtgGeP6k0tRe23XVtN/hx0qOdY+KYAI6psBx1beeYOCaAYyosR13bTXFMhdG54N28eTO2bt2KDh066HpTFZaWlmjUqBGioqLQtWtXAIBSqURUVBRGjRpVZmISERER0atN54LX0tISVapUMcqdR0REYNCgQWjcuDGaNm2KJUuWICMjA+Hh4QCAgQMHwsfHB7Nnzwbw/Etpf//9t/z/xMREnDlzBvb29nJOxcUkIiIion8XnQve8ePHY+nSpVi+fLneyxny9e7dGw8ePMC0adNw9+5d1K9fH7t375a/dJaQkKAyRZ6UlIQGDRrIfy9YsAALFixA69atcfDgQa1iEhEREdG/i85fWuvWrRsOHDiA8uXLo3bt2rCwsFC5ftu2bUZNsDSkp6fDyclJq0XQxjInNtmg209u4GrUeCUR88V4RERERPrSpV7TeYbX2dkZ3bp10zs5IiIiIqKXSeeCd/Xq1SWRBxERERFRidD7hycePHiAy5ef/6BA9erV4ebmZrSkiIiIiIiMRf2kacXIyMjAkCFD4OXlhVatWqFVq1bw9vbG0KFDkZmZWRI5EhERERHpTeeCNyIiAocOHcKuXbuQmpqK1NRU7NixA4cOHcL48eNLIkciIiIiIr3pvKThxx9/xA8//IA2bdrIbR06dICNjQ169eqFlStXGjM/IiIiIiKD6DzDm5mZqfGctu7u7lzSQERERERljs4Fb3BwMCIjI5GVlSW3PX36FDNmzEBwcLBRkyMiIiIiMpTOSxqWLl2KsLAw+Pr6IjAwEABw9uxZWFtbY8+ePUZPkIiIiIjIEDoXvHXq1EFcXBw2bNiAS5cuAQD69u2L/v37w8bGxugJEhEREREZQq/z8Nra2mLYsGHGzoWIiIiIyOi0Knh37tyJ9u3bw8LCAjt37iyyb+fOnY2SGBERERGRMWhV8Hbt2hV3796Fu7s7unbtWmg/SZKQl5dnrNyIiIiIiAymVcGrVCo1/p+IiIiIqKzT+bRk3333HbKzs9Xac3Jy8N133xklKSIiIiIiY9G54A0PD0daWppa++PHjxEeHm6UpIiIiIiIjEXnszQIISBJklr77du34eTkZJSk6N9hTmyyQbef3MDVSJkQERGRKdO64G3QoAEkSYIkSWjbti3Mzf+5aV5eHuLj49GuXbsSSZKIiIiISF9aF7z5Z2c4c+YMwsLCYG9vL19naWkJf39/9OjRw+gJEhEREREZQuuCNzIyEnl5efD390doaCi8vLxKMi8iIiIiIqPQ6UtrCoUC77zzDrKyskoqHyIiIiIio9L5LA116tTB9evXSyIXIiIiIiKj07ng/fjjj/H+++/j559/xp07d5Cenq5yISIiIiIqS3Q+LVmHDh0AAJ07d1Y5PVn+6cr408JEREREVJboXPAeOHCgJPIgIiIiIioROhe8rVu3Lok8iIiIiIhKhM4FLwCkpqbim2++wcWLFwEAtWvXxpAhQ/hLa0RERERU5uj8pbWYmBgEBARg8eLFePToER49eoRFixYhICAAp0+fLokciYiIiIj0pvMM77hx49C5c2d89dVX8s8L5+bm4n//+x/Gjh2Lw4cPGz1JIiIiIiJ96VzwxsTEqBS7AGBubo6JEyeicePGRk2OiIiIiMhQOi9pcHR0REJCglr7rVu34ODgYJSkiIiIiIiMReeCt3fv3hg6dCi2bNmCW7du4datW9i8eTP+97//oW/fviWRIxERERGR3nRe0rBgwQJIkoSBAwciNzcXAGBhYYHhw4djzpw5Rk+QiIiIiMgQOhe8lpaWWLp0KWbPno1r164BAAICAmBra2v05IiIiIiIDKXXeXgBwNbWFs7OzvL/iUrbnNhkg2NMbuBqhEyIiIioLNF5DW9ubi6mTp0KJycn+Pv7w9/fH05OTvjoo4/w7NmzksiRiIiIiEhvOs/wvvfee9i2bRvmzZuH4OBgAEB0dDSmT5+Ohw8fYuXKlUZPkoiIiIhIXzoXvBs3bsTmzZvRvn17ua1evXqoUKEC+vbty4KXiIiIiMoUnZc0WFlZwd/fX629UqVKsLS0NEZORERERERGo3PBO2rUKMyaNQvZ2dlyW3Z2Nj755BOMGjXKqMkRERERERlK5yUNsbGxiIqKgq+vLwIDAwEAZ8+eRU5ODtq2bYvu3bvLfbdt22a8TImIiIiI9KBzwevs7IwePXqotFWoUMFoCRERERERGZPOBe/q1atLIg8iIiIiohKh9w9PPHjwAJcvXwYAVK9eHW5ubkZLioiIiIjIWHT+0lpGRgaGDBkCLy8vtGrVCq1atYK3tzeGDh2KzMzMksiRiIiIiEhvOhe8EREROHToEHbt2oXU1FSkpqZix44dOHToEMaPH18SORIRERER6U3nJQ0//vgjfvjhB7Rp00Zu69ChA2xsbNCrVy/+8AQRERERlSk6z/BmZmbCw8NDrd3d3Z1LGoiIiIiozNG54A0ODkZkZCSysrLktqdPn2LGjBkIDg42anJERERERIbSeUnDkiVL0K5dO7UfnrC2tsaePXuMniARERERkSF0Lnjr1q2LuLg4bNiwAZcuXQIA9O3bF/3794eNjY3REyQiIiIiMoROBe+zZ89Qo0YN/Pzzzxg2bFhJ5UREREREZDQ6reG1sLBQWbtLRERERFTW6fyltZEjR2Lu3LnIzc0tiXyIiIiIiIxK5zW8J0+eRFRUFH7//XfUrVsXdnZ2Ktdv27bNaMkRERERERlK54LX2dkZPXr0KIlciIiIiIiMTueCd/Xq1SWRBxERERFRidB6Da9SqcTcuXPRvHlzNGnSBJMnT8bTp09LMjciIiIiIoNpXfB+8skn+OCDD2Bvbw8fHx8sXboUI0eOLMnciIiIiIgMpnXB+9133+Hzzz/Hnj17sH37duzatQsbNmyAUqksyfyIiIiIiAyidcGbkJCADh06yH+HhIRAkiQkJSWVSGJERERERMagdcGbm5sLa2trlTYLCws8e/bM6EkRERERERmL1mdpEEJg8ODBsLKyktuysrLw7rvvqpyLl+fhJVMyJzbZoNtPbuBqpEyIiIhIX1oXvIMGDVJre+utt4yaDJGpYwFNRET08mld8PL8u0RERET0KtJ6DS8RERER0auIBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0sxLOwEi0t+c2GSDbj+5gauRMiEiIiq7OMNLRERERCaNBS8RERERmbQyUfCuWLEC/v7+sLa2RlBQEE6cOFFk/++//x41atSAtbU16tati19//VXl+sGDB0OSJJVLu3btSnIIRERERFRGlXrBu2XLFkRERCAyMhKnT59GYGAgwsLCcP/+fY39jx49ir59+2Lo0KGIjY1F165d0bVrV5w/f16lX7t27XDnzh35smnTppcxHCIiIiIqY0q94F20aBGGDRuG8PBw1KpVC1988QVsbW3x7bffauy/dOlStGvXDhMmTEDNmjUxa9YsNGzYEMuXL1fpZ2VlBU9PT/lSrly5lzEcIiIiIipjSvUsDTk5OTh16hSmTJkit5mZmSEkJATR0dEabxMdHY2IiAiVtrCwMGzfvl2l7eDBg3B3d0e5cuXwxhtv4OOPP4aLi4vGmNnZ2cjOzpb/Tk9PBwDk5uYiNzdXzsvMzAxKpRJKpVIlXzMzM+Tl5UEIUWy7QqGAJElyXNn/95GEUrVZMtPcbqYAhJDbc3NzIUkSFAoFlEolJGXeP50l6XkcoYRUIBchSUAR7S/mDiEASXp+nyr9zZ63F7xPDbnnj1mhUDxvf7H/C2NSzV29HYDK4yEp84odU6G5/397wRwlLcZUXPvzzSaQl5f3z5iLGFNxj1PB/cbMrMB9FjEmtfYCY8rNzZUfj/wc8xXWbm5urjKm56n/s+8VfH4U1l7SzyeOiWPimDgmjsn0x6RWSxWhVAve5ORk5OXlwcPDQ6Xdw8MDly5d0nibu3fvaux/9+5d+e927dqhe/fuqFSpEq5du4YPPvgA7du3R3R0tLyRCpo9ezZmzJih1h4bGws7OzsAgJubGwICAhAfH48HDx7IfXx9feHr64srV64gLS1Nbq9cuTLc3d1x/vx5PH36VG6vUaMGnJ2dERsbq/IAmisqIM/MHD7Jl1VySHStDoUyF56PrsltwswMia41YP0sA66pCQCAmBhL2NjYIDAwEMnJySpxsiztkOzsB8fMh3DM+Cf3DBtnpDh4o9yTu7B7miq3p9u5Id3OTW1MdkoXZNiUg0dKPMxz/3mDkOxcEVmW9vB+FAepwA5/t3yAyphiYiwBAI0bN0ZOTo5KjprGBAC55la4Wz4AdlmpKPf4jsqYAHckJSXh9u3bAACftJxix+SSdgvWORlye4qDl8qY8nPMf5yKG1NxjxPggbS0NHl/9knLKXJMxT1OMTHX5XZfX18A1sWOqajHKSbGEvXq1YOlpSViYmJUxpT/OJ07d05uUygUaNKkicqYAKjse9ev/5Ojk5MTatasqfI4ASX/fOKYOCaOiWPimEx/TLGxsdCWJFSm8F6upKQk+Pj44OjRowgODpbbJ06ciEOHDuH48eNqt7G0tMTatWvRt29fue3zzz/HjBkzcO/ePY33c/36dQQEBGDfvn1o27at2vWaZngrVKiAhw8fwtHREUDJv4tZcC4FgP4zvOMDXVTegc2P/WfH03eGd0K9ciq5LziXYtAM7/hAF3kbAMC806rrtHWd4Z3U0F3l8Vh49qHBM7wFc5QkCXNPqe5Tus7wTmrkofIOeuHZhwbN8L5fr7zcbmZmhnlnHxk0wzs+0OVfOSvAMXFMHBPHxDG9+mNKSUmBi4sL0tLS5HqtMKU6w+vq6gqFQqFWqN67dw+enp4ab+Pp6alTf+D5OwpXV1dcvXpVY8FrZWUFKysrtXZzc3OYm6tuovwH60WaZo6Lan8xbv5H9ELS3F9juyTJ7QXjmZmZPS8e1fqbQUgaghfSrpa7nKMZoKG/xvsskPuLY9aco1TsWAsq+HioxCtkTIXm/v/tWuUI3R4nSZLkuKo5FjbWwh8ntf0GxY9Jrb1ADgXjaYpdWHvBMRVU2PND13aDn096tHNMHBPAMRWWo67tHBPHBJTOmApTql9as7S0RKNGjRAVFSW3KZVKREVFqcz4FhQcHKzSHwD27t1baH8AuH37Nh4+fAgvLy/jJE5EREREr4xSP0tDREQEvvrqK6xduxYXL17E8OHDkZGRgfDwcADAwIEDVb7UNmbMGOzevRsLFy7EpUuXMH36dMTExGDUqFEAgCdPnmDChAk4duwYbty4gaioKHTp0gVVqlRBWFhYqYyRiIiIiEpPqS5pAIDevXvjwYMHmDZtGu7evYv69etj9+7d8hfTEhISVKbJmzVrho0bN+Kjjz7CBx98gKpVq2L79u2oU6cOgOfT5OfOncPatWuRmpoKb29vhIaGYtasWRqXLRARERGRaSv1ghcARo0aJc/QvujgwYNqbT179kTPnj019rexscGePXuMmR4RERERvcJKfUkDEREREVFJYsFLRERERCaNBS8RERERmTQWvERERERk0ljwEhEREZFJY8FLRERERCaNBS8RERERmTQWvERERERk0srED08QUdkwJzbZ4BiTG7gaIRMiIiLj4QwvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNLMSzsBIjJtc2KTDbr95AauRsqEiIj+rTjDS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNJY8BIRERGRSWPBS0REREQmjQUvEREREZk0FrxEREREZNLMSzsBIiJdzIlNNuj2kxu4GikTIiJ6VXCGl4iIiIhMGgteIiIiIjJpLHiJiIiIyKSx4CUiIiIik8aCl4iIiIhMGs/SQET/ajzrAxGR6eMMLxERERGZNBa8RERERGTSWPASERERkUljwUtEREREJo0FLxERERGZNBa8RERERGTSeFoyIiIj46nOiIjKFs7wEhEREZFJ4wwvEVEZxxljIiLDcIaXiIiIiEwaC14iIiIiMmkseImIiIjIpLHgJSIiIiKTxoKXiIiIiEwaC14iIiIiMmkseImIiIjIpLHgJSIiIiKTxoKXiIiIiEwaC14iIiIiMmkseImIiIjIpLHgJSIiIiKTxoKXiIiIiEwaC14iIiIiMmkseImIiIjIpLHgJSIiIiKTZl7aCRAR0cs1JzbZoNtPbuBqpEyIiF4OzvASERERkUljwUtEREREJo0FLxERERGZNBa8RERERGTS+KU1IiIyiKFfggP4RTgiKlmc4SUiIiIik8YZXiIiKnN46jQiMiYWvEREZPJYQBP9u7HgJSIi0hELaKJXC9fwEhEREZFJ4wwvERFRKeOZLohKVpmY4V2xYgX8/f1hbW2NoKAgnDhxosj+33//PWrUqAFra2vUrVsXv/76q8r1QghMmzYNXl5esLGxQUhICOLi4kpyCERERERURpV6wbtlyxZEREQgMjISp0+fRmBgIMLCwnD//n2N/Y8ePYq+ffti6NChiI2NRdeuXdG1a1ecP39e7jNv3jwsW7YMX3zxBY4fPw47OzuEhYUhKyvrZQ2LiIiIiMqIUi94Fy1ahGHDhiE8PBy1atXCF198AVtbW3z77bca+y9duhTt2rXDhAkTULNmTcyaNQsNGzbE8uXLATyf3V2yZAk++ugjdOnSBfXq1cN3332HpKQkbN++/SWOjIiIiIjKglJdw5uTk4NTp05hypQpcpuZmRlCQkIQHR2t8TbR0dGIiIhQaQsLC5OL2fj4eNy9exchISHy9U5OTggKCkJ0dDT69OmjFjM7OxvZ2dny32lpaQCAR48eITc3V87LzMwMSqUSSqVSJV8zMzPk5eVBCFFsu0KhgCRJctx8WY/TAQCSUKq0C8lMc7uZAhBCbn/0yAySJEGhUECpVCI7PfWfzpL0PI5QQiqQi5AkoIj2lBSFSu5Zj9MBSXp+nyr9zZ63K/OKzP3RIzN5GwBQzVHDmFRzV29PT7dUeTyy01OLHVOhuf9/e8EcJUlSz7Gwx6OQ9vR0SwghkJeX98+YixhTcY9Tfn7A830s68njYsek1l7gcXr0yEx+PPLy8lTGq+2+p5q7UMlRkiRkPXms875XMPdHj8xUnk9qOWqx7xVsT0uzkB8P4P/3Gx33vYKPU/54Cx4jVHPUbt8r2J6ebqlyjHi+b+u27xUcU36O+ceIrMfpOu97BdtTU81Vjm/549Vl33sx94L7jcYcUfy+V7A9JUUhHw8LPib6HiMKPR7qsO8VbM8fr7m5uco2LGpMxT1OqanmJfL6VPAYoU17/pgKthd8fSqYY2HtJf2ayzGZxphSUlIAQCVWoUQpSkxMFADE0aNHVdonTJggmjZtqvE2FhYWYuPGjSptK1asEO7u7kIIIY4cOSIAiKSkJJU+PXv2FL169dIYMzIyUgDghRdeeOGFF1544eUVu9y6davYmpNnaQAwZcoUlVljpVKJR48ewcXFBZIklWJmz6Wnp6NChQq4desWHB0dy2TMf1u8kohZ1uOVRMx/W7ySiPlvi1cSMct6vJKI+W+LVxIx/23xSiqmIYQQePz4Mby9vYvtW6oFr6urKxQKBe7du6fSfu/ePXh6emq8jaenZ5H98/+9d+8evLy8VPrUr19fY0wrKytYWVmptDk7O+sylJfC0dHR6DuYsWP+2+KVRMyyHq8kYv7b4pVEzH9bvJKIWdbjlUTMf1u8koj5b4tXUjH15eTkpFW/Uv3SmqWlJRo1aoSoqCi5TalUIioqCsHBwRpvExwcrNIfAPbu3Sv3r1SpEjw9PVX6pKen4/jx44XGJCIiIiLTVepLGiIiIjBo0CA0btwYTZs2xZIlS5CRkYHw8HAAwMCBA+Hj44PZs2cDAMaMGYPWrVtj4cKF6NixIzZv3oyYmBisWrUKwPOF1WPHjsXHH3+MqlWrolKlSpg6dSq8vb3RtWvX0homEREREZWSUi94e/fujQcPHmDatGm4e/cu6tevj927d8PDwwMAkJCQADOzfyaimzVrho0bN+Kjjz7CBx98gKpVq2L79u2oU6eO3GfixInIyMjA22+/jdTUVLRo0QK7d++GtbX1Sx+fMVhZWSEyMlJt2UVZivlvi1cSMct6vJKI+W+LVxIx/23xSiJmWY9XEjH/bfFKIua/LV5JxXxZJCG0OZcDEREREdGrqdR/eIKIiIiIqCSx4CUiIiIik8aCl4iIiIhMGgteIiIiIjJpLHjLsMOHD6NTp07w9vaGJEnYvn27QfFmz56NJk2awMHBAe7u7ujatSsuX75sUMyVK1eiXr168kmog4OD8dtvvxkUM9+cOXPk08zpa/r06ZAkSeVSo0YNg/JKTEzEW2+9BRcXF9jY2KBu3bqIiYnRO56/v79ajpIkYeTIkXrFy8vLw9SpU1GpUiXY2NggICAAs2bN0u63xgvx+PFjjB07Fn5+frCxsUGzZs1w8uRJrW9f3L4shMC0adPg5eUFGxsbhISEIC4uTu9427ZtQ2hoqPxriWfOnNE7v2fPnmHSpEmoW7cu7Ozs4O3tjYEDByIpKUnv/KZPn44aNWrAzs4O5cqVQ0hICI4fP653ji969913IUkSlixZone8wYMHq+2T7dq1Myi/ixcvonPnznBycoKdnR2aNGmChIQEveJpes5IkoT58+frneOTJ08watQo+Pr6wsbGBrVq1cIXX3yhd7x79+5h8ODB8Pb2hq2tLdq1a1fkfq3NMTorKwsjR46Ei4sL7O3t0aNHD7UfY9Il3qpVq9CmTRs4OjpCkiSkpqbqnd+jR4/w3nvvoXr16rCxsUHFihUxevRopKWlGTTmd955BwEBAbCxsYGbmxu6dOmCS5cu6R0vnxAC7du3L/L5pE28Nm3aqO2H7777rkH5RUdH44033oCdnR0cHR3RqlUrPH36VK+YN27cKPT58v333+uV4927dzFgwAB4enrCzs4ODRs2xI8//qgxv7KCBW8ZlpGRgcDAQKxYscIo8Q4dOoSRI0fi2LFj2Lt3L549e4bQ0FBkZGToHdPX1xdz5szBqVOnEBMTgzfeeANdunTBhQsXDMr15MmT+PLLL1GvXj2D4gBA7dq1cefOHfny559/6h0rJSUFzZs3h4WFBX777Tf8/fffWLhwIcqVK6d3zJMnT6rkt3fvXgBAz5499Yo3d+5crFy5EsuXL8fFixcxd+5czJs3D5999pneOf7vf//D3r17sW7dOvz1118IDQ1FSEgIEhMTtbp9cfvyvHnzsGzZMnzxxRc4fvw47OzsEBYWhqysLL3iZWRkoEWLFpg7d67B+WVmZuL06dOYOnUqTp8+jW3btuHy5cvo3LmzXvEAoFq1ali+fDn++usv/Pnnn/D390doaCgePHigd8x8P/30E44dO1bsT21qE69du3Yq++amTZv0jnft2jW0aNECNWrUwMGDB3Hu3DlMnTq10NNFFhevYF537tzBt99+C0mS0KNHD71zjIiIwO7du7F+/XpcvHgRY8eOxahRo7Bz506d4wkh0LVrV1y/fh07duxAbGws/Pz8EBISUugxV5tj9Lhx47Br1y58//33OHToEJKSktC9e3e942VmZqJdu3b44IMPCt1u2sZLSkpCUlISFixYgPPnz2PNmjXYvXs3hg4dqndMAGjUqBFWr16NixcvYs+ePRBCIDQ0FHl5eXrFy7dkyRJIkmTQmPMNGzZMZX+cN2+e3vGio6PRrl07hIaG4sSJEzh58iRGjRqlcopWXWJWqFBB7fkyY8YM2Nvbo3379nrlOHDgQFy+fBk7d+7EX3/9he7du6NXr16IjY0tcnuWKkGvBADip59+MmrM+/fvCwDi0KFDRo1brlw58fXXX+t9+8ePH4uqVauKvXv3itatW4sxY8boHSsyMlIEBgbqffsXTZo0SbRo0cJo8TQZM2aMCAgIEEqlUq/bd+zYUQwZMkSlrXv37qJ///56xcvMzBQKhUL8/PPPKu0NGzYUH374oc7xXtyXlUql8PT0FPPnz5fbUlNThZWVldi0aZPO8QqKj48XAERsbKze+Wly4sQJAUDcvHnTKPHS0tIEALFv3z6Dcrx9+7bw8fER58+fF35+fmLx4sV6xxs0aJDo0qWLVrfXJl7v3r3FW2+9ZbR4L+rSpYt44403DIpZu3ZtMXPmTJU2bffzF+NdvnxZABDnz5+X2/Ly8oSbm5v46quvtMrxxWN0amqqsLCwEN9//73c5+LFiwKAiI6O1jleQQcOHBAAREpKila5FRcv39atW4WlpaV49uyZ0WKePXtWABBXr17VO15sbKzw8fERd+7c0en1VVM8Q16nNMULCgoSH330kV7xCov5ovr166u9TugSz87OTnz33Xcq/cqXL6/1vl0aOMP7L5b/MVP58uWNEi8vLw+bN29GRkaGQT/jPHLkSHTs2BEhISFGySsuLg7e3t6oXLky+vfvX+hHqNrYuXMnGjdujJ49e8Ld3R0NGjTAV199ZZQ8ASAnJwfr16/HkCFDip15KEyzZs0QFRWFK1euAADOnj2LP//8U+M7eW3k5uYiLy9PbSbOxsbGoNnyfPHx8bh7967K4+3k5ISgoCBER0cbHL8kpKWlQZIkODs7GxwrJycHq1atgpOTEwIDA/WOo1QqMWDAAEyYMAG1a9c2OC8AOHjwINzd3VG9enUMHz4cDx8+1Du3X375BdWqVUNYWBjc3d0RFBRk8DKtfPfu3cMvv/xS5EyiNpo1a4adO3ciMTERQggcOHAAV65cQWhoqM6xsrOzAUDleWNmZgYrKyutnzcvHqNPnTqFZ8+eqTxXatSogYoVK2r1XDH2MV+beGlpaXB0dIS5uXa/c1VczIyMDKxevRqVKlVChQoV9IqXmZmJfv36YcWKFfD09NQqr+Ly27BhA1xdXVGnTh1MmTIFmZmZesW7f/8+jh8/Dnd3dzRr1gweHh5o3bq1Tsfa4rbhqVOncObMGa2fL5riNWvWDFu2bMGjR4+gVCqxefNmZGVloU2bNlrn+dKVdsVN2oGRZ3jz8vJEx44dRfPmzQ2Ode7cOWFnZycUCoVwcnISv/zyi96xNm3aJOrUqSOePn0qhDDsnbMQQvz6669i69at4uzZs2L37t0iODhYVKxYUaSnp+sVz8rKSlhZWYkpU6aI06dPiy+//FJYW1uLNWvW6J1jQVu2bBEKhUIkJibqHSMvL09MmjRJSJIkzM3NhSRJ4tNPPzUor+DgYNG6dWuRmJgocnNzxbp164SZmZmoVq2azrFe3JePHDkiAIikpCSVfj179hS9evXSOV5BJTHD+/TpU9GwYUPRr18/g+Lt2rVL2NnZCUmShLe3tzhx4oRBOX766afiP//5j/zJgKEzvJs2bRI7duwQ586dEz/99JOoWbOmaNKkicjNzdU5Xv4smq2trVi0aJGIjY0Vs2fPFpIkiYMHD+qVX0Fz584V5cqVk48b2tAUMysrSwwcOFAAEObm5sLS0lKsXbtWr3g5OTmiYsWKomfPnuLRo0ciOztbzJkzRwAQoaGhxcbTdIzesGGDsLS0VOvbpEkTMXHiRJ3jFaTrDK82ryEPHjwQFStWFB988IHBMVesWCHs7OwEAFG9enWtZncLi/f222+LoUOHyn9r+/paWLwvv/xS7N69W5w7d06sX79e+Pj4iG7duukVLzo6WgAQ5cuXF99++604ffq0GDt2rLC0tBRXrlzRO8eChg8fLmrWrFlsrKLipaSkiNDQUPm54ujoKPbs2aNVzNLCgvcVYeyC99133xV+fn7i1q1bBsfKzs4WcXFxIiYmRkyePFm4urqKCxcu6BwnISFBuLu7i7Nnz8pthha8L0pJSRGOjo56L7mwsLAQwcHBKm3vvfeeeO2114yRnggNDRX//e9/DYqxadMm4evrKzZt2iTOnTsnvvvuO1G+fHmDivKrV6+KVq1aCQBCoVCIJk2aiP79+4saNWroHOtVLnhzcnJEp06dRIMGDURaWppB8Z48eSLi4uJEdHS0GDJkiPD39xf37t3TK2ZMTIzw8PBQeaNkaMH7omvXrmm97OLFeImJiQKA6Nu3r0q/Tp06iT59+hicX/Xq1cWoUaOKjVNczPnz54tq1aqJnTt3irNnz4rPPvtM2Nvbi7179+oVLyYmRgQGBsrPm7CwMNG+fXvRrl27YuNpOkYbUvAWd8zXteAtLl5aWppo2rSpaNeuncjJyTE4Zmpqqrhy5Yo4dOiQ6NSpk2jYsGGxb3A0xduxY4eoUqWKePz4sdym7eurtq+bUVFRWi250BQv/3g4ZcoUlb5169YVkydPNjjHzMxM4eTkJBYsWFBsrKLijRo1SjRt2lTs27dPnDlzRkyfPl04OTmJc+fOaRW3NLDgfUUYs+AdOXKk8PX1FdevXzdKvBe1bdtWvP322zrf7qeffpJfGPIvAIQkSUKhUGg1s6SNxo0ba3Xg0KRixYoqMwNCCPH5558Lb29vg/O6ceOGMDMzE9u3bzcojq+vr1i+fLlK26xZs0T16tUNiivE8yItvzDt1auX6NChg84xXtyX8wupF4vSVq1aidGjR+scryBjFrw5OTmia9euol69eiI5OdngeC+qUqWK1jPxL8ZcvHix/Dwp+NwxMzMTfn5+RsvR1dVVfPHFFzrHy87OFubm5mLWrFkq/SZOnCiaNWtmUH6HDx8WAMSZM2eKjVNUzMzMTGFhYaG2Vn3o0KEiLCzMoBxTU1PF/fv3hRBCNG3aVIwYMaLIWIUdo/MLqReL0ooVK4pFixbpHK8gXQre4uKlp6eL4OBg0bZtW61n3XV5XcrOzha2trZi48aNOscbM2ZMoc+V1q1bGyW/J0+eCABi9+7dOse7fv26ACDWrVun0t6rV69iP1XSJsfvvvtOWFhYyPujPvGuXr2qtj5diOev/e+8806xcUsL1/D+iwghMGrUKPz000/Yv38/KlWqVCL3o1Qq5fVrumjbti3++usvnDlzRr40btwY/fv3x5kzZ6BQKAzO7cmTJ7h27Rq8vLz0un3z5s3VTs9y5coV+Pn5GZzb6tWr4e7ujo4dOxoUJzMzU+3bvAqFAkql0qC4AGBnZwcvLy+kpKRgz5496NKli8ExK1WqBE9PT0RFRclt6enpOH78uEFrwY3p2bNn6NWrF+Li4rBv3z64uLgY/T70fd4AwIABA3Du3DmV5463tzcmTJiAPXv2GCW/27dv4+HDh3o9dywtLdGkSZMSee588803aNSokUHrn4Hnj/GzZ89K5Lnj5OQENzc3xMXFISYmptDnTXHH6EaNGsHCwkLluXL58mUkJCRofK4Y+5ivTbz09HSEhobC0tISO3fuLPQsHIbkKJ5P1ml8vhQXb/LkyWrPFQBYvHgxVq9ebZT88mNqeq4UF8/f3x/e3t46PVd0yfGbb75B586d4ebmVmif4uLlr08uqdeZElM6dTZp4/HjxyI2NlbExsYKAPLaN22+Ga7J8OHDhZOTkzh48KC4c+eOfMnMzNQ7x8mTJ4tDhw6J+Ph4ce7cOTF58mQhSZL4/fff9Y5ZkKFLGsaPHy8OHjwo4uPjxZEjR0RISIhwdXXV6t2tJidOnBDm5ubik08+EXFxcWLDhg3C1tZWrF+/Xu8chXi+TqpixYpi0qRJBsUR4vm36318fMTPP/8s4uPjxbZt24Srq2uxH3kWZffu3eK3334T169fF7///rsIDAwUQUFBWn9UWdy+PGfOHOHs7CyvGe3SpYuoVKlSobNDxcV7+PChiI2NFb/88osAIDZv3ixiY2PFnTt3dI6Xk5MjOnfuLHx9fcWZM2dUnjvZ2dk6x3vy5ImYMmWKiI6OFjdu3BAxMTEiPDxcWFlZqc2Y6DLmFxW3pKGoeI8fPxbvv/++iI6OFvHx8WLfvn2iYcOGomrVqiIrK0uv/LZt2yYsLCzEqlWrRFxcnPjss8+EQqEQf/zxh97jTUtLE7a2tmLlypWFjlOXmK1btxa1a9cWBw4cENevXxerV68W1tbW4vPPP9cr3tatW8WBAwfEtWvXxPbt24Wfn5/o3r17oflpc4x+9913RcWKFcX+/ftFTEyMCA4OVltmpUu8O3fuiNjYWPHVV18JAOLw4cMiNjZWPHz4UOd4aWlpIigoSNStW1dcvXpVpU9hn9AVF/PatWvi008/FTExMeLmzZviyJEjolOnTqJ8+fIalwDp8zqHImbni4t39epVMXPmTBETEyPi4+PFjh07ROXKlUWrVq30fkwWL14sHB0dxffffy/i4uLERx99JKytrQtdIqHtmOPi4oQkSeK3334rdFtoEy8nJ0dUqVJFtGzZUhw/flxcvXpVLFiwQEiSZNB3eEoaC94yLP8jphcvgwYN0iueplgAxOrVq/XOcciQIcLPz09YWloKNzc30bZtW6MVu0IYXvD27t1beHl5CUtLS+Hj4yN69+6t1ZcdirJr1y5Rp04dYWVlJWrUqCFWrVplUDwhhNizZ48AIC5fvmxwrPT0dDFmzBhRsWJFYW1tLSpXriw+/PDDQoszbWzZskVUrlxZWFpaCk9PTzFy5EiRmpqq9e2L25eVSqWYOnWq8PDwEFZWVqJt27ZFbovi4q1evVrj9ZGRkTrHy18Woely4MABneM9ffpUdOvWTXh7ewtLS0vh5eUlOnfuXOyX1nQ9HhRX8BYVLzMzU4SGhgo3NzdhYWEh/Pz8xLBhw8Tdu3cNyu+bb74RVapUEdbW1iIwMLDI5TvaxPvyyy+FjY2N1vticTHv3LkjBg8eLLy9vYW1tbWoXr26WLhwYaGnCCwu3tKlS4Wvr6+wsLAQFStWFB999FGRz0NtjtFPnz4VI0aMEOXKlRO2traiW7duhb6R0yZeZGSk1q8LxcUrbHsAEPHx8XrlmJiYKNq3by/c3d2FhYWF8PX1Ff369ROXLl3Se8yablNYwVtcvISEBNGqVStRvnx5YWVlJapUqSImTJhQ6Bp/bfObPXu28PX1Fba2tiI4OLjQN4a6xJwyZYqoUKGCyMvLKzSWtvGuXLkiunfvLtzd3YWtra2oV6+e2mnKyhpJCAN+fomIiIiIqIzjGl4iIiIiMmkseImIiIjIpLHgJSIiIiKTxoKXiIiIiEwaC14iIiIiMmkseImIiIjIpLHgJSIiIiKTxoKXiIiIiEwaC14iIjz/DfslS5YYLd7gwYPRtWtXo8UDgIMHD0KSJKSmpho1LhGRqWPBS0QmZfDgwZAkCZIkwdLSElWqVMHMmTORm5tb5O1OnjyJt99+22h5LF26FGvWrDFaPF3ExsaiZ8+e8PDwgLW1NapWrYphw4bhypUrpZJPWWXsNzlEVHax4CUik9OuXTvcuXMHcXFxGD9+PKZPn4758+dr7JuTkwMAcHNzg62trdFycHJygrOzs9Hiaevnn3/Ga6+9huzsbGzYsAEXL17E+vXr4eTkhKlTp770fIiIygIWvERkcqysrODp6Qk/Pz8MHz4cISEh2LlzJ4B/lhp88skn8Pb2RvXq1QGoz/ZJkoSvv/4a3bp1g62tLapWrSrHyHfhwgX897//haOjIxwcHNCyZUtcu3ZN5X7ytWnTBqNGjcKoUaPg5OQEV1dXTJ06FUIIuc+6devQuHFjODg4wNPTE/369cP9+/e1HndmZibCw8PRoUMH7Ny5EyEhIahUqRKCgoKwYMECfPnll3LfQ4cOoWnTprCysoKXlxcmT56sMgvepk0bvPfeexg7dizKlSsHDw8PfPXVV8jIyEB4eDgcHBxQpUoV/Pbbb/Jt8pdc/PLLL6hXrx6sra3x2muv4fz58yp5/vjjj6hduzasrKzg7++PhQsXqlzv7++PTz/9FEOGDIGDgwMqVqyIVatWqfS5desWevXqBWdnZ5QvXx5dunTBjRs35Ovzt/+CBQvg5eUFFxcXjBw5Es+ePZPHd/PmTYwbN07+RICITBcLXiIyeTY2NvJMLgBERUXh8uXL2Lt3L37++edCbzdjxgz06tUL586dQ4cOHdC/f388evQIAJCYmIhWrVrBysoK+/fvx6lTpzBkyJAil06sXbsW5ubmOHHiBJYuXYpFixbh66+/lq9/9uwZZs2ahbNnz2L79u24ceMGBg8erPU49+zZg+TkZEycOFHj9fkzzomJiejQoQOaNGmCs2fPYuXKlfjmm2/w8ccfq+Xr6uqKEydO4L333sPw4cPRs2dPNGvWDKdPn0ZoaCgGDBiAzMxMldtNmDABCxcuxMmTJ+Hm5oZOnTrJheapU6fQq1cv9OnTB3/99RemT5+OqVOnqi3/WLhwIRo3bozY2FiMGDECw4cPx+XLl+XtFBYWBgcHB/zxxx84cuQI7O3t0a5dO5XH+cCBA7h27RoOHDiAtWvXYs2aNfL9bNu2Db6+vpg5cybu3LmDO3fuaL2diegVJIiITMigQYNEly5dhBBCKJVKsXfvXmFlZSXef/99+XoPDw+RnZ2tcjs/Pz+xePFi+W8A4qOPPpL/fvLkiQAgfvvtNyGEEFOmTBGVKlUSOTk5xeYhhBCtW7cWNWvWFEqlUm6bNGmSqFmzZqFjOXnypAAgHj9+LIQQ4sCBAwKASElJ0dh/7ty5AoB49OhRoTGFEOKDDz4Q1atXV8llxYoVwt7eXuTl5cn5tmjRQr4+NzdX2NnZiQEDBshtd+7cEQBEdHS0Sn6bN2+W+zx8+FDY2NiILVu2CCGE6Nevn/jPf/6jks+ECRNErVq15L/9/PzEW2+9Jf+tVCqFu7u7WLlypRBCiHXr1qnln52dLWxsbMSePXuEEM+3v5+fn8jNzZX79OzZU/Tu3Vvlfgo+5kRkujjDS0Qm5+eff4a9vT2sra3Rvn179O7dG9OnT5evr1u3LiwtLYuNU69ePfn/dnZ2cHR0lJcYnDlzBi1btoSFhYXWeb322msqH50HBwcjLi4OeXl5AJ7Pfnbq1AkVK1aEg4MDWrduDQBISEjQKr4osDyiKBcvXkRwcLBKLs2bN8eTJ09w+/Ztua3g+BUKBVxcXFC3bl25zcPDAwDUll0EBwfL/y9fvjyqV6+OixcvyvfdvHlzlf7NmzdX2Q4v3rckSfD09JTv5+zZs7h69SocHBxgb28Pe3t7lC9fHllZWfKSEgCoXbs2FAqF/LeXl5dOS0SIyHSYl3YCRETG9vrrr2PlypWwtLSEt7c3zM1VD3V2dnZaxXmxmJUkCUqlEsDzZRLGlJGRgbCwMISFhWHDhg1wc3NDQkICwsLCVD6mL0q1atUAAJcuXVIpOvWlafwF2/IL5vxtYkxFbfsnT56gUaNG2LBhg9rt3NzctIpBRP8unOElIpNjZ2eHKlWqoGLFimrFrrHUq1cPf/zxh7w2VRvHjx9X+fvYsWOoWrUqFAoFLl26hIcPH2LOnDlo2bIlatSoofNsZGhoKFxdXTFv3jyN1+efv7dmzZqIjo5WmRE+cuQIHBwc4Ovrq9N9anLs2DH5/ykpKbhy5Qpq1qwp3/eRI0dU+h85cgTVqlVTmY0tSsOGDREXFwd3d3dUqVJF5eLk5KR1npaWliqzykRkuljwEhHpYdSoUUhPT0efPn0QExODuLg4rFu3Tv5ilSYJCQmIiIjA5cuXsWnTJnz22WcYM2YMAKBixYqwtLTEZ599huvXr2Pnzp2YNWuWTjnZ2dnh66+/xi+//ILOnTtj3759uHHjBmJiYjBx4kS8++67AIARI0bg1q1beO+993Dp0iXs2LEDkZGRiIiIgJmZ4S8LM2fORFRUFM6fP4/BgwfD1dVVPmPF+PHjERUVhVmzZuHKlStYu3Ytli9fjvfff1/r+P3794erqyu6dOmCP/74A/Hx8Th48CBGjx6tsiSjOP7+/jh8+DASExORnJys6zCJ6BXCgpeISA8uLi7Yv38/njx5gtatW6NRo0b46quvilzTO3DgQDx9+hRNmzbFyJEjMWbMGPnHLtzc3LBmzRp8//33qFWrFubMmYMFCxbonFeXLl1w9OhRWFhYoF+/fqhRowb69u2LtLQ0+SwMPj4++PXXX3HixAkEBgbi3XffxdChQ/HRRx/ptzFeMGfOHIwZMwaNGjXC3bt3sWvXLnnNdMOGDbF161Zs3rwZderUwbRp0zBz5kydzkZha2uLw4cPo2LFiujevTtq1qyJoUOHIisrC46OjlrHmTlzJm7cuIGAgACVpRBEZHokoe23HIiISG9t2rRB/fr1TfqXvQ4ePIjXX38dKSkppfKjG0REheEMLxERERGZNBa8RERERGTSuKSBiIiIiEwaZ3iJiIiIyKSx4CUiIiIik8aCl4iIiIhMGgteIiIiIjJpLHiJiIiIyKSx4CUiIiIik8aCl4iIiIhMGgteIiIiIjJp/wdsIneupD12GgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -767,34 +1139,34 @@ "text": [ "Contributions of features to the first principal component:\n", " Feature Contribution\n", - "17 exang_1 0.332492\n", - "23 thal_7.0 0.331968\n", - "10 cp_4 0.328138\n", - "19 slope_2 0.272838\n", - "6 sex_1 0.196119\n", - "15 restecg_2 0.131840\n", - "25 ca_1.0 0.107372\n", - "4 oldpeak 0.094386\n", - "26 ca_2.0 0.078705\n", - "0 age 0.046441\n", - "27 ca_3.0 0.046405\n", - "22 thal_6.0 0.041738\n", - "1 trestbps 0.020995\n", - "20 slope_3 0.020165\n", - "12 fbs_1 0.013534\n", - "2 chol 0.005950\n", - "14 restecg_1 0.004777\n", - "7 cp_1 -0.009925\n", - "11 fbs_0 -0.013534\n", - "3 thalach -0.092913\n", - "13 restecg_0 -0.136618\n", - "8 cp_2 -0.139917\n", - "9 cp_3 -0.178297\n", - "5 sex_0 -0.196119\n", - "24 ca_0.0 -0.232482\n", - "18 slope_1 -0.293003\n", - "16 exang_0 -0.332492\n", - "21 thal_3.0 -0.373706\n" + "21 thal_3.0 0.373706\n", + "16 exang_0 0.332492\n", + "18 slope_1 0.293003\n", + "24 ca_0.0 0.232482\n", + "5 sex_0 0.196119\n", + "9 cp_3 0.178297\n", + "8 cp_2 0.139917\n", + "13 restecg_0 0.136618\n", + "3 thalach 0.092913\n", + "11 fbs_0 0.013534\n", + "7 cp_1 0.009925\n", + "14 restecg_1 -0.004777\n", + "2 chol -0.005950\n", + "12 fbs_1 -0.013534\n", + "20 slope_3 -0.020165\n", + "1 trestbps -0.020995\n", + "22 thal_6.0 -0.041738\n", + "27 ca_3.0 -0.046405\n", + "0 age -0.046441\n", + "26 ca_2.0 -0.078705\n", + "4 oldpeak -0.094386\n", + "25 ca_1.0 -0.107372\n", + "15 restecg_2 -0.131840\n", + "6 sex_1 -0.196119\n", + "19 slope_2 -0.272838\n", + "10 cp_4 -0.328138\n", + "23 thal_7.0 -0.331968\n", + "17 exang_1 -0.332492\n" ] } ], @@ -822,13 +1194,876 @@ "\n", "Hier würde das bedeuten, dass 'exang_1' (existing exercised induced angina), 'thal_7' (reversable effect caused by thalassemia) und cp_4 (asymptomatic type of chest pain) einen potenziell größeren Einfluss auf die Zielvariable haben, als andere Merkmale." ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6ebdafbb-302b-4fbf-822a-f621419db8ec", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - loss: 0.8295 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6515 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7714 \n", + "WARNING:tensorflow:5 out of the last 5 calls to .one_step_on_data_distributed at 0x000001788601F880> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", + "\u001b[1m1/2\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 38ms/stepWARNING:tensorflow:6 out of the last 6 calls to .one_step_on_data_distributed at 0x000001788601F880> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 854us/step - loss: 0.7180\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.7831\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6749 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 923us/step - loss: 0.7142\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 909us/step - loss: 0.6590\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6109\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 979us/step - loss: 0.7255\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.6575\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 990us/step - loss: 0.6600\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6714\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 989us/step - loss: 0.7193\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7402\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7113 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7141\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7562\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7777 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 780us/step - loss: 0.6970\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6871 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7026 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.7408\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6920 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8896 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6989 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7702\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7352 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7197\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7048\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 987us/step - loss: 0.7161\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7558\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7031 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6900\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6978\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6753\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6918 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.7076\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6576\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7001 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6824 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7140 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7214 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6517 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6740 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6869\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7061 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6885\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7253 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7160\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6791 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7484 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6670\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6658 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6987 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6645 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6862 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6857 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6683\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6789 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7941 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 850us/step - loss: 0.7271\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6558 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.6191\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6739 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7143 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7528\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.6915\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.8361\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7930\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7427\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.9099 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7453 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 853us/step - loss: 0.7005\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.9573 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.7130\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8095 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8389 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.6892\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6874\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7163 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.8445\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6903 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7781 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7024 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7967\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7862\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7345 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6840 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7604 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 995us/step - loss: 0.7287\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7054 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.8665\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7714\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7492\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7961\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.6954\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6938\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7146 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7200\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6957\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 932us/step - loss: 0.7019\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7722 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.6975\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.6949\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7357\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7320\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7740\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 997us/step - loss: 0.7238\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - loss: 0.7382\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7942 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6951 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.8289\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - loss: 0.7189\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7031 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6978 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6935 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.7488\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8922 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7063\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8737 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 923us/step - loss: 0.7398\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6154\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 779us/step - loss: 0.6411\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8713 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6880 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.6130\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7781 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6757\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 923us/step - loss: 0.7560\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7059 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8223 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 850us/step - loss: 0.7053\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6665 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 990us/step - loss: 0.6949\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6004\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - loss: 0.8062\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.6948\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.7256\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7181\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 1.1155 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.7132\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.5416 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 998us/step - loss: 0.6809\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.8316\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7178 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.5664 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7293 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6615 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 854us/step - loss: 0.6773\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7038 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7680\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6712 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7196 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.9046\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.5976 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7099 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7293 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 989us/step - loss: 0.5528\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.5784\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.6347\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7937 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6946 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6404 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.8364\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6745\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7491 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7244 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - loss: 0.7381\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.8197\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.5966\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6577 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6440 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.9688 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6320\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 997us/step - loss: 0.6709\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - loss: 0.5891\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6918 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6092 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.5292 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 990us/step - loss: 0.6578\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.6409\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 782us/step - loss: 0.6539\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7479\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 946us/step - loss: 0.6264\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 854us/step - loss: 0.7325\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7073\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7077\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 924us/step - loss: 0.7472\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7632\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6719 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7138 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6891\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6417\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7360\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 854us/step - loss: 0.6282\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.7520\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 991us/step - loss: 0.6770\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.7487\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7311 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - loss: 0.7529\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6746\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6126\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7123 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7400 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6781 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.6496\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7080 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 23ms/step \n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6861\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6657 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6910 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.6611\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6790 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 997us/step - loss: 0.6587\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.7418\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 990us/step - loss: 0.7174\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7292\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7172 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7383\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6175 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7076 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7297 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7053 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7079 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7391 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7462\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 928us/step - loss: 0.7051\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6867 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.7039\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6947 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6746 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7012 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 927us/step - loss: 0.6957\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6848 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.6887\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6940\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 997us/step - loss: 0.6847\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6910\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6544 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7138 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.7806\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7403\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7008\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - loss: 0.6308\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7127\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.7144\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 937us/step - loss: 0.6850\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.6720\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.6723\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 921us/step - loss: 0.6892\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.7354\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7456\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7177\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6997\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.8523\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.7809\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 995us/step - loss: 0.7619\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6454 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6675\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.7363\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6864 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7198\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7432 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7373 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7160 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.6948\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7250\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6951 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - loss: 0.7817\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7065 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7340\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 927us/step - loss: 0.6945\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7972 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.7228\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6888 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6892\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7002 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.6750\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7213 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7113\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 1.0239\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8441 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7696 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6923 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8282 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7153 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7243 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7386 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7519\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.7155\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6842\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7463 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 1.1698 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7521 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7376 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7045 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8476 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6859\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6958 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - loss: 0.6966\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 1.0262\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.8271\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 850us/step - loss: 0.6157\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.8806\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 851us/step - loss: 0.8957\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 780us/step - loss: 0.8391\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.7207\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6150\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7824\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6666 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7245 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.6898\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 994us/step - loss: 0.7546\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.9641 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.6203\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 852us/step - loss: 0.6156\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6758\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.8885\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7606\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6680\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8330 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 874us/step - loss: 0.8508\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7399\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 921us/step - loss: 0.8580\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6426 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 850us/step - loss: 0.6140\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.7189\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6730\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.8858\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.7204\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 999us/step - loss: 0.7309\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 926us/step - loss: 0.9185\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8882 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 925us/step - loss: 0.6012\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6738\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.5359 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6653 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7506 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 999us/step - loss: 0.6293\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7118 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 922us/step - loss: 0.6357\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7046 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7358 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - loss: 0.8979\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6445 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.7247 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.5572 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6410 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - loss: 0.9214\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 997us/step - loss: 0.6568\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6227\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6472 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 992us/step - loss: 0.6863\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6029 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.5962 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.8621 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6840 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6159 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6125 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "\u001b[1m8/8\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.5928 \n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m10/10\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - loss: 0.6780 \n" + ] + } + ], + "source": [ + "# hyperparameter tuning\n", + "from scikeras.wrappers import KerasClassifier\n", + "from sklearn.model_selection import GridSearchCV\n", + "\n", + "param_grid = [\n", + " dict(hidden_layers= [1, 2, 3], dropout=[True, False], hidden_neurons= [10, 20, 30, 40], hidden_activation= ['relu', 'sigmoid', 'tanh'])\n", + "]\n", + "\n", + "def create_model(input_size=13, hidden_layers=2, dropout=False, hidden_neurons=10, hidden_activation='relu'):\n", + " model = tf.keras.models.Sequential([\n", + " tf.keras.layers.InputLayer(shape=(input_size,), name='input')\n", + " ])\n", + "\n", + " for i in range(hidden_layers):\n", + " model.add(tf.keras.layers.Dense(hidden_neurons, activation=hidden_activation, name=f'hidden{i}'))\n", + " \n", + " model.add(tf.keras.layers.Dense(1, activation='sigmoid', name='output'))\n", + " model.compile(optimizer=tf.keras.optimizers.Adam(), \n", + " loss=tf.keras.losses.BinaryCrossentropy())\n", + " return model\n", + "\n", + "model = KerasClassifier(model=create_model, input_size=8, hidden_layers=2, dropout=False, hidden_neurons=10, hidden_activation='relu')\n", + "grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=5)\n", + "\n", + "pca = decomposition.PCA(n_components=8)\n", + "pca.fit(X)\n", + "X_train = pca.transform(X)\n", + "grid_result = grid.fit(X_train, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "80fc59e7-b9e4-40fd-84cb-ebb0c79411c2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best: 0.797910 using {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 40}\n", + "0.454746 (0.161661) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 1, 'hidden_neurons': 10}\n", + "0.579379 (0.133969) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 1, 'hidden_neurons': 20}\n", + "0.531808 (0.109664) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 1, 'hidden_neurons': 30}\n", + "0.457797 (0.088543) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 1, 'hidden_neurons': 40}\n", + "0.525424 (0.063975) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 2, 'hidden_neurons': 10}\n", + "0.539153 (0.094907) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 2, 'hidden_neurons': 20}\n", + "0.529040 (0.104087) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 2, 'hidden_neurons': 30}\n", + "0.676667 (0.042718) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 2, 'hidden_neurons': 40}\n", + "0.569266 (0.071501) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 3, 'hidden_neurons': 10}\n", + "0.559209 (0.036824) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 3, 'hidden_neurons': 20}\n", + "0.613277 (0.080455) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 3, 'hidden_neurons': 30}\n", + "0.763898 (0.058879) with: {'dropout': True, 'hidden_activation': 'relu', 'hidden_layers': 3, 'hidden_neurons': 40}\n", + "0.610056 (0.104976) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 1, 'hidden_neurons': 10}\n", + "0.451582 (0.071647) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 1, 'hidden_neurons': 20}\n", + "0.491751 (0.042408) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 1, 'hidden_neurons': 30}\n", + "0.532203 (0.072876) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 1, 'hidden_neurons': 40}\n", + "0.478192 (0.032344) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 2, 'hidden_neurons': 10}\n", + "0.504859 (0.038705) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 2, 'hidden_neurons': 20}\n", + "0.474576 (0.029586) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 2, 'hidden_neurons': 30}\n", + "0.508475 (0.038078) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 2, 'hidden_neurons': 40}\n", + "0.521808 (0.032344) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 3, 'hidden_neurons': 10}\n", + "0.504859 (0.038705) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 3, 'hidden_neurons': 20}\n", + "0.521808 (0.032344) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 3, 'hidden_neurons': 30}\n", + "0.538757 (0.004428) with: {'dropout': True, 'hidden_activation': 'sigmoid', 'hidden_layers': 3, 'hidden_neurons': 40}\n", + "0.478588 (0.096403) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 1, 'hidden_neurons': 10}\n", + "0.554915 (0.115371) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 1, 'hidden_neurons': 20}\n", + "0.596328 (0.152314) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 1, 'hidden_neurons': 30}\n", + "0.582655 (0.123923) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 1, 'hidden_neurons': 40}\n", + "0.542316 (0.151461) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 2, 'hidden_neurons': 10}\n", + "0.642655 (0.073907) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 2, 'hidden_neurons': 20}\n", + "0.649774 (0.075395) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 2, 'hidden_neurons': 30}\n", + "0.737119 (0.071569) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 2, 'hidden_neurons': 40}\n", + "0.592260 (0.173314) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 10}\n", + "0.585085 (0.145203) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 20}\n", + "0.689548 (0.185362) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 30}\n", + "0.797910 (0.045237) with: {'dropout': True, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 40}\n", + "0.612486 (0.088991) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 1, 'hidden_neurons': 10}\n", + "0.535650 (0.071748) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 1, 'hidden_neurons': 20}\n", + "0.581921 (0.084089) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 1, 'hidden_neurons': 30}\n", + "0.589096 (0.117795) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 1, 'hidden_neurons': 40}\n", + "0.481921 (0.147599) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 2, 'hidden_neurons': 10}\n", + "0.639492 (0.082682) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 2, 'hidden_neurons': 20}\n", + "0.612203 (0.097082) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 2, 'hidden_neurons': 30}\n", + "0.542599 (0.096070) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 2, 'hidden_neurons': 40}\n", + "0.428418 (0.120285) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 3, 'hidden_neurons': 10}\n", + "0.528588 (0.067879) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 3, 'hidden_neurons': 20}\n", + "0.650169 (0.093519) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 3, 'hidden_neurons': 30}\n", + "0.663785 (0.068932) with: {'dropout': False, 'hidden_activation': 'relu', 'hidden_layers': 3, 'hidden_neurons': 40}\n", + "0.562825 (0.123017) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 1, 'hidden_neurons': 10}\n", + "0.501751 (0.047258) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 1, 'hidden_neurons': 20}\n", + "0.434915 (0.103495) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 1, 'hidden_neurons': 30}\n", + "0.583051 (0.122324) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 1, 'hidden_neurons': 40}\n", + "0.430847 (0.114088) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 2, 'hidden_neurons': 10}\n", + "0.504859 (0.038705) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 2, 'hidden_neurons': 20}\n", + "0.488079 (0.029466) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 2, 'hidden_neurons': 30}\n", + "0.538757 (0.004428) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 2, 'hidden_neurons': 40}\n", + "0.491525 (0.038078) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 3, 'hidden_neurons': 10}\n", + "0.521808 (0.032344) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 3, 'hidden_neurons': 20}\n", + "0.521808 (0.032344) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 3, 'hidden_neurons': 30}\n", + "0.525424 (0.029586) with: {'dropout': False, 'hidden_activation': 'sigmoid', 'hidden_layers': 3, 'hidden_neurons': 40}\n", + "0.377571 (0.109525) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 1, 'hidden_neurons': 10}\n", + "0.529492 (0.151022) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 1, 'hidden_neurons': 20}\n", + "0.502147 (0.143221) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 1, 'hidden_neurons': 30}\n", + "0.632486 (0.109293) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 1, 'hidden_neurons': 40}\n", + "0.448418 (0.153153) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 2, 'hidden_neurons': 10}\n", + "0.524237 (0.178769) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 2, 'hidden_neurons': 20}\n", + "0.585819 (0.173445) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 2, 'hidden_neurons': 30}\n", + "0.780734 (0.064420) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 2, 'hidden_neurons': 40}\n", + "0.605819 (0.166289) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 10}\n", + "0.662712 (0.226363) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 20}\n", + "0.764068 (0.033599) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 30}\n", + "0.797853 (0.059259) with: {'dropout': False, 'hidden_activation': 'tanh', 'hidden_layers': 3, 'hidden_neurons': 40}\n" + ] + } + ], + "source": [ + "# summarize results\n", + "print(\"Best: %f using %s\" % (grid_result.best_score_, grid_result.best_params_))\n", + "means = grid_result.cv_results_['mean_test_score']\n", + "stds = grid_result.cv_results_['std_test_score']\n", + "params = grid_result.cv_results_['params']\n", + "for mean, stdev, param in zip(means, stds, params):\n", + " print(\"%f (%f) with: %r\" % (mean, stdev, param))" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "dsaKernel", "language": "python", - "name": "python3" + "name": "dsakernel" }, "language_info": { "codemirror_mode": { @@ -840,7 +2075,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.7" + "version": "3.12.3" } }, "nbformat": 4, diff --git a/data/dataset_cleaned.csv b/data/dataset_cleaned.csv new file mode 100644 index 0000000..4a97f6b --- /dev/null +++ b/data/dataset_cleaned.csv @@ -0,0 +1,298 @@ +age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal,goal +63,1,1,145,233,1,2,150,0,2.3,3,0.0,6.0,0 +67,1,4,160,286,0,2,108,1,1.5,2,3.0,3.0,1 +67,1,4,120,229,0,2,129,1,2.6,2,2.0,7.0,1 +37,1,3,130,250,0,0,187,0,3.5,3,0.0,3.0,0 +41,0,2,130,204,0,2,172,0,1.4,1,0.0,3.0,0 +56,1,2,120,236,0,0,178,0,0.8,1,0.0,3.0,0 +62,0,4,140,268,0,2,160,0,3.6,3,2.0,3.0,1 +57,0,4,120,354,0,0,163,1,0.6,1,0.0,3.0,0 +63,1,4,130,254,0,2,147,0,1.4,2,1.0,7.0,1 +53,1,4,140,203,1,2,155,1,3.1,3,0.0,7.0,1 +57,1,4,140,192,0,0,148,0,0.4,2,0.0,6.0,0 +56,0,2,140,294,0,2,153,0,1.3,2,0.0,3.0,0 +56,1,3,130,256,1,2,142,1,0.6,2,1.0,6.0,1 +44,1,2,120,263,0,0,173,0,0.0,1,0.0,7.0,0 +52,1,3,172,199,1,0,162,0,0.5,1,0.0,7.0,0 +57,1,3,150,168,0,0,174,0,1.6,1,0.0,3.0,0 +48,1,2,110,229,0,0,168,0,1.0,3,0.0,7.0,1 +54,1,4,140,239,0,0,160,0,1.2,1,0.0,3.0,0 +48,0,3,130,275,0,0,139,0,0.2,1,0.0,3.0,0 +49,1,2,130,266,0,0,171,0,0.6,1,0.0,3.0,0 +64,1,1,110,211,0,2,144,1,1.8,2,0.0,3.0,0 +58,0,1,150,283,1,2,162,0,1.0,1,0.0,3.0,0 +58,1,2,120,284,0,2,160,0,1.8,2,0.0,3.0,1 +58,1,3,132,224,0,2,173,0,3.2,1,2.0,7.0,1 +60,1,4,130,206,0,2,132,1,2.4,2,2.0,7.0,1 +50,0,3,120,219,0,0,158,0,1.6,2,0.0,3.0,0 +58,0,3,120,340,0,0,172,0,0.0,1,0.0,3.0,0 +66,0,1,150,226,0,0,114,0,2.6,3,0.0,3.0,0 +43,1,4,150,247,0,0,171,0,1.5,1,0.0,3.0,0 +40,1,4,110,167,0,2,114,1,2.0,2,0.0,7.0,1 +69,0,1,140,239,0,0,151,0,1.8,1,2.0,3.0,0 +60,1,4,117,230,1,0,160,1,1.4,1,2.0,7.0,1 +64,1,3,140,335,0,0,158,0,0.0,1,0.0,3.0,1 +59,1,4,135,234,0,0,161,0,0.5,2,0.0,7.0,0 +44,1,3,130,233,0,0,179,1,0.4,1,0.0,3.0,0 +42,1,4,140,226,0,0,178,0,0.0,1,0.0,3.0,0 +43,1,4,120,177,0,2,120,1,2.5,2,0.0,7.0,1 +57,1,4,150,276,0,2,112,1,0.6,2,1.0,6.0,1 +55,1,4,132,353,0,0,132,1,1.2,2,1.0,7.0,1 +61,1,3,150,243,1,0,137,1,1.0,2,0.0,3.0,0 +65,0,4,150,225,0,2,114,0,1.0,2,3.0,7.0,1 +40,1,1,140,199,0,0,178,1,1.4,1,0.0,7.0,0 +71,0,2,160,302,0,0,162,0,0.4,1,2.0,3.0,0 +59,1,3,150,212,1,0,157,0,1.6,1,0.0,3.0,0 +61,0,4,130,330,0,2,169,0,0.0,1,0.0,3.0,1 +58,1,3,112,230,0,2,165,0,2.5,2,1.0,7.0,1 +51,1,3,110,175,0,0,123,0,0.6,1,0.0,3.0,0 +50,1,4,150,243,0,2,128,0,2.6,2,0.0,7.0,1 +65,0,3,140,417,1,2,157,0,0.8,1,1.0,3.0,0 +53,1,3,130,197,1,2,152,0,1.2,3,0.0,3.0,0 +41,0,2,105,198,0,0,168,0,0.0,1,1.0,3.0,0 +65,1,4,120,177,0,0,140,0,0.4,1,0.0,7.0,0 +44,1,4,112,290,0,2,153,0,0.0,1,1.0,3.0,1 +44,1,2,130,219,0,2,188,0,0.0,1,0.0,3.0,0 +60,1,4,130,253,0,0,144,1,1.4,1,1.0,7.0,1 +54,1,4,124,266,0,2,109,1,2.2,2,1.0,7.0,1 +50,1,3,140,233,0,0,163,0,0.6,2,1.0,7.0,1 +41,1,4,110,172,0,2,158,0,0.0,1,0.0,7.0,1 +54,1,3,125,273,0,2,152,0,0.5,3,1.0,3.0,0 +51,1,1,125,213,0,2,125,1,1.4,1,1.0,3.0,0 +51,0,4,130,305,0,0,142,1,1.2,2,0.0,7.0,1 +46,0,3,142,177,0,2,160,1,1.4,3,0.0,3.0,0 +58,1,4,128,216,0,2,131,1,2.2,2,3.0,7.0,1 +54,0,3,135,304,1,0,170,0,0.0,1,0.0,3.0,0 +54,1,4,120,188,0,0,113,0,1.4,2,1.0,7.0,1 +60,1,4,145,282,0,2,142,1,2.8,2,2.0,7.0,1 +60,1,3,140,185,0,2,155,0,3.0,2,0.0,3.0,1 +54,1,3,150,232,0,2,165,0,1.6,1,0.0,7.0,0 +59,1,4,170,326,0,2,140,1,3.4,3,0.0,7.0,1 +46,1,3,150,231,0,0,147,0,3.6,2,0.0,3.0,1 +65,0,3,155,269,0,0,148,0,0.8,1,0.0,3.0,0 +67,1,4,125,254,1,0,163,0,0.2,2,2.0,7.0,1 +62,1,4,120,267,0,0,99,1,1.8,2,2.0,7.0,1 +65,1,4,110,248,0,2,158,0,0.6,1,2.0,6.0,1 +44,1,4,110,197,0,2,177,0,0.0,1,1.0,3.0,1 +65,0,3,160,360,0,2,151,0,0.8,1,0.0,3.0,0 +60,1,4,125,258,0,2,141,1,2.8,2,1.0,7.0,1 +51,0,3,140,308,0,2,142,0,1.5,1,1.0,3.0,0 +48,1,2,130,245,0,2,180,0,0.2,2,0.0,3.0,0 +58,1,4,150,270,0,2,111,1,0.8,1,0.0,7.0,1 +45,1,4,104,208,0,2,148,1,3.0,2,0.0,3.0,0 +53,0,4,130,264,0,2,143,0,0.4,2,0.0,3.0,0 +39,1,3,140,321,0,2,182,0,0.0,1,0.0,3.0,0 +68,1,3,180,274,1,2,150,1,1.6,2,0.0,7.0,1 +52,1,2,120,325,0,0,172,0,0.2,1,0.0,3.0,0 +44,1,3,140,235,0,2,180,0,0.0,1,0.0,3.0,0 +47,1,3,138,257,0,2,156,0,0.0,1,0.0,3.0,0 +53,0,4,138,234,0,2,160,0,0.0,1,0.0,3.0,0 +51,0,3,130,256,0,2,149,0,0.5,1,0.0,3.0,0 +66,1,4,120,302,0,2,151,0,0.4,2,0.0,3.0,0 +62,0,4,160,164,0,2,145,0,6.2,3,3.0,7.0,1 +62,1,3,130,231,0,0,146,0,1.8,2,3.0,7.0,0 +44,0,3,108,141,0,0,175,0,0.6,2,0.0,3.0,0 +63,0,3,135,252,0,2,172,0,0.0,1,0.0,3.0,0 +52,1,4,128,255,0,0,161,1,0.0,1,1.0,7.0,1 +59,1,4,110,239,0,2,142,1,1.2,2,1.0,7.0,1 +60,0,4,150,258,0,2,157,0,2.6,2,2.0,7.0,1 +52,1,2,134,201,0,0,158,0,0.8,1,1.0,3.0,0 +48,1,4,122,222,0,2,186,0,0.0,1,0.0,3.0,0 +45,1,4,115,260,0,2,185,0,0.0,1,0.0,3.0,0 +34,1,1,118,182,0,2,174,0,0.0,1,0.0,3.0,0 +57,0,4,128,303,0,2,159,0,0.0,1,1.0,3.0,0 +71,0,3,110,265,1,2,130,0,0.0,1,1.0,3.0,0 +49,1,3,120,188,0,0,139,0,2.0,2,3.0,7.0,1 +54,1,2,108,309,0,0,156,0,0.0,1,0.0,7.0,0 +59,1,4,140,177,0,0,162,1,0.0,1,1.0,7.0,1 +57,1,3,128,229,0,2,150,0,0.4,2,1.0,7.0,1 +61,1,4,120,260,0,0,140,1,3.6,2,1.0,7.0,1 +39,1,4,118,219,0,0,140,0,1.2,2,0.0,7.0,1 +61,0,4,145,307,0,2,146,1,1.0,2,0.0,7.0,1 +56,1,4,125,249,1,2,144,1,1.2,2,1.0,3.0,1 +52,1,1,118,186,0,2,190,0,0.0,2,0.0,6.0,0 +43,0,4,132,341,1,2,136,1,3.0,2,0.0,7.0,1 +62,0,3,130,263,0,0,97,0,1.2,2,1.0,7.0,1 +41,1,2,135,203,0,0,132,0,0.0,2,0.0,6.0,0 +58,1,3,140,211,1,2,165,0,0.0,1,0.0,3.0,0 +35,0,4,138,183,0,0,182,0,1.4,1,0.0,3.0,0 +63,1,4,130,330,1,2,132,1,1.8,1,3.0,7.0,1 +65,1,4,135,254,0,2,127,0,2.8,2,1.0,7.0,1 +48,1,4,130,256,1,2,150,1,0.0,1,2.0,7.0,1 +63,0,4,150,407,0,2,154,0,4.0,2,3.0,7.0,1 +51,1,3,100,222,0,0,143,1,1.2,2,0.0,3.0,0 +55,1,4,140,217,0,0,111,1,5.6,3,0.0,7.0,1 +65,1,1,138,282,1,2,174,0,1.4,2,1.0,3.0,1 +45,0,2,130,234,0,2,175,0,0.6,2,0.0,3.0,0 +56,0,4,200,288,1,2,133,1,4.0,3,2.0,7.0,1 +54,1,4,110,239,0,0,126,1,2.8,2,1.0,7.0,1 +44,1,2,120,220,0,0,170,0,0.0,1,0.0,3.0,0 +62,0,4,124,209,0,0,163,0,0.0,1,0.0,3.0,0 +54,1,3,120,258,0,2,147,0,0.4,2,0.0,7.0,0 +51,1,3,94,227,0,0,154,1,0.0,1,1.0,7.0,0 +29,1,2,130,204,0,2,202,0,0.0,1,0.0,3.0,0 +51,1,4,140,261,0,2,186,1,0.0,1,0.0,3.0,0 +43,0,3,122,213,0,0,165,0,0.2,2,0.0,3.0,0 +55,0,2,135,250,0,2,161,0,1.4,2,0.0,3.0,0 +70,1,4,145,174,0,0,125,1,2.6,3,0.0,7.0,1 +62,1,2,120,281,0,2,103,0,1.4,2,1.0,7.0,1 +35,1,4,120,198,0,0,130,1,1.6,2,0.0,7.0,1 +51,1,3,125,245,1,2,166,0,2.4,2,0.0,3.0,0 +59,1,2,140,221,0,0,164,1,0.0,1,0.0,3.0,0 +59,1,1,170,288,0,2,159,0,0.2,2,0.0,7.0,1 +52,1,2,128,205,1,0,184,0,0.0,1,0.0,3.0,0 +64,1,3,125,309,0,0,131,1,1.8,2,0.0,7.0,1 +58,1,3,105,240,0,2,154,1,0.6,2,0.0,7.0,0 +47,1,3,108,243,0,0,152,0,0.0,1,0.0,3.0,1 +57,1,4,165,289,1,2,124,0,1.0,2,3.0,7.0,1 +41,1,3,112,250,0,0,179,0,0.0,1,0.0,3.0,0 +45,1,2,128,308,0,2,170,0,0.0,1,0.0,3.0,0 +60,0,3,102,318,0,0,160,0,0.0,1,1.0,3.0,0 +52,1,1,152,298,1,0,178,0,1.2,2,0.0,7.0,0 +42,0,4,102,265,0,2,122,0,0.6,2,0.0,3.0,0 +67,0,3,115,564,0,2,160,0,1.6,2,0.0,7.0,0 +55,1,4,160,289,0,2,145,1,0.8,2,1.0,7.0,1 +64,1,4,120,246,0,2,96,1,2.2,3,1.0,3.0,1 +70,1,4,130,322,0,2,109,0,2.4,2,3.0,3.0,1 +51,1,4,140,299,0,0,173,1,1.6,1,0.0,7.0,1 +58,1,4,125,300,0,2,171,0,0.0,1,2.0,7.0,1 +60,1,4,140,293,0,2,170,0,1.2,2,2.0,7.0,1 +68,1,3,118,277,0,0,151,0,1.0,1,1.0,7.0,0 +46,1,2,101,197,1,0,156,0,0.0,1,0.0,7.0,0 +77,1,4,125,304,0,2,162,1,0.0,1,3.0,3.0,1 +54,0,3,110,214,0,0,158,0,1.6,2,0.0,3.0,0 +58,0,4,100,248,0,2,122,0,1.0,2,0.0,3.0,0 +48,1,3,124,255,1,0,175,0,0.0,1,2.0,3.0,0 +57,1,4,132,207,0,0,168,1,0.0,1,0.0,7.0,0 +54,0,2,132,288,1,2,159,1,0.0,1,1.0,3.0,0 +35,1,4,126,282,0,2,156,1,0.0,1,0.0,7.0,1 +45,0,2,112,160,0,0,138,0,0.0,2,0.0,3.0,0 +70,1,3,160,269,0,0,112,1,2.9,2,1.0,7.0,1 +53,1,4,142,226,0,2,111,1,0.0,1,0.0,7.0,0 +59,0,4,174,249,0,0,143,1,0.0,2,0.0,3.0,1 +62,0,4,140,394,0,2,157,0,1.2,2,0.0,3.0,0 +64,1,4,145,212,0,2,132,0,2.0,2,2.0,6.0,1 +57,1,4,152,274,0,0,88,1,1.2,2,1.0,7.0,1 +52,1,4,108,233,1,0,147,0,0.1,1,3.0,7.0,0 +56,1,4,132,184,0,2,105,1,2.1,2,1.0,6.0,1 +43,1,3,130,315,0,0,162,0,1.9,1,1.0,3.0,0 +53,1,3,130,246,1,2,173,0,0.0,1,3.0,3.0,0 +48,1,4,124,274,0,2,166,0,0.5,2,0.0,7.0,1 +56,0,4,134,409,0,2,150,1,1.9,2,2.0,7.0,1 +42,1,1,148,244,0,2,178,0,0.8,1,2.0,3.0,0 +59,1,1,178,270,0,2,145,0,4.2,3,0.0,7.0,0 +60,0,4,158,305,0,2,161,0,0.0,1,0.0,3.0,1 +63,0,2,140,195,0,0,179,0,0.0,1,2.0,3.0,0 +42,1,3,120,240,1,0,194,0,0.8,3,0.0,7.0,0 +66,1,2,160,246,0,0,120,1,0.0,2,3.0,6.0,1 +54,1,2,192,283,0,2,195,0,0.0,1,1.0,7.0,1 +69,1,3,140,254,0,2,146,0,2.0,2,3.0,7.0,1 +50,1,3,129,196,0,0,163,0,0.0,1,0.0,3.0,0 +51,1,4,140,298,0,0,122,1,4.2,2,3.0,7.0,1 +62,0,4,138,294,1,0,106,0,1.9,2,3.0,3.0,1 +68,0,3,120,211,0,2,115,0,1.5,2,0.0,3.0,0 +67,1,4,100,299,0,2,125,1,0.9,2,2.0,3.0,1 +69,1,1,160,234,1,2,131,0,0.1,2,1.0,3.0,0 +45,0,4,138,236,0,2,152,1,0.2,2,0.0,3.0,0 +50,0,2,120,244,0,0,162,0,1.1,1,0.0,3.0,0 +59,1,1,160,273,0,2,125,0,0.0,1,0.0,3.0,1 +50,0,4,110,254,0,2,159,0,0.0,1,0.0,3.0,0 +64,0,4,180,325,0,0,154,1,0.0,1,0.0,3.0,0 +57,1,3,150,126,1,0,173,0,0.2,1,1.0,7.0,0 +64,0,3,140,313,0,0,133,0,0.2,1,0.0,7.0,0 +43,1,4,110,211,0,0,161,0,0.0,1,0.0,7.0,0 +45,1,4,142,309,0,2,147,1,0.0,2,3.0,7.0,1 +58,1,4,128,259,0,2,130,1,3.0,2,2.0,7.0,1 +50,1,4,144,200,0,2,126,1,0.9,2,0.0,7.0,1 +55,1,2,130,262,0,0,155,0,0.0,1,0.0,3.0,0 +62,0,4,150,244,0,0,154,1,1.4,2,0.0,3.0,1 +37,0,3,120,215,0,0,170,0,0.0,1,0.0,3.0,0 +38,1,1,120,231,0,0,182,1,3.8,2,0.0,7.0,1 +41,1,3,130,214,0,2,168,0,2.0,2,0.0,3.0,0 +66,0,4,178,228,1,0,165,1,1.0,2,2.0,7.0,1 +52,1,4,112,230,0,0,160,0,0.0,1,1.0,3.0,1 +56,1,1,120,193,0,2,162,0,1.9,2,0.0,7.0,0 +46,0,2,105,204,0,0,172,0,0.0,1,0.0,3.0,0 +46,0,4,138,243,0,2,152,1,0.0,2,0.0,3.0,0 +64,0,4,130,303,0,0,122,0,2.0,2,2.0,3.0,0 +59,1,4,138,271,0,2,182,0,0.0,1,0.0,3.0,0 +41,0,3,112,268,0,2,172,1,0.0,1,0.0,3.0,0 +54,0,3,108,267,0,2,167,0,0.0,1,0.0,3.0,0 +39,0,3,94,199,0,0,179,0,0.0,1,0.0,3.0,0 +53,1,4,123,282,0,0,95,1,2.0,2,2.0,7.0,1 +63,0,4,108,269,0,0,169,1,1.8,2,2.0,3.0,1 +34,0,2,118,210,0,0,192,0,0.7,1,0.0,3.0,0 +47,1,4,112,204,0,0,143,0,0.1,1,0.0,3.0,0 +67,0,3,152,277,0,0,172,0,0.0,1,1.0,3.0,0 +54,1,4,110,206,0,2,108,1,0.0,2,1.0,3.0,1 +66,1,4,112,212,0,2,132,1,0.1,1,1.0,3.0,1 +52,0,3,136,196,0,2,169,0,0.1,2,0.0,3.0,0 +55,0,4,180,327,0,1,117,1,3.4,2,0.0,3.0,1 +49,1,3,118,149,0,2,126,0,0.8,1,3.0,3.0,1 +74,0,2,120,269,0,2,121,1,0.2,1,1.0,3.0,0 +54,0,3,160,201,0,0,163,0,0.0,1,1.0,3.0,0 +54,1,4,122,286,0,2,116,1,3.2,2,2.0,3.0,1 +56,1,4,130,283,1,2,103,1,1.6,3,0.0,7.0,1 +46,1,4,120,249,0,2,144,0,0.8,1,0.0,7.0,1 +49,0,2,134,271,0,0,162,0,0.0,2,0.0,3.0,0 +42,1,2,120,295,0,0,162,0,0.0,1,0.0,3.0,0 +41,1,2,110,235,0,0,153,0,0.0,1,0.0,3.0,0 +41,0,2,126,306,0,0,163,0,0.0,1,0.0,3.0,0 +49,0,4,130,269,0,0,163,0,0.0,1,0.0,3.0,0 +61,1,1,134,234,0,0,145,0,2.6,2,2.0,3.0,1 +60,0,3,120,178,1,0,96,0,0.0,1,0.0,3.0,0 +67,1,4,120,237,0,0,71,0,1.0,2,0.0,3.0,1 +58,1,4,100,234,0,0,156,0,0.1,1,1.0,7.0,1 +47,1,4,110,275,0,2,118,1,1.0,2,1.0,3.0,1 +52,1,4,125,212,0,0,168,0,1.0,1,2.0,7.0,1 +62,1,2,128,208,1,2,140,0,0.0,1,0.0,3.0,0 +57,1,4,110,201,0,0,126,1,1.5,2,0.0,6.0,0 +58,1,4,146,218,0,0,105,0,2.0,2,1.0,7.0,1 +64,1,4,128,263,0,0,105,1,0.2,2,1.0,7.0,0 +51,0,3,120,295,0,2,157,0,0.6,1,0.0,3.0,0 +43,1,4,115,303,0,0,181,0,1.2,2,0.0,3.0,0 +42,0,3,120,209,0,0,173,0,0.0,2,0.0,3.0,0 +67,0,4,106,223,0,0,142,0,0.3,1,2.0,3.0,0 +76,0,3,140,197,0,1,116,0,1.1,2,0.0,3.0,0 +70,1,2,156,245,0,2,143,0,0.0,1,0.0,3.0,0 +57,1,2,124,261,0,0,141,0,0.3,1,0.0,7.0,1 +44,0,3,118,242,0,0,149,0,0.3,2,1.0,3.0,0 +58,0,2,136,319,1,2,152,0,0.0,1,2.0,3.0,1 +60,0,1,150,240,0,0,171,0,0.9,1,0.0,3.0,0 +44,1,3,120,226,0,0,169,0,0.0,1,0.0,3.0,0 +61,1,4,138,166,0,2,125,1,3.6,2,1.0,3.0,1 +42,1,4,136,315,0,0,125,1,1.8,2,0.0,6.0,1 +59,1,3,126,218,1,0,134,0,2.2,2,1.0,6.0,1 +40,1,4,152,223,0,0,181,0,0.0,1,0.0,7.0,1 +42,1,3,130,180,0,0,150,0,0.0,1,0.0,3.0,0 +61,1,4,140,207,0,2,138,1,1.9,1,1.0,7.0,1 +66,1,4,160,228,0,2,138,0,2.3,1,0.0,6.0,0 +46,1,4,140,311,0,0,120,1,1.8,2,2.0,7.0,1 +71,0,4,112,149,0,0,125,0,1.6,2,0.0,3.0,0 +59,1,1,134,204,0,0,162,0,0.8,1,2.0,3.0,1 +64,1,1,170,227,0,2,155,0,0.6,2,0.0,7.0,0 +66,0,3,146,278,0,2,152,0,0.0,2,1.0,3.0,0 +39,0,3,138,220,0,0,152,0,0.0,2,0.0,3.0,0 +57,1,2,154,232,0,2,164,0,0.0,1,1.0,3.0,1 +58,0,4,130,197,0,0,131,0,0.6,2,0.0,3.0,0 +57,1,4,110,335,0,0,143,1,3.0,2,1.0,7.0,1 +47,1,3,130,253,0,0,179,0,0.0,1,0.0,3.0,0 +55,0,4,128,205,0,1,130,1,2.0,2,1.0,7.0,1 +35,1,2,122,192,0,0,174,0,0.0,1,0.0,3.0,0 +61,1,4,148,203,0,0,161,0,0.0,1,1.0,7.0,1 +58,1,4,114,318,0,1,140,0,4.4,3,3.0,6.0,1 +58,0,4,170,225,1,2,146,1,2.8,2,2.0,6.0,1 +56,1,2,130,221,0,2,163,0,0.0,1,0.0,7.0,0 +56,1,2,120,240,0,0,169,0,0.0,3,0.0,3.0,0 +67,1,3,152,212,0,2,150,0,0.8,2,0.0,7.0,1 +55,0,2,132,342,0,0,166,0,1.2,1,0.0,3.0,0 +44,1,4,120,169,0,0,144,1,2.8,3,0.0,6.0,1 +63,1,4,140,187,0,2,144,1,4.0,1,2.0,7.0,1 +63,0,4,124,197,0,0,136,1,0.0,2,0.0,3.0,1 +41,1,2,120,157,0,0,182,0,0.0,1,0.0,3.0,0 +59,1,4,164,176,1,2,90,0,1.0,2,2.0,6.0,1 +57,0,4,140,241,0,0,123,1,0.2,2,0.0,7.0,1 +45,1,1,110,264,0,0,132,0,1.2,2,0.0,7.0,1 +68,1,4,144,193,1,0,141,0,3.4,2,2.0,7.0,1 +57,1,4,130,131,0,0,115,1,1.2,2,1.0,7.0,1 +57,0,2,130,236,0,2,174,0,0.0,2,1.0,3.0,1 diff --git a/data/experiments/2024-06-29T15-18-20/fold0model.keras b/data/experiments/2024-06-29T15-18-20/fold0model.keras new file mode 100644 index 0000000000000000000000000000000000000000..6f21b0c7c5403b57c60ee9c902941a109d088661 GIT binary patch literal 35304 zcmeHw2S60bwl+}_5kV0U1BhTmNz>I~ri&mdN>DLjL?j4ElB8e&B#5GzK!PABK@b#B zk?Ef45(O1eSpzC6DrQuSnBzYPv+rK^?(YBZ|L%SJ?%l?j>Z&?bb?Vet=bWyta;DnJ zD`?1cTtj4%69-+lkVM))y(Aw$j}TXP*AUmSKEVP0EA^Lp1i1#ggn0x7dk6UIQ+oR5 zVK{6oB5eShTrC@Udf zsV^l6@dyrS&k6~0_4apN{G+mvpiqx?Rzt!Ae^lb>8{isZZq`ob>l!ZUl%$4vEA_iH zKDIOO7d%Yz4-5^lZ!g$|hsCZTZeA|IUamiyndcws>uaP(EclhCg9BZIg4_A=boC8x z=TF)N@Amp#ezfjlYNo$hk`?5!#5*{|Bgn&DDv9>WB{~21T-$i~OImC1%rAxJ-k#@T z4*nkm7wYdF(k?f16G@e>ZXw=bt|6V+2=ed^ZLcX*Qs-iC*LJGT5s(b3zlX1jx1_9O z1id395^Nv4u7dxY{NNuP{~ZJ-`UV6Agv|8!_6!K}>(ZfMj~_Vf6wa@UO~0M5|4%;V zdISY@u=le-e{-nXA>H14$ykQ^x(0Rjz5^s3{QSe5&Qg+53;u!W5Q)hCw$Lv!ew_)) zm@E$U_H}pp8whlO?H8C`{ojo({4Z?%t!5kh+Zg{h#+JFsg8z1K5q|(&roYfz!QM;! z0=(VZ>-tM|b=X^}BK_Z^x_-cG!OxoR*VLPY;2+!6pG*E<=tv2zTYz7nx39L8F@U`5-dx=+wi@S%LYxsW|3^!lzK>v2D`LhXG;v2Bo)z{^h8SN=yuD+q|jdYru z_DSL4=PF5%dMuKdi(i1B#32i9uhV2KNlMyoPYsaxipzt%CBC6&&<~f*?Qhud4Ul+r z!EUY+xp_)lhk$l3ptFr7L9XuJlKNa+-P}U`BzCghsc@0FK7s9Sgw*ayoKqLmjt1Mu zt37Jg+5Qg(0)xGMfB31U9%D>!35ly;aC^-XnjftHx`}MhX=hJD`Aff~J;UQ4jGMK@ z(+mn9CvgXYC9DSp1crBUOQfT?_y?hjTNg@+TNf(vpgKJ3;84FG(sSwbCM8H}ugx}?*ToW#BG@k=AjC_8iXSrg;gGHHZtubv)8Fr@O9xc`M!XW=Kgiqd zZxT8vB);b_a)LtrT|8Wucm(;j53iJ~AH(Gm=n>@NvBJYGw6kaJ3fIRwL^4%=Oc^Qt z>c4qDm>hA_S?_Kj?zKurrv0PV{v;CM?%_MOlgY7O*m_%=3B8nclqFd*GD=D^3O}fR z#D08z@4VW}w_nnDM@&X$QRj_pXPD3#7Rq(p$jY?;$;fDTrmJ_>-<58L)A;c+5=v?P z(y+6bOtWIgosu-+ukb%g0=DC=rnYz3xwF?JI>XvdoOMQJ!X!_D?e`r|n=&##8;DK< zDNaqK1%4;|HT>GjcNFyM#AOG5|7(79#qaMl^H=u2xdgi6SE|PnI`Jdzz7(H7z%EVv z{|Ki$PO*`dk^fn%kLcb}+0X5C#shnFq)YYm7s21t8PFYZoAxCw$tC4quX7$q>+3o% zI;j8mfB%{unA$~tzh}n^RXSuLmGl38$^6xW{}%~#)dPB+g|~FhKWSY*)(|C;j=PrOS>1^M$GnCFl z%Rk6hhaQmq+5Wt2f4wTXr1f^iaYyc7-(4jjE2G#UvrfUu%8d9yA}iOCAl0*jI}3J= z%S%>t+9}obbR}y>?U$a6mXeHCf1q5)%oPmSwLom z^yYsg3~nn#(?TQBewQR}-u?>cJNpJaqrVx>I5k6Tb+rKQ5mEH#Wqz>X_(%A0a4ovK zwL6OJUV)5iTajMnO;iwDiM;*mQR%Anh}d!-4iX-xkLT8+(!o!~1y>qT-l+@F!tqv+HlYw(H7ec>{-}z#&o2zKU(blwUT)34Voc^W|EeZ5PCs8TX z9J-eK&?XPXOeXE%Xbb1}7y)%ImLm34B^r2cE!yi?g;uU8g%yc?Xqy{NTqseB3btg> zA!9Ehjea_G$ifgf{^%yO#32h^Yg!LY)k0CrksVO0Pd%y_UWsH4`ojffp-6KT!>Rgi zh95^HaQ+&_F!6y8Y8g}wZ&UqH53&`?zpX%tCf!i4>P8rT%NQ>Cl8-)q3Kbi=;7HZ} zfI#O|E;oLF80B{7=-qFQaJs8i#IZ82XpGijbZzHxKQsub*y*A#X;9jjxUx@{7C+n~)2cpD5Ax8!iOvxS`7h;OuGh7r@Ai5$43dD+Vxkfm&u!=#ruLXKOrcL}bqZsB` zPD9g8W6|_6adhCCEbdKsH?+O#v)Cux2bOkAg*`3$paC9@@csBY*nHInKJ^}k;%=8f z-}qDL;XWLW6sn-@Ps;@AD-+Qg8Dsj{4RchtKMd^}y%o*3`z{EW-~_vsZ$m8~uX9s1 zZQ;dvS;#VMCz|#ArXYD^fGESZg1b_#0=41+T2-?V7N~B9J#}ZoX9LgBy4&KB_S0!- zV@)ok=iWf^cS^Z_A6mIvgLlCoo4Z_TWg41c_lo~?P6F)S_Y54S_g1iaTt5ADn+_U= z_n_^b--gpdywLTVlVCU3*Yw%TNsyhBfU1j!(BZ>l=ycCq@r!fbuwhXuERFm`+v;b- z&+`2t6QuzAd!OVY3unPclO3Q!?{l<90x=(-ZHi_Y?k9vX(pCo8BF)C-w+27HDa_6zk?A z`jI|I8|HLGS;$QRAyFS1C zo}aF*+aXS={r*!4_b+Dt=@RJbr%Uyo%)q~I`oH^m{nzjt)!A-Nrvmvs{6-mf@cA>} zf6w+`v43+3bj7dKTvtgAP-p-D+0U8Iow)6=f-*8)ar|#S41c(Lzw{?Y{HRO%oGBf~ zUkm@Ze-SvOgK4$Sl`Ux(y80W^^nXnlafYMu;Om^Z>vlLeXFV!xorv-#Z-4@R1pB@UiYyL8U4LD) znGB*`I5U(lvyF3IQUE8S;euOUI`oZLH*VSVYxGlxcr?KBk+`_eF!Ahx$(8PzasN{gY;C#p>4nLm3xd+NY`)*>6kUz!MYXu{0QX-7@Nk+Hc?+}ML3DBU8 zPDn6!J@l9`Ox$S5LpSDafeC}_;pG>xwBy}dT;4zrj<05nxGQ~7jbAYL;Qa#h)AuN3 zG@z7QF?|h3)r7zhXMOJODqS=|r7!xtF$O9GhM?%U3CMj6pBwi&j-JK6p*2M|C=(k7 zHS~(Oh(=eq>E2KTEVLlmZ#>jUt)|1?xxzV7EX>^SOknL|4rlR3LdM+*9ZJlFnkI$Z zJ&_yiDTqOhTC&LApMmpE;D}SmLN_9Op?#_cGLG8>a~74tgyjk7!hm@&t+_w<<>(mH zYKzlD!X~35L5(nddntUd{2GT0vN@SxGxSd7CT)?f2es9YakCG#a$i;tfuGkcfsL2c zIKSJQ;JQ~N?AxsyZLM8_)L#|TwNYze^4>w*<;F=+`Hni=dvGWUmP>{^OE$p$g)}T0 zx{?O(R&z=BUvW#`BABsy9ZC-ZXsaL;);ae?OLQ;L6VqmL&6|}G(Cb0(czFu8-XD#M zn_6i~2QEQiKdoY==6=Ct%Z`zNBcns*`e@a<4(xWO@_B$b%#q& zxuO%fv(d^Uib%`G3Azke2g7V%&_{cD!;dTN5kF!P%E{IjJYTnpzL%}UH7xOh#K zg-CzB1zab$3?7xsgY{Z-U_?cCxMI_EL1aZ4ec0Fls+-M$4j&TevvNC7f6q1CoKqRx z`xANa!{O_6n0*h_mx&W>oSB4{2B^Zb2IpYv965CD)HGz7IUJ4*+eBZwSSg0rd%%4C zp~!qt9Nc=w5RE=~h!gN`ak0!n?#1;7T#3P1crN~%_?&nSJnXO+z6$TjHQ1QL0S+H& zTbT@4P7j4O^5*oA(NAcLQBL%MBLzr2zLe7(dJ(0Wj=YF5K|u zFn#s$TJ-Aa8qRQ79<8z3(?jXQH`9euwpL%dzn9Icy);523o;_Bn!XZ@bY?nJS8HxeMj zzP5BVETM0XYZVlfOyuO`AJT^w^^joY7`^|QJTl8&1-ISmi`G&R^tA2k;r5Bk1qRx| zoWG|nO1)N1ZyWQ1PO#b_S$|vx8`sQ$yq&A)lzu(olpqA{CeGr}#I5kw8y7Ue){*Xi zy$q$|p=ev*H7LR@O6(jV5RA%j=KGI6i0;&U~(dAhmie)DQKCgUx5c1sO5iSzQCD zI&Tdp_u?YQH>T)U19Z6PFDvM_qAaw!+6G?BOrSN0)#$o<3Rl#-kX{jSmcEni4d1)j zqhq}Wa&M>-TJ&id+w?LYUW_(GgQ8A}Rd=l920XNY@B825(y9)@24X8R?Eaa1Y&i%X z>y`$u7nCE@N^Rs3EdyI7B++vV%W373UT|xP8T#;(9&Ehkjdr|MMIp1i$Be85c(wbn7*i|Fof`jZ)uD^EZV=^P|zNJ7Hq zS!jOU91b^Lf!uFg6Wbm#LW@+~P~o--oXT{4G`~C#9@()Kj`{qZo6I<(H(E(Zt!7q5e*3oC(PtY^Z@uAXVCD=S^B7~Ky z(8=){9d=I(om4!}9c(_$*{&+1t(A|6A5<>m&U_Dqt~U>HiRL~?;dC$9s5p!JsZo^8lkAY9QW7nQelL#AUWUrDws7M=Y=veLy9a~zmHqX`B?hHJz5@=kHjB{Q92IK4^BZ}5696C57MBa>2lZrCVahlG<3_+bIY&Jfw_y6;L8WE zxiw+daAKIAKv~`ywp1%Zqn-D-%06mroVW2|= ze3nGEDPe6fEzXbU3b#El& zc)-{MM!q!X&W!S- z`MtEn2dC-7J|G?W*G@v}(P><^UNzmA?t=1n-WNNMGeX<4_j0OZg2kL(Z+L6&9HhMK zB)7I+6}Ae7q0ruiQ21afbpB{3I8-+f?m0af1*c3!A1(HxO@2dByi7bYwV26$ym(aX zs2(DjyT!2PyaKY!T1(H3NTcI|gJA8cw_KKJF)W^2P3yHCgl{Kq5bx?8hHPsh;jJ(& zuJB7Qn60IP%6IHSr;Q%dq;ee6Ua5s%&S~Plq-;l#3FBaPn1c2f@^wpbnK*OBGjw~gQ!Jt)b>!caaIZ)p%Duo%WUL3^mao>=Vw8N8-SKh=>Zd! zry*>0DgAbn3VfzM1^J~liDxe8ORrjHg7U|v!EKt^u-n9KkiVoKN-GKgH^V6~@?sd|y|PA!`gCd+(TY+IgE{aCoag>5(J7t1=rpPr1rzA6?HS6ekKkrOLp|{%#VT=ZX3+ zCXvFTRJu%CmKL5S(WTzS;(|r0DDS~WxK7^~<#w||X6G2r&xeA~;uoOrC+oQ)4$=Tu#nn3Cz#C%^g&ArDcVixrQKuF3=l+>R$nPZelEYI^!)D zchL)u8om^2rN^K{=gR4>?=2ST{q}RHbRDc#y5RBK&dPl}2BfFqBrmw}3Vv^67*Z6?Ck5AF)GyGrcuA zkw%%V{F~2e1Rf5zX~n>a+?jB9L0-2UT63eSn0`ByYh6`IC#R^>qLGMR`L;=LPQMqe zbAJ~-Sy(El?w>_34fLUZZQZx)eyZPF_dSnyK=-fr7XL9*`0qN}b=_C0_k>;c{5|~UP#yGAzW=Use?|W7CD0YW()SiCI`JbFfYgltv-ZcSb>dd~-l8jx zrF{Gq{=Ec#=}-LQ_ZCvQO5a~duT$zI>^2AtfW*H|0-YgerLN1ow)44uiUSmt#7jF;83rV z(M2I0H&Z*~e+B>E5|HAzth1X^PowO|N&0_Y-@BgW5O?BMYJ<{Oe~l8ag#XSBsYOquihU>u@K79r#lEc~5xFxZmbns<#a$ z{5G9)XST`m-=P)wc_!WZA(HO>+tL(XM`vIHl1E)wvzpC z)BQfa{^(gCUMGiLeZ{ojX6S!7H=s`p^-GzI_`#KQUz>F1NS_P4#{al~ZEM@n{Xf_F zsqmex{M#4fDEHBEtRRvQIer->^0I%zekpch%iiu~*SlEoUmMM)_P*O9x*cQ0?^c&h z>8bMhdp0WwoG&Kvr}&NLzw3$dBlGq!uB%-|e6xA%Ae6|zyY>~6`3d81GLjR)e42mm zdnxPOdWLcu>@IRY<3`F~Qx}Ziuf}()@Ze9%@L}UyA5dbiYI32+KDKPf9?Gk?F~7wX zh@NjQ5KTx}&mY!f8Gpc+=lp83t9jG>IB})s8S3k(2NYLz zm^x>y$hR&#Na6`0{G%UQS!H@9KR-K@Iv6yQQr>)>pRsg2mArT{zqnT++c+wMzi6;B z^Q~g5Xz!|nY*Tb!excV`a>w)YY8^Rd&{^t>*mzJSJ>WzPepO8(NGoktiC!+ zW~>x{v`k~q=Upc!_dZWvKg>`gbB|I=A6`+pr}e3-`f^rxgOO{O+M==BTs$%1gJIL?D-ogS;2spnT*Znfz?yKr~@BTSnW_> z(m-)ClczM08mLo7*(z@rDh#({?@T(tKDH|m&0iNPvi4FD`&t}l{1=MZ1f6Kn*u`1= z2l*$dN%k+O4*>`GKJGpE&o^%8TWwSlEUG)US(!oQitk16)ugeP5)$@v?0hbmsGHSKVo4&_{xf7@HTlUlZfp0a~jABF`JfJA8G}rT~DqntBVh%s>n>xSA zT$#VsPo6(4q?L-a{fX2zi4pPSYZ=ezebksSHtd1tx2Q847P4Z8L4?ID50UGHS=5uW z+gaD9J>>tKKGSyiGwQS5=}m-ezteyaP9_X?HGn0>8pH;-L?U_0d7OEhMz9f=@Rc*m z@fo=*iLk9t@S|q&#FU^m+^k0uS+_i!SgU7Dw5e+luKKBXjsFT#-f1HqI&Ccxb|eem z`W)a-_RA7S!&M2ve0w~)U?QIU`Yyh}AOR@M4<)8ihd`4!9@ip<;%-AX<57eHLCNgK z>8vk!uQzGBEoPUp8V3E$XfFXOi-x?c~1B7NT=0zp@8j-0u7k)=nV`DB6K@?%0Id=o zVoy*iFqr9qpXw6_h9>#oW73}CFW*hWhd+uW=H_bPrX^$WjDTT;qsak0NB$aKJirKl zO6(w-w^ZS|i;M7`Bl{A<@HZfxl_!&`r+@&lH?c9YN}?1`fQ-F$c$?WV{P7|NU}rA_ z?S+Q8nuQv;H+de>eQ5~5Yo_6fOg1>+qlK^Ly~5#W7u>DXov4Y*1Hp^mfg|q^;Ww~N z_?sDRc%PHrc=|1dFj#v4@1DOLkF&jwN0qGyo9~H;@DFl8;qXX;x7HinmdgiEde6iU za#{F{J72-RW0_#;#=T%#@c^)QlrkX_nS*;?r@{Nw?LfzN7+!y%8F#Ex#WxJnCB|f) z2c98Nnx;GA#1@yy1@t2qxb_7?;8UUhZrU0@p1yWCZ0eYYP z@aHHUOtmU=z8j5S^~yAYpNpo7o*7({5MFTv;3 zya#Qp8$RsgD6n#108#L*9vfHNfS-pB!0?JaSaVYWe{;kTe|0e(+`MEDlq^$#Qk5+D zr9SKMilytFQol?Z{&9b-Wm<>+>gwbtbR_>tzAf9*L~pOFQq3*}>}Qvu>;>~A_Rt1r z(WoWMMDMNliDK^!rb>={WZ%rfMVyb3$oNdWXxOO9l+vZeY~c__6!&sCy&RF3rkAa4<(u+!{RJagMKypGE$TES=Wm_Fzh1vx^f%)uN#NJ>HizX zVa1dN;^WJa_$G(0WCVXWNGW*$XJ_|(Cx4a++-Ls-D zD*LnN25J#omaS$-Jlaad_8eWQ;rN|Nxo6L+XU`>9s2pUCHf*eXK1ZJInI1{n-|S1> z%fXq@$`M49-fPm_<1zC|r-2OYwS-U$zE5VIT2IcXh@tdfAnLn7nT)fuWzWS1vx|dH zGl3JtY^Am>*?eUM`TC6^+h(Rq?kv|~3m0uA6B2e(f$O5#0{;>wR(z0%UEt2zn=qvM z?F7=e$7b?nd>CmT)0@H8*eY!Jc$lqIp2*0^VPLGC65;gy zG`U82jP&J=UQdIcZ-KAPxgEuEF_gFI8<`8?qWFGtO`Wfb- z%5AbNOCY+oO^>X^I+7Ms{`)>2=ybG#KyAPPRY97L2i`3^z=o1iea` zMg4b?r_8S~qpXIp&2O89wfd`=+`*$MUq+s7TIA2@%l2ZuhR&xpjM~gJ?n$6L>t--p zMm!}wo@3dt)-^zGaWU;T<=P>0nC78dnH^3PbG*McYZP3? z7)Gd48;fI^)h}-ft6l~i*)u7GIe+DdXzb_^XWZs#uUT?ga$rD6O;~P1usN^oOqkIjSbYK%%aHcO4TUUXv3Vd4G)_7g$ zksQbPE1C#HQkO9{kKPJxa$~5?0}?3Zr9Y7mw`^k^`1wq1&RJ$hA3gTl>Sn_CNi-?w zS;+3IjAz)T(JbxMjfFcuvPoeT?8!b9`|jyQa>=t3EZ5hHEq|BGSXzhRiD@@UXC)Oj zZCjPFan>a!PyQ2A(`zIfl#{|N$>K8;jvFy+U#GJ#4;zzP8U^f^`!;NzatWI-N0&`W zJHbXd@`QSGr{f#q_p#UNYK0#j<*+N-3dyK36WR4O8`!GKXg2v}H2GZhExT!?5;bGR zNnzosc~qt1cuIY46qPqRn2fn;#a`jd{Z=< zI~sGVwaL~r0IYNPLE=7L^tG8wdyWqaoeo2&bfMcP|gaD68+I^3IlvN4Br5N%_d zy>K?6sfN+a)4&5gZ(UmE$ zDA(;hS=VwGk)x-9XoTZgGFB#AG+=%O6?)fyZMPZJGMHXwbJpV^77=V z*Lygjobf)k*i^*sxQ>gq#L6-Y0{4^6q9c@>`dy)OZ$thnyY-@4YeMwk%q1%5QV;&( zQx{n0_!<1frYOnrYKXkg?(jAk;~_) zQTwi}7A<_G#}?6MqN?{!)Q9W={1wkolZcCMxp>#tJFL^ULmGI6VqXa_DJEW;P#)cG1=ghvSTlTHgO zdr(stHsd1;PGnHq;vCsKEe}~M)obkZD`SZxj+UYrg&4|il#p33_mOOEB&oHAFUZq7 zkCHmGlkwUKo69_pHfLD{ zq1J7jyf9vitV*52SSl{An5uXMuQF?3ip}z=yJ|hi;W$Nl#wxH(-|wW=y8-3n$kMApCduEc-&E_80w6_yxo zV-L5Qg2%0yY+_0%CKoGh%v(o_fkqs$UJ*&?j}|ID_F-RjUdW zypkpz-_?`Ns=JxV&qSny>PfPB-+bKEyhS(y-$S~sSx24sX(Y!F)@1cZCbQ1n+}WKU zpR+!bRmrq#L#S1cO(-wn%gR+Ub10YO{p_=4#mw>W`IK)8PL){oXAcD)p!$D#&e~+U zlB1u#X6mkVW6Qs6V7V8^nT>*>?Bzlu^4avw>;X?5_Qcx|vf`2*wOTWt^$#0DRmCK- zUeh*^o<>`#IvHI`FU5(<*q+F27e8XwcsQ_BR5sz!P|r5z-xPx58(Hm9$64ZeHk(&1 z&uqHvEc))cg^ADH!DOyZ6FQ_^VD`=FPTgtfPAXGX%zK|Y<|o(D)Tlv9%*Jgq+0zHl zFfZ3Svu>`>Nn(*I(|1#Uwk&fU`|L^z8&Flv2K}^`x%BZM`6g^V6K}Uvc;c-uyYp!? zd;4(%_1UGnsI~Dl>t*#u*z$h3XjAu|B883Bl!a`%Ae{n7ou{@NmpHk1xw`gR%Yc4QV zlS+kIcb|cXOKC#6vPaCDix?|oa}zFV`vlRnN!T?tjMTT2(=2K6;2T#6v;#N1;gVUmBU`w}x z4DuN76P|)!9&!R(z3d^+Ms5)AoVNfocK64oty0D=yToH32V$6&p)R<{O~A7EZUq@7 z8sOmOB+xfp3uqMNW1l?=u*C`AfrW-8SZKHwpT2$y@9GI-OwKLenSban+Hd3z^Se|LdY6Y|KXPYQqb^c)2dRn3KFV$S#jH-+I3r7@w+5=&r5?UUqx2y2C-hb&xK0b*v`H)HlJcm)$b! z&S+!9yUze`mn8Alc*bEfossMs1jIqdx@3i<%0864LEDsn|N5D!W+D`JAUN^ zg)z_efCoCwyj=yG!ReIyyt2o;ux4TvIC1ft`ONxgFvir37&&YdF1TxmUDSC9bj=E| z)YAj-TSu($QF-ez<@Z;xQ}fON^7Sc9@)LyEC%>~mZLKUWEV9GrET93oXBe3M>O8n* zGnK#vSAq2rN4$>)1~flh2je})VAkJ8;{z1MSc9$t2%X;#U@~jX;cQJX^Og+ZK;8lG zx9!BJGl@V;b0RkIbv%e)u7bafwC81>3C8v?t3lkdN^Ia@C#-4H6!7p;F>u&h3p6%= z!#KrNV0dX7K(7^uhuH_PcYAu^leKnXBBv6tHfA{1J#7;(jJL%Lj80U*!cp!El>#{qYBk4Nqo-Cblh99V~I^4&G}H#VX|F z0N*u<*OP6+MrLJTC*K!W#*YhFjtFHGRSUFYQOC?@7U?4X0+Bd8>B*E$ND|pY1#n`EDBk`F#yJMnnYC!f=cd*%&$2*l03XELR zK!W^QbH{P#dAu_s?DS_JY^+5*PsrZEW{J$On35R&fpIMus68HmS+Uo^0>gp4Z2^i{(U)ytVdZ|_;^oJ|tEI|>_HH|T(?J?2jyw+b z9p8jSdI#bAlVtGpp2~oA$;ULr$-wvIIn2FEA4`+11fwt2fNlJNcab( ztiAn+fx~g!C>=B6J;VYkd*emd^)OgE1$>>qjMx{h zg*V^X2JW@ifI-0^gpi;Zr8q5w&5ZU|D7uzGK2sEbXT%P-az%_4=NOPk-GL8?tFIh-@*$dGl3x zUgZY(qn}>ja$D3uL|iv~-!pfiW`id z&JzH=vc6y$-wxMT4FOk%p2vlLhk5hD4`XMKOvdNGn}=C`orrJm{|#@@xeLA&*x|JV z#OL2kL=;W#Wf=Ovm_=|G?+cdnuZo?_?&k=O9PubDGiLN zGXsr>;<1al1HkTPHLPsaGq5Q76;^Dg0d5@G0!(ry<6c!QK>1NIupDOwb|?nm7nUT0 z?sl~}nf}dOv3CO|R_lW=UpR}WsiuQJ>azy-iNkou!nEE*#WDWfr04LQ-I>+9YAH053qdJ z2aIigg@r^K;+kMKxVk9`Ul)DFJke||X7u?ID0LTL70?B&h)>VVp=I!t=K2maQxNYQ0ymD9WdKj z1$;au%R6Rm2r9Si#A}qYu@^Ijfn_pIfL1xhi&x$cWRuQ4O-F6Noe0@xg?H@;w|GS+tY71&}FfgelWff;=7f$wqbhO0i?Y4%YC!$%iog8KW- z=1L<|cn?Z?0#)I4%qw*k<~J@JTl8^(dHjU_VEFTy*zu#WU_Iv!f?tP#enpO;LUs~Z zvF|E2;mII8GkhX2yO4mt__Ei`)GrvDe{BaiJx|Pgc1!@0raI#%2W-Vs??eM@<7jZA zUXGW2rUfLhwZQZKIkTdwSG?{Oav=WI1?+v~0p6hH-NF5N*4Xw1Dd0=UQf%zX3~Y#D zA25Wpzzglw!0MwxK+`@O8|knEeDHpOMZO)62R=6C?HEsC`QbcVZGty;@8NJfsOc4c z%i|hg7$f}3xk32;vuk;^@pbq|3C@&5AGXL~1*ZS%jrpFe zOe~DEzz)4Nz||FtfqecI@F1}S?7x!(vHsA-X2Af5ffm`+f>~yzip!KdC46wy-5 z=&T~%vOW>4D0&7wHv@2U>R!yq^aDuvG@h{8-wNKgF2G|G)qvo0DR{oC5i`vw#-DtZ z#g@u-2OE6z!COl`UTStWh&GyrPt2>rE@m*RR(2jGR+gzwZ^izVkE8 z;fpcYhPgi2A-b7&CF&E;y2Ow7`MCgd=)0CTNRM>Jt07L{Tr{S-mogH$YC%^S-} zECp+eo?}n?Sm6g3%kru;n|NAJbFlK;gUsJeN7#+pI>7B)gPnUFht-cNz$TYn<28@i z0@9r{K%L)q-tZ&ycy&n>COWtei&@L#m3pqmMjy_`dLADDs%0B_fmaXnw!BEfvKCYW zwP7AuR{T?JXml|X0j@KC-6i-He9qjE5IQsRHE zJDCo~UCiUv&Rz??m{{TakE8&H`ZXZADF!qSP3MVUSmEQRjRt+x_wdZ^`|+Nn8(?b{ zukk`()bhNNim<$;{jo;c02J34VQRbu;PYV-cFlJOXq|r#n}0|KppDBh-xn$1+0>`l z?mGhf#MFo8@3$#qzkELaXYHpTI!_(^x%X3KrXFKAY7JwB_k^q}r!AW3-%qrCZ=mSi zgba3|#Z|_^bDXF$k|#30@`dbSc7X9dJd0gYZpUt)_Juid$WOHB`ca|PnP+StrjV^q zk?d*Je#)f5T+uAc&D3M%ej@j(`K;f!SXT9DFVWS^aiTBR)!0$>bC`~`0vQ>T&Kv2u z;m)6{kumQ~mmZVvJpL;KI@6`ckBQE>^f;wyXN9Jn6`FQdXxdq!^eln2Txap$4LbJV zckBFh2^pEjslQ!B+OI`UzfC9Qqos4#$FEUac4jEK{Tf9_dgrEUnGr$1O($i)F!Z=KaS{j zaU*f@$V5E!jU{npcsg!f{F11OP6mn-HSu4L!#`dpl+G9Fei~`~kME>QA; z_!o`U1S34ng`FFjbVC2^{QIKbhC}*L%z{kvv|Lx`_eo71_ zp0UYS49bGU@$==yHUk`}kYruK|J*p#hX3RF@jp8bZ(3)NJEzOx!-Fiz?du)Mho?8; z2g|P#myfuT23uTkoo)MxxesmuS9(Iq|HtIZ(ox;c8 zT8ha#`V6l8GK$DpX+yp$V(`AP1ZnPan|S6NLuweGB8T@-BfB;8h~d^7|G~a-?H}Ti z?z5EQUK;*!{7>yX_0;vOP{MBm^k1C2qWLBBOKkqLWa7T6qkDgDnKZggqNdu(%4x`G zbdJUlndHPl*V~VKwtqT*!s|y~)DNIYei_}>-8IB@tWR)&f7hb*Ij4p1d&Fs{+`}Teo^or{T8~kWR&a%$*&i7{bls2c8cBFDdZ)82PL82`u5oW0el|- APXGV_ literal 0 HcmV?d00001 diff --git a/data/experiments/2024-06-29T15-18-20/fold1model.keras b/data/experiments/2024-06-29T15-18-20/fold1model.keras new file mode 100644 index 0000000000000000000000000000000000000000..ba833abe4635df80bbe909e14993ad89711c5b86 GIT binary patch literal 35304 zcmeHw2S60bwl+Z}2nvXbi71Ex1g5)sx@Wo+M9hK_1Qn4WNR%XIL_|PAC5Qw`0wQJ< znCYG_5fdgv*MM0uVa^JQ_zz+B-OJwH{r~;%y>H*U+c;BQRi~;>o%-sW)74du!z9Hn z+H&oef!qb$rEZio()v-Ce*8T{-8|ev-OLw<1O}`y^z{sO3vmti3=Z)L3^1hh4SD9$ zKf@9FhEgI=*ATaGPmk7QD+?>k%mSEMk)thf%92l6SsAW!_`8;#&D9Wo=`JVN`jP&V za}Nyg@>$f;j(?y>n4f2BO>HfKW|mA(KRF<Y>LV>H9YLSv zQVF(>U1!1nO@2rl$A1TbaejfpfuXYke7pjK{X2Ci#Ip^D9m4r_u^G1V_5aC-vuAK% zJ9|G1^f!m971FJ}myTtapIdN8@7qDr&d)#0=_n-~wU9PUhe}2Ew}pO@@#{=T$7Erc zkDrI@-$0-pY`?(ls(&)JFpIyi^|zYM{I@awzZhFQi+TTaa9REVa9RFBZ-w|Q@(=X! zXszon)zxlqWs3BFj_PWI*Sw!K-LI)PDZxLssXv$eztE9VTK7QzARj-^ztyOLL7_hW zziQil&ix0L&Dz7Qvq6*j1X5?LEz8f-EjYj@V3BLE)bEm70t<5s3rmak3nMU+z;H{R zl&__pK8w6VT|GSA-Io2A!EpEU2?}Vnnm?P6MSg(`-TYjCnbDdO?&cTP+DM1FX`K|F z{%+C)na3iHx%vnCOC7SX);cZBNmAN&Yigj>S6mwGBlQivg4n=I9RgdufQ~j61-p6pNb7TTb9WE(m)glzr@~e0`UJJQ5i+|cbxvI^+Z${huhytl zNBeCI1cmtcwfU)*o@N$=l*G+Hq_t)#O&jaKZX#QATG^9Q{?adL&G7sO<7OlEG=rCo zk-7sRQr3e5gO+u2OJt+Cu#M2wy%VL>tqYTSQ0<;|NSJ?{^jtfY^mp|O zT-5G$$p*mBZK2eo2=NaL4E2_xqD=;E4q1dxYZuHcf4`@$?NIp}@k)LFU?2CtNoc2# z`kueY2@VTz^>kb08SK|OyfUuZhRZd`GuYKL!qYvhqi3xOcd<{XbgHyX85#Ymzj;2G zwET|Kpgjq3-YezgT0a`CPa=UHo_^*XOqzS+apP_6)K&YdO0(qTl$GVWv{ALi+P;2t zT&?9>FIl`jCMUO`<3_$CjO_@E720p)OgD4-*s*d_N?HA~u%npV z{jTkI%CdyN!v81xjyQOP>N;@7td?<>Y=g5FG?EoLa~V z{7(35_#Lm!>Grs7>ynoAlJT$KF%M+*b)FaP)c^Cp ze@zcKbduli*|B1^c3H^e{6AkZfA!%1MFO4mfPP2eEgkbuR#)2^qBPRJmT1`#TDAF7 ztu%ZY;s0g$Yxvb@_x$86I&k@W_&wO_L`pB&{BMu__5GhBfzJ5tfPJzYdcd^`3B8UB+N z`!zkF)1#eXeuvg|l<_T0a|J4--bu4}u@Is_*#XWB+0uh5<#)3drA1v|$Tr7JqE zl$!c_(lw*jOJA<9vRvOaZTE80+Lhb#6%^VlRPI;-Qj}Nj)lO2`@#N4^KrTXd^WPG- zSRO^|+^U76<>ZfsY!O0n!e?l9Hx^xOPK1$qn_%Cg*Xh!26==lCLbNNZ809>wk`!;) zkJv9qp;47Q-EcGu-Am7=FQ4u@Ds<5yy6cqtwEeImsQG<2s%|KUL6Yw9s>B~o9o`p3 z^f`ylc|GASSQen_q6=v7(=l)_D@03fk4I0IB*GrA>)Ab*oM63HnehDmpH;)WNSlH;cg2D*kkAcxOI*nO8a;S9x6*flUKx{FX6!`?3tZp zV~im@yhAJr#0Bu#m~^=BOdcKbb}U-8Wh2Tln#SEJ8i1Oc?9r@2PU!fiBWRSX3kum@ z0Yl#=!JrkTXz1ctbhPCGSCM}Z&YEtGB$txW%_com@Yq-qr7{jubtc@`$?GLJ%0a&F zTT!hfm5$Oq#J)^okletblFh4*aY4%0(Z=D0@Z#z!!DqG8l0&COu;g1a=f?lQMf9?S zH!f^JKZIM6i&H90K4^!?MOkRz4h}hAxe0rp+QTjBX)ioo$miq|(oz2&n2_4e(0A}s zBwQGQUVW_R947P7VYf9XDYrm4(J7BRo|g^}#%`xyO}s?!P0@k-!x-V!konN}nm3H^ z6^_b!@zC@8Q=!rHT)6gTg=AB?HVvn^aBDYgr@QxZgt@)U;EDmMaEo#?SHH;~k)`q6 zeTh7b?A8bA@868J8wSCy4LO|R$81ztzLPEI=mB^!U zD;Ic2fEKL2D2X^%gKEA6(Id%`sCHIw*!Sjej!N8&E*N`oy|2GOo7^u!`G)bFK|%>i zz*JDSq8NIOnk2OH41>>p7|?3Fy*Xo-(URNO#=-G>zR}vI2yNe*i^Ba2xSh_~aGqTu zdiCHfba?hma_CJSckXI5%#2lszAIlLhn-$6I-c^V&*4!Bkj1e0ttncEy{BJX+X{WO8@VO3GT^IaeYsJaRw0S)Ff@3#5pAbc zibki0p;-k-C1ElXT2Z$r;_!8#-((kg(WxC%mljYZldGv*3;pA zO$0T5OX%er@6y-<$Q`Jvp&JYe=+&?G(A!*sxu$@pv|z(a`pf1-Zq1ZqlINn0^v0eF z@a@%g9Kh6R(}f3Vk8KsSQ?xqV(<~1&vv<)c+(~-!nJsnH@8E9{2qQIN4E3%Gv9yD z_Fu9888^&J? z|G0k2e&Gm+GfB%j2y~}cF$WblYFu@lUrQPDT&PhfVvlqcJrm^(diee}l+Qjud8;48+ zv$&u3sG|>|gV6ltu1M$m7U7s4T_nl}zR|<*)sjWEe5fz=eC0xsMJj;QIM5>25V|=(N)H@Z{{p+zm>Zd*r?sQr(jzi93eC@Iyz@ z3SSd?ht*Rk@%KgZ%<{Oz$f?|qMcq-Emjo^}c7^l$is`~>k=zN5{s>yep{^AsNLlJ% zeSDUWh^v)w_Bk!??C=EPD*u(x?nXAZ(yRoA>AAq6R3%EhzmG#9Zs^IC?Z_@o0S;V4w`O7#-HoyCiq?Iw-s}adXcQ^%R#~`{XfxzDlae|E;*9T zPe{)9;CecOnnzEpih?#5G^o3Nuem3$$8$jiLtx&wT`IaP+ieAF-9zoFUP+v5_C=Kl*9}DVq_^8)116qA^7@9U{4z%xj zhbv#z8xBd5rxj)`gj%Q8bD?{0NnUl$;B4x4pv_kOp=K|88q0Np4~8m3eZ4Ydb$vWC zb{K+&T-d*vzOYjj}Dk|3zQO9Y>fSAZJ^VD!9~ zYTUEa)3^`gtzg9*e@VmOP4v)$cx3u{GwSl8E2hIhsZ^bzJJsYmOl-G z8VOCDclQW1bPSJv^S~FGGNsVuQ6aZ%*cGnjQ7$)Q{xvSM-WFN&li*gPEP9^#F!WVn zAWBl!L+g~wk<%~@7^<{X=vc3dGz*_{{hNM*;?Ha8kbvXDu_y1)*Sg)NhaG;zZEbdd zYYXPVH`_{t$doT)H zvjQd9m%uXN7EV~32)jxQkif2hPIo#+&p#6d8<%*a!6wOq6|uFP=}$A@)9O4W~M|8V*GtZuUX1CgSkSh@I%{bDrdR%0zh0I|ag9A@KGN49)C&4({2V zkBUxTq;+3>(YhH`Ve3__K$ZZM|C7*2MK;R^2`r(@m- z>8zUBu(+%M%1!xBKb#Wd)v13t> z&q2^A#1}pZEQD`He52FD6NI)7@i6|R# zNm0|d<7XH+>GNW^X`3oUmOW6~S02anddoGtWh2W+OW^9qEp!4eAML5h;#`$B!pW0{ zz-|Mrxrvf5+zD4}m@#1rl6%RrF3B$R*}Sn5-Wx}>e$x>+_uF+k;cO0^S2YeE*XhY+ zC}wdV4mi@?mmNpD_svDSnB!cud<=XUq=CS_kHViOicruqTbOmi7|uxCf}A9W>3J2^ z+>QP%ba%a5^z4BulEX*V(3ug}Xyu$;bY;I6@WSVjXgH<|AFnSG`r(oKY{2iKvpgkV(q=`+{Mu|_b+daD)FIn0_S|nVzhIfu|_A&)XLbDKn(=_ZgwE)1_$0f`Mq@2MtuQ zI|cR`TqHCI&4T+xG4v{(y>PsuJN&-q2=q%o%UOq4(6*{ViQ_7Jc%!g4&UA{7>I#|IpcR z-r{UnIAa=@|4xM7ey~H8mX{@?9lbrI3+omLA+gs4J)3ZZ zd$%!%JLl+xJ`1wgC<8_qhEIYI=8B-IPbA9rpx{(DZ`5t9FZ!gak49+{@J&;H?$z$) zsNbXuaNcKqV+5);Law5Ema4yCugqu5M zB)vttJ^@7Yp~i>9lJzzD+>p?IP(g`LPk4P9t)%Y4Qk^_HeZyOhD657ZjSjReZ#TR> z{UtolTMUy9UZ>^#OX;yoQYBB0%t9$g)}k(5ZBfqUBgnJQ8Z=~IJ!fju1%^}MXu3$9Qi`>Brg@J zABl#c{rkg7mj@yHUXS5`$iwu8x1-=q|3bPt{TX%l&0zNa{zFLJA`5As09@atH-#gY zm!emXA9A&Z8pth@5xlS`kVkSp=i;-U4j%uATd^xg*nj?fr2T3${3KmptQ9Vo*fVil zqeB);r-|^G^)C9AtujK5ja;GgK-i!)lb+NqOjxQk7b@`Rg-Yh zq2b8B_gl_&T0GRcavkc}-RH2fu4v?CH56$)7LIOmgVVzA(u4Nd30Hn!NC&@|Ko`tc zf-Y(nP!xEDQ`sY(XP;-n!#Txh+Fl+_XE$(<`>scOcr3IluBPismC^B(MlNUDNObN+ z5xpa+8fteLhvq2ugW**#XrqD>^df2=t=e>6z*=S?rLZlWwrvcb)1X2V2Es%WW#P-w7CJ9AxJB4F={dRLObX!q;-9K;q%29 z=Qh<38Jv;OMZu2HwW3C44}(kYzNU8!-TB_R2i zX3#annHzDPhaMi(M1vbdh%lalk}eE~2m19!`UeZRf$M$X`N9Fv*d!CZyxoN@Tm#_p z%kju)>R1#|6^&GQjTD-`0z;dc}Tv zfswPO&_*s6Pykl&T*&i(qZxt*|9s&z#DhCCoj%J z-m?&x@>maTTe%5tnbsmn9Iy>msqf>qyPLxOFFomTC47!Q%9lIte}lW_p3JG9^MeWx zOkk#ZIJavQBdj=(4x47izz?Su?XoJGEh@ajPf#`SkZtD2*b#iGrU2|-KHtZ6xD z@P{Cz@x}r^y5mbPc^e1u9!cDoq5Wt=r573xW9ZujTByNkFs&)K8R@?10nfj~(FV!@ zzW$Pco@OtRxGBBjGO7om@?njVP2;1u+ToSlwi%~5MVkcJKPLmd*By>hS7o6&V>b&w zq-jEz<2_-#MHlo=m7}Mw?ha>X44{WTJ3)K-u7}abw{s6Ij=*zkZo?+SC!9iN0rEec zhRy&Stv_yq)(^3v1)noeVJ(i9CF`OJZ5~V#xuFBj`sn#psm2&A!77O%$`#Ds$4puE&@c3==|Crogt~0c+6#etx zThw)IW$3()@aKAOaovWJa8}yzvF%ejY+OEVrs>Vu^<2q)(mP8hjjgAbhh)=La!(~W z&p%4IfZ?3BMhe|6sSA9XF^4mK?MEBei0Jc?#q^6Bd)mS3GCl4wpPTt%l(1I(PPjQH zg|4y5qWS)xgql}ux#%G;Y0O;@j{2tZtM4s3@2C2`b>CW|9lC$LxA>2l!hhG%&g;H1 zy(j9lAMfAw-hz*}v**--%iqIqF4ayim+peYDwAMT^bP0{^bm>nErTn@sQ*e_wp}a^}j~@Kk2Tst(WN_kB+mFGFkk)eAP!C?RM$FWjlTq ze)VkqZQFJZ^*b0{5ZZp@&=LPD_}?u78Ga9TbW`SO9BeyD|F7$N=d&D=4&2IYP-h(f z>p1zJUGpz(d%Go)$+7kHck8`|G`T%zbX$ji{fx$y4vo;+qUE-g`?G%?>0q!OU&=r4 z2|qFBw>g*T?ZI}xP3P2+ZL##X=@xWki)0h(SIE6P(nl}<6@rfBppJ0nir=Pd_w1x+ zgvb3hoqk8Q^5oy9`+a=<(X&8U2Zx<~#qGb%(0_Aopw>F-mohPJ<4U%#O*V66&xM`i zf84(wKfb;Df3EXWW#byD8CVIUttBrM_48!i7v)guaiaurbtjpKz1Nt-?z{O9`dJ8y zd@;e6k8XnMA&~KiI3rLfPiF%MnvsVKyHerZ=Q1Xi+05+MYnZI<3ar4bm6~Q`PO#!VVFX(l;Cz}it+5Rd0BqjT92`K%(k{E~Kg4f+D z*zDr9l(UXCvvr@ApmBD!z{TeyrFA=mS-R;klLez0CWRAs`xZ$)dd0Fw*3T3wJd9@5 z;U&S9^4sF&uXeE>aw(GcN=I13FO*$9CU3};>GxL3lm?rhuysxh8C{|F=4_$zz>TEO^ek$~t*ruV-YGUBrwf(gRm1;(m;u+Sv2ioFjL$m@4J z7&(ur?8^A#earK*X${j>c@xTOB5|wh1pVOaw^njCWflJdsB?*c^nJ&$-WcMKsg{EoY9I0xp8J;3+QCJDdrAYiV{=NC3^=GWw%1}U{6 zpn16~ak|$=KEInhaVxi&sOwt;c5JvyR5)MbOaBvTf_VOeQ0$#YOjtS&*w4x&jPUOK zcL&Ts%YAcV(6qID$;4!$i@zbiYGfS1dX^GL6R!eCpY8bMoRffCwuRqfeUzxJ8Vjy3 z=kX1PuH`Rj2?zEjcfka`Z(yePcz)6CI;hNzq=K7$ zpzP#@A`q<@c^J1IEV=f!&kj2^HZu{=kBnAhx(CQEwFs{Pz_S(HA!I zpAJ?dD*O!juV&>!uf^sdlQS}rURqCdVIB-ZhTbp3|H6R2%g8cfMq5c{OVN@tnleV zd=xGK$3X_6e{2#z#32Kag{4IBfE;4O)1&yb%_1Uv=N)3-pu2dL*JNN3(2f6G--38+ z=txY^Eyan2Rlqnd7Chf+f@^Ec0g7g2M6b94pcb|c-x`xdT>H)t@9yuxO)L5V+uBet zHeH4PWMvJ0gLN8*_u$#ohx?bSvs|@1612Y0vXoDLSTErB~6~yGxA8>5o zeBhpRme_dJhL|_lPl~M=oSLLYOdT2t@ctNHWN8g<-t5VbT3rP$hezON0-}f%6^_tK z(*%|F2Ee;v9#Cw$M0DG617ELj4qO@O0aBjh#Oz8jabTMl&^Q=P#EzthPYp>ptFB61 z^p7T9$cymI`D?+IqPs*?14ev3JBLUZ?2eOjp8@ALy+Bu`!FVsVi+Hr^HX`NOOK`Pv zF&?u&mKgMyAs%~TAY!r>DC}MUYS--`Mn`VMjnqzokA1oVBdzn`>a0{^t?wiJ^Wbg7 zyh(;curL@ubA2cg7#%_UQlGVZ#j^EInO`Og|F}QaFs)sGb$0S&+mrt!-)3W8lB<)q zvil2%N&3+v+4}UplHBhnskzr3*ya1GS)J}CRQ<^?@ffYog3&v>3ApJ&%xModfye#f zlIVw-BNd|7TAjaSl`6l) zVG6kN+?#l?S&q~VIz!C3Xhn227xQNq)bi_qk>)YQgkZ)-zFe^`KQ-(;@bY+0l)nq+|8hQ|OKHB%}tEWf)GW6mBiWxa=w6#&gb3gvvKm|5$|xu<#L zd%Fs1?%5p5;`%(1?X3^Ys8eqIruiS4@hi76vB7hghuypLXATIY)*2>IH+-|%QI|ByK;0)!mxGoo2CnCO7a+{fekVYkG-aFCWMx7!9DhjGV%}-FcU9m$#SNu(X(+ zSsBDOl%}wD7v3^Pdmo7$;#1f+qkY-E?pD-xgDuPsi*C&585X3e@)l9%)Q{BRtMUA! zkY>!TuNK?g+e^8O^cH;2+HGY_ zeiD-p9XE=(HRqUqIY;?<xiw$@5 zVHY~3kx?GK#i*-^xU$rbOxmd?eu13C?_xgl^{Pm@Jc zUZqnf2Hz&GEAL;T^9DJ!1WgRM!oBa5?Qm}EZ#e$a-u zB&McJ&Od8P1uHa`UwyezJX?g?yI^tQ6YngxtW=!rkjFC_KNSHi2NTryjGHPYR zS*PMCv2aB$ao^~?xH4)4`98IXe04>I5oX7Wv*S*aUvm}2hQfOB*sl9U zD&ai^@zu5B@siczP^SwOkCv#ikCMgWh92?Ek%LPZZzVA?_DUn*fB(*W9k59}p4}*& zqt`^L%r+`{%>nA+cSrWCLtn~lww2g(VkA?&x{{o5OHHhPYO}avxHEZj>3Q<}uDwjx z=L|JOKa#qBV=q;bdL59bhEvnnEmV)lKuS+xg81#G7tGbh(d0|3GtB7tZ03`K9&_PQ zh1hnh3Dd(dQf#A_M~?n#Na-}}qn=OIX5^1OXFgxsCAJE=z|S3WM>OIn!{3^Dn(VqP zS6q_1O#D-m71R6h24?OFH!9NOp}0zK2(!8+MQm@ki@~QQGET;I;s*nDNo$EQQ(%8m zl;6dZ$LvFDV6yr(W`5&Zf;_g5u>w*0n#0rl`}*mEtpuXrn5>Qhifd z0;9;}UnTety*H4Rcy|UF$BV|&7sOdMg^crrBvQY`m2kFO$2{+5#8^#VC*BlaBEBb4 zV%`Rh5o1ql7{l#dL{W3hr0WEVOyy;~qKldpU!|~tTs&nm^ zdQ2P5>eEXoH`-bJTp?7<8%Q@Q`_4p-$$mIVYN=xI;X8@l}zBl8M;CI-H8y_CwU`{$MGt`iMhB zMO1{Fgel6tB=%c6n^M)WWt&}YlHu9eqW!vM1=_b5nm-&s_ zCF0nhrtxpJ3=%t=MKK!PBFV{Ht;oEV(`4b>&7?7mr&2CQiL}uuev7ylU$NSjsTgsH zADp(98TFW8R6&e5N>@j$>Y~NoE=Xo(MxrV6P zE0W27yN2vHqZ=7DXaeK#W^{SXs4*46WBRgrBtyNAO{Vy-Icj~yR8rqfgQ`8bo#N@m zP`9r~h)Mf1jG^O$ioxc?*ys1JGjxbPvqGnL#hT3nSdV@+%m}|nROGod@y!T<6rUd{ z=Ml@0z&os*FrU$ht@;lXS zYYM5>^$7K*yCQX_fk&y^D~sz#jAZ){yU6G58pWO+CdXz)dA7;fq1=SMX@7%Rr+Syt zbgmWu$ZitXVt1&Ady?67-K(VM_iSzLFZRoy2a{22{)@Q>F{-Pt{EdVpbMfv%O=R$?_6MR%_KKMib?>wR?Lt zWN$h)G7m0U35w%-lOYpoDDJ9>AU1dhdvMNOYUl+dp7@{(yX@3AGWt^`_}u?86CD49 z@1zHq^}ZWfWg9zzX7vEU(th@WXG_Y-8Bf`B*aOOB>OW|O$VL!{flG9~3Z8=9_x*I6RrLmNwX{<=4_=wn60x5H?J(Sb= zd*XqI-ZRJ14*tZx8Z2wcG8uYaOm<8J@vK0dU7EUqscvqf4jxP=9Rf1>TKDf#BQ7Vi zdK-pQ2TvXs_d5~6%pSd)R8FpB`r0KimS7VZf4_-YiO*p#9@$Kdz7s>;IGRhxO=WbK*or+KH!%}W zE*3qe`iN&AvSsS0S+E~gZDll)CX|mVwIjnUhEyC;nJ2!oB~@%=RV6Oh-6hspxt1x` zXl4#x+skYks>a?c&t(>V)1-7qU1RojKg4`mWy?=nZ^)|d&J*W!mT`BxJkV9$6D&#hX6Kq)jsO+lwk3~XGx4*RwjA*of&CE zSgAA8Py z5=j)9vg0E;M(O2t#@4~4;DU_*_ zsz9@!0rd>SsoQr}P`YcfskINMGQl@2*sL3BRtJA9Wp5=tV{U4fFi%%ZC$}%B#VPWO zNdNlzOzn+q{>yYv>cgb1%-eZsq&o zIn-^azJ&}H{Q!e5x(Y}7QX7iV8G3Ofh8WA2)>I+ za89!dG>sUA-}H#(9hx~7U)B`KOEs+HHT*b;-S4W%>wA4ER#ln@T&Ir&DrOJyh}#$# ztu_dkyHkz(KKq0VK^|_nd>yuW6d%m-ROEe8odWvYRmPQ6hvOqYmSLYxeZrUN&cG|b zn)2h<9K)6@|A7S$y+>S}IiHvnTnjvVgyKd1U5R72FJoy-hvFYD+TgLex3TRg0R&5m zh?pab>T zzHGnM;_>(KY2Q`w6?`-B_}U5l*q}^&=&4a)?Te4#;SEDv<3TEKZP7}6aj)H&m-R#J z``c3NaHRuwnK_3yq#gq!lMKM)Vh%6!y@b1a%)y?G-GFcZv>I3S-GF#DR5d$jvAFJoLRZm@P3(S;X5OfW%UO8)@_7&jTq za#IA~?P9>hrFLN1xjNqa0m?-1))bz%u@NW=oq;cXs03PP*i|6_mKy@``L;Vi<-Ahh z0H%QVsUPq&z6%MbH2`nku@Mt6src;KFR_I&XR*;DP2AJ-9(LpPJ-j4-43VF@0el-b z609w}h(9kJjEnrcfKzYl@p}6`_~T1mu$cw1ApQ6R{Ho|C*yf#pTkXD$^W0Ohpo(=M zOJzSE(I*LbI-LgKS~|=fQv%dIOA7p9%Qy-SKw;d7yBUB9@Y5MP&EM z#ET|0;#a4KSmbM5#gA4hzrgh%^xh7|3!XjVVL!_8l&ifl zt#`w*#@?COzCksZ*;F2WKu1mbP9+*NS`P-%4k{pJ&q#cdU?z6%%P25o$1YrcPX=~< z(n;LnDUlYusB)HN-26FI21A+_h?>6TpU!5_g~2e zQ@h_H<~ENYdgxn#qs?D2a{GC(;Ob|rF1ZC`i+bY@1w2gY*iKwUdp=RTKa;rkS%uiD zxsWi};lgv{PXO_mb)d1h7spTE+TTNf*O{3_p~oy@!~z45TDTdT`~4p7H{}eEzakSe@-@QEa?5y2S1iC| zH;p3L=T^kqsntM7!<5LrYlCZ!nG1G56@z#t4y@?af<+(hLY!$H%WG~Z2f5t{{P?FH zz$jn@cK$5F<3|33z1Z#m+=y);$a(=-p$YK4epMi--#q*ZuE|q%cEcYu&E%cCwvG3o z?=I}xq{Uc@b1!^gb_E!juoiI6T>#-|2gcQy;(doE;WbTjz}(Xke27I2hBF^lPb70=p3fS z1HkstT&%v|dTjmnlUVn>zPvuEw{YWfePY3iMTGA2N1$?pHgQN*fW5fUjBgv101SRw z307Gq@>HKF5?=f`-k&yjL~e)vg7*xG)n8A5;oT zT?>GsUl$OxUxP@W*azSBWf^Abd=Rf1a|pB9EyNVgZovkG)nV2`U;KVlGl=_C1P|HVL8J@`NdZ-3p zb9FvmGz(nSHM5#&;7QamyY`b?7 zTiehLsEk{0xp1I0kb9GWFHndDduyfu;fhLdm|PAl&rcz=7YE=ojCx@u=DTqx$8$XW zeVeg84VJh(IRV@FY83wUya}OoFb2Tg8eo@UDiADLj^8v+#@8Jh37Wq31UeH>WAcs5 z!1$BJSZqZtm>iyfFH_EFJEi1pKa$YYoCY@b7)Pi*NFywgR0&T7C*YtM$oE>Ej+?)m zjQgLF0Bg%{xaHGF_*|clxZ;}EczVtq5EnO*U!Q#q^k4l0;EQL1h9SMchiS{PXX>e7 zw$og&vv3{mer5(SFC-g$uX`iKS2%FfyVN$miFXY_7w?7m*tuem&|D7Uwwn1rkBte62R3ytxIKbrA(diQzbk4tdVxTDx&gOy-h zODaB6XFk3>aSuquFM_h3)_Ce(mIt5i#viLiW5-W5V3$uNVF~8LFJba<;OX(WiNj5N+xIJcHf+tUIZymA#AZn_Q#PA|uw&Ew&?wwvYP z%SAwmDZ`6L-Ua@CJ%|D@5#;&@gK^6r5!a-C)txUamcy6;`w4sT3oZ%x_)CuXAfITw zn{^mSJSHYIHe`ZjUxR`7QYB!&qY#hYvjbarkpztcx`Pbt1~y@06==R@19mzE6Dv}c z!J8vv!N``Ln9I~d`1Ms8*rBG?1YErdpEK|ycB#&cNY~v77^nm8SV^$A2LeHUZ3y-* z>J&D5RT8$kVLq0Va2YqXss=koW)S&bUID+`R>b*~Ubuw|#COka03J=-L6KG}7JaD@ zcy`^04Rf>sE{q}0{-gtDAMTCqblwYG$6Usb2K#~Qc8OqYRRLI-8-hC+pCz#RI()%_ zJ-noiCHMn)4?}ggv1YGL_`PXe@cAM$uy5TyV)ENKFwT7+(0>^U-bBRUt~+^PD3%G_ z#&riLPEN<6TrXnYaTmPkaTxI=w*}uT^)!2To5dTkwHL^7oPg)~`GV|ui}B2Fra-hU z2RvBZpGfXA4gcEv0dL2vp7*t$i#K%_7dx6faKuRJ~tpHUVDoD@#r zo+f6XH*F6ntNl2Zj=&b$UBzcx zxDf;D&w$Tzy}Md=Xd`9S6!+9|fo0i7`Jh4u;wbz*gtcKqWN}Q;+un<&C?r zEA>;rB)3ucKJ!%E;rbq4xMv*r$?Pq@13yn3%6f$Nmd;0NwJzUz%R%C6s&vesO~DDL zp~R=G%h;eH2+KGSgR5>?&kKK4hAT&k2vzAiLCXVsB2Ocon6~U0=Hi+K47FYYzw*Z* z#P18wswsom)pCHxtGNem1V-T}Lt=rah8AXCehzp4aRnPW=NquwYXL0XZNTXsHo)Lk zEpY$Z7xa3N&pSV?2R;K$wz^--U;%R;VlT&sV0=0q*QvP)%=L5$Z`~x|82JcedJtep-iI6kr`)1^9@T3y^vu;G-eB;0BXwMapcnS6dY zTYHd46})g^qF%eOl>q}Q9!A8mXV>XU6lSj#G``TIijK!p)UMIY47r0;sBr@0aC9i; z(&)t0scB1Y8JLniKo5ym^Iuh znEu;zGCmqQc76OB_2`ZaW%pmBXix9hR4r#3{M&Rg_KU-Qo9>^T`|q27qVRU!|J?I$ zo`O6$*Q+Pr(t7{_i8y|87f-%#pT+!(26=ofb3HO3%$qngUAnEoFM;@S(HVGztOC0B zl|U;o9hgTr6SlGU_@htd@lg*o{(*}@{4<9E;hi5ujG1D}SO4;mD9&FC79J4t)$hp> zR?K~V^R|fu#Z3MO`^x_DJ{sA4k*yEP;(vUdaCFCjbRL(^@qae*e!IRMf%#?Ih|^b+D^p=lnH%~O_JQd?3BOb{HJe?yo!@){HU z#aLM5oGZk~t4J~!3wD5-p;RXpvCeTA`;O})srr~Gx%8t{P?$ekcwT=p(}xTYs(tqs zdMsEj{N;T3ca1~!vVS~3{(HwEB|ZXMd50huj8G-5tWT1WJqHlFT1Sb{kLqL#I8W9( z=kbRbEZ~3Z-<_W|a|6K}G%n+w!FwTph$li-Oa--)XjWxNMJzcqR-}P2)}fflWYA*|NVSL$}g7Qy9Wk%`7HWH m!GH8y=(3WL^6}DNFYNrw=nj**c59_jl>U`UL;bkc*#80O8U0KE literal 0 HcmV?d00001 diff --git a/data/experiments/2024-06-29T15-18-20/fold2model.keras b/data/experiments/2024-06-29T15-18-20/fold2model.keras new file mode 100644 index 0000000000000000000000000000000000000000..dab4ec0fe97a89c0c442515fdf1ea63ecea10bb0 GIT binary patch literal 35304 zcmeIb2S60bwm&>b5CIX9WCBD~P*6g5b(rZA6$y%ph=__JAOebH449B0K~OM(peP1F zL_|@T>7FhyqnJg-ggFbCbNB{f_T6>w?!NziZ{OW_?>5dT7)>qZ$91Hl zl8&JD>Lpm>eChgNS)}FDQTCbbALTRMC(38w%*fD?1tzonBYYyg=lDlN28D*0(8eaV z17&|E7RDwrB7g5lpE>^1Tas<8Y%ohJU};0yS>v=dN!ws1i(G%!lGahnxOeITLCZ(> zPv93CG9xIUt)1DS)1!m^TWb2=VoL*l!9J0Z-XT7-zbB9L50CZ_i3;)w{+{=}tc-kt ziJTzHKQgK%D=NY#D8$G2du34((f%#0M$HfVUdfE$P@gDUn-;QQpZT&*$!eIqz~qO< z2e#$?f(Pf2u;?h4mV!U<;Oi6R7w8=s=<~gq$sy6f!4}5klwWB&GR!9;vW1@+KEaVK z{K>lz)Kb6q_tw3wW%83{Mfe89gGA^ySML9(*4 z5e$lvNw8(?eiZyakG$S-(_75G3^#6{-HsSob*i2gZ`v1wt zB>#xeR`z}p=x+{H3#40mFB{9~V4sM#-nW9Jm7jl_(^g70YLVZECQ2r$|e}8(VVCHt@GG{%?#eTdOJmQ5#A8#+=(>lZpZEGXFjA2n)d zSX9vLU$t#N<^B`PHe|Zbj|NTd6Udyg?^(hAJ`o{7ApzbIGQUe^39JTMSy@}PUKoK< z1cqDN%J`b=9~2N6m$00jH^$~=n5*`c9PfihHlm%(?3Y+g`H7c8xRzo*`A!Ds(ha^ za{5L8@OkQD_U3+rpxDtv3pSmOp{Ope?;~Tm3)Mxw{P?E|5{m z>z9XZ#RRvMTkllm34e$GQ4(+(KE$=9!=7!uHfsxO+Hlqu70i)61-9I`K5YsFKN*NN z0y$2trP zk;_5uhy7$1?M9uxe}Hx-FE? zL%To7SF0XS_{sh}Z+X2cyX5u$h~w7WzrTN!fPz4|Rc391QxKSaCsAnEnjqJ+hHV9Z zj4R4kbXq7o8ym^ij9M;ZfxfChf64cIfvk4b@A>W8wN|LwwgRN6pxULCq`K|Np{;;m zp8V!t5}Nwckb1fuy&Am(wV!N;^!E&f`{K%>ajyfg014rl7nu+%xxjE|9Ux`6j8ED7 z4L+Mw15ciu0LM&Bg?Ieh4Zf;<5(UG2G^KGfdVWz!IykZ&6F=?(;xrYia^@Bzto|14 zG$#)hXKh08_679$OJ}sGDH(0emcqSnmO%d}C(*^!1nKAeSa`@?f(i$1hM|u6 zXvYF;bToY#>fiT1WJj051w+>|>ASUI#z_VAC0U!_=;{fVmr41<7tf()t$r|WysxNQ z+79;XtAt!kE-_Q@Rl)&FC2+OcG^o}y6}{MS3S|#dLS5YZF!{#knf2^aM!8@sq*Iqd zdQ}26Txp8j%C|6wYR8}r$8!?+`-)j;UJne$#_oc>y+YxUtJkH$wqw!d++e7bRe*dK zDe*SfC-HMWz2hA%1|q#D^N{}P5%8{dG3K$5!4uAFIk6j!N zd#%65KlLi(r`BoF^ZiqxQd%aWG5-^NqZ!^k*BK6N`HJBY97tl(mxs}4N#uFH@A<({d}K4u_3?ZdmWReRzY*D9SdQFM0-z*rBb?lXc$-@R`=svd?B}10Kv`xzB5S>Lg=l9^3B(36`wuCctdp=`s+*`|3 z9AC?*A2emUu^xPQ!%1O>ilfZEBi}?pPXn1zQVDap!i$G}B19AH*D$~4r~ml;@_T-| zfl;eC<@Wn8CEUN6`O_uvqn|Fd7VOM~O*7^2^b6<0~68EllfZO6BX_E zgSSF$(TmM4Xx1)ccrB-xXS)Z&;~&@X>n3F|>e=>i;k^VtcRmNnC333m+i)(E=Hlyd|W%Us$(qjPBDYs1$U)GM(HC=Z7tO9nH8d$B9};J1Q_OVdZz zp9M(O`52RRECHQ}Pe6t2H741-Jz8D-g|U1ei5?toX8Kze3dgJYF*EL*VusM3uzXz_ z-{WlpIx;y4pG0Fcvezyz02+QGj zq7Qu1IR<`=AAwGtv4h`C5;>=yLC_mzpj!d$(a^rD(Z^92;H8uV#^LZhRFF51NqV>y zy?Hl?iBK!x&zaq!Z~AuORXX(JUwQ6BU(EI4mX*CA5uJeUZ}daCg&QFP=b6MR0pImD zk{(lU;Fr4rp2!N8nm#@X`>4b*W1W{HV$^Q5b?87?_goX6-0+Ecb*wvcXo0aFT(MOZ zrhI6Sj#W?Nv$1E)r8R3|?7%MQpm`iJoY)Jc8Z3rYSAv;@yV{8Ey@Ow8nI+vkVH!%A zwgD;I+cI$-HbIR!QH)baEz~xA!)ydoP`#Hb1oTp960r^S>tKjxycMG-8Wfx~d<(j1 zoQw9{-_0-oxQF2nO@exjmwDfcbD~A7Y|)~%{rO|PAMnS|>4~hq*}x(7`EdDAKX`Qc zM*drK3e3?TN@W<(6>P_!EXfmwzmuh=O&`-4V8RNk0kiq zWht8K!}AddLL}P02D&dAjgoGUkZPUyD7viP0p_jT3)e524re;e5;Y94klNMng%RDA z(ZtmjOb*oH%_dpF$mkV9&G$htOe2$5+-?QK-Mhe`UK>&PAuoQkbu9W&I+WLU^@5Kp zhM?-#TSV&;N*Lj40SsNT8`)Ju_ML+a)O*x$X ztuz1Ra~-d`HUkzO%;0BV8iYoj_Cb+PH%k-ZD1Ok2)$m>IXxORm4s`EqIy3bR1_vaq zKt)sg!M*Ju?GNwiTsEFLvmP zW-rl^E+|ultkYy9NLvj%hG)VP>=Kl{WV=W`dNfcB)1gzbGhqK$TWkl3V!^cP=ejwcrIRo1(aRgM7l!2D2J?{UntVb%~9 z>|n_8j-n48ERYZB%g4@4g?jm$c`SDs?^ok0g~xU?b~_xQN8uWHucI>RD;a^*$48;P zebnGfjg6vx4!fB7R`#M0+uMxBHtzx(Ly<*T&5Kn}d-=8id*h%;IaO z7D3~ylb}wcHJo0M1C!URgjb%QWDNUcL7g{V(tbCtG3HWUsyD$26?C14I^25A^JkTy zp^hgkDTzgS7uKU=?P>JJX(bA`>kSh(bV4f!y<`^Mb7qWRZidYtjxYkZRDRnRLw=H# zJ2KUL$*+H)hQg;-!J4vk-kI~@-#_K~IcZ&l-}L5C+rjNY`l`&;Vg31xvpe9) z=>Ybzqv1ntJ@g;04zmMhp<~6}VK0jm-HeSI=G0!G#pFf^?DC&i&aN&&j)yQ01q)8O>MQ($n@9p=K> zbw2|VAnnF#ezk1f`CfS)ldRCp z&sd^_ZbXo1Pfb3w*tCt09kvg7Sua3$k^tO(It2zkNEFrN%;mLH04g%V&=zxRIF=m1 z99|E&@JknYlL@2wvwIakW-Pn!xC zPA`JdYpkRvG?zlyyqQ@LuorgH%0`cZ;`sYWn_sNf8O7#JgxglyLtU#_7+9r)c6}Iv zEIWjttB`{A>0{6%^PbFG7iah}hG&A+h9I=(8dS+!jq)`FFafLN>p!eVzCee$bm%HP zVV{QLluseGgO{WO2VUXdP{rt4ZD(k6tsI6N(MQks9OE1P!%>Cu5xDe_8O*-E5`N7Z zi<;BKFeEV#iOE^$j>8H#(lHV?<}H98;i^34%A(X=7x`Yq5%`&FknUG4fQu`3K=F7( zRCVz(Kdr=>NvU#VY&T^fxJ#AS{g#0WZ$+boGlSth!A_VMHJ0DU`k?X=dBP)8yP_`o zNoY&(117J4Wz5yPBcndu(KVSK(0-HxRqT!7je=%a2fi>jCWfG@(RosXZI2oC9qv%e z<+#k(YY$HoYtVsNmzdOH9IDD#0AG&E5S@$fg02|~VBwx}x;i3R*l$8G>U>QKbyd&v z8^iaa=)HxAPYHqc3GIb41a zt$)RzoLUH*qs<|CH3@kg?TIRwvCRAV-I0HjB?`^UfK%%8;2m36D9xLMI%tfBa}QNB z-M}c=_mB(JTVh%6 zC>#UNeEGzmHRIrxN^{t3XpEkVVqv<003FmCgmULZGU0*N@b1M>=8T>jRJ=o?`;oG_ z-QEnsj=|_c_d>SDVoXKJjtGWZBrBjx&mM?h zQ^p*#-_J~4T?m;R1rdhnqA3%t;5XyhsJ)>z%m_ZutWev5hWYEmb*3MgOHuJ?s5lJH zQ!0S2{i1*I-eQ{ZZ$F31*THJ!3m(5s{vVV3%XNl7>%B#N+g64j*Af0&?=9@tzYuom z>%?>&xLJDc;SOf-#QR(npU>okuV##{t3W;`i|Mm)J)={1gt%Kqkr~18h-?Kz3bpL*D@gFmVf7a0-*L~%BPyEAvy#KBD79`%vo@W~_ ze-FQ#=~j9<-#_cz-;sZN3H*p(`Fo3bZTOK3KyJqWto?CXZMc=cxA+mqaz6eJe=dPv z`V;^By@gz^^7j|=_#c07Vb-QOe)KPXjQ^b9KRfm~dILl~dcrdkSMz>Xj`BT;O4w`T zQ?zYm3GzfV?AB3buw_{Vnjuj|ODE(*+CXXW!%i2`K&^22g58I5mB&FXgZi<|Fqm+;<;5L$@lfhaVro1IDX%^og8c375ZOt{)_p?rKa?+`Kmvjb^ASAzi?=4 zFaP#c|7*1WlkR@B^>Q6Fz3r@|To(UZzUsZUc9q(2*^1wGzk0U*x_v8$#%+vFi)y`b zZHxaM{Ci74j^DDjZpuB4vhOG9|Gd8cc$P!jhFiG}`Vq%}9w+~|YyPEeZ?!~nIkues zZn@WzCAa3-eedwEpV6pm(+EFWw9Vhk{nfwrwK3R=FV&y+gdZOE+nmewwyDE!(|NXK zTh0A#x@m3MV)=yn74pEgbi0^eA!thuYYW{M{5D;yXD2%&?D*Ss#%~30ErjrhvNU$aKDJkJ z80S^2z-HuI({AnJg%3>BMB3VgbX{`-_k7U@w%?AGwC4OYA<}XZ&EJ2Kozo$eJrsU} z?d!`*=877GcQ&XCr};h;etKC(mGrnzJ}%VfR6o6^Z@MUP_G}K;Ws7$=bwagR=q@QUXFs$bByGbKs>70yQbo)UM_6K&RC zLg$S6#P*uGpK@3`L{j{43b!LNUYK)ZFDuPa7v0&a$>lk}5;joItgvYh+weM>D>~~S zd3JIzHL)*A-`mrh?QUeuN-v}e7y4c1YL>1OK1;bF=Eo+|VOKZOWuFVUQSDf6mV#Ku zOF8>CwIe%qP$cKtrJKazax5MFsen3o`=exdgRb!U^NylqpZh`^k22x3rq}c&gSkTQ zWvj)Y2&WyqjtVtKYY5LjV1(z+)rku#{ON@~j&dmuX`EP@Ww+H`riTPirP?_ra^H4- z;)F{(N@1~su*vv}@U@q{aGh>At?}j&m)8ENWaQNAw2#eh$xGf?GGb9UeT%uwPP;jP z`*`1oeddxvcU(4xb4j)%JF1MO)rM!X+oqJUeXO5Iw4D!&?~Gr{HO)_x`0w4%UN{vh z^q72-&8%BZ-#)CuTE!}foDVw-x2{iM*A02XnoWzL2DcYTUTO~z{_FIa!KlBYK3jaV z5=^umO^(AmkT2{Kh(0kL;)2Ht@MOkD=F^}Z3SA|uF6!xD&CU0d>_ z(=ssBdp^0kum`C~4F_sv6!~y_6SyU~01gd{1J8FXBIiL{@@Wqr(&j244;@V+EGuFO z$FLA0wekab^QI3uJa-XEUEEIKBRUa@wc)^W##WNOX9y~E?i05iUBQHxII!hG zG=MBFEF|uAo=1F$h$D`CRHAyWTSXd3W61PL95E};gc$HX19+#^lArY$&_TAdV^W{F z;IbqIc-FfSy9>if+9H-Pzc!i7Z07@{(Y3^;gGUIT5>Eg;%ZULCQ^8jcO=7^BGT@t@ zLo}aICASO{^Px1I3Q z*CIk<^gxf%spPUd9l(y0N<`1P^}ry-2wY3*L|CrWAe*uaiK7kQ2qvc;2+lY~DCl%1 zrl_Rg!5fDV&n%zf!{&_y?UWJzB7-Dmb;=@Q{VRw;i!z8Wun`tq5k?*GC#?0c$D9QYJWMhU}-BmLBg zNO~fVlhgXHKAGs)4TXOLrxiis@^4%9E_ zgV}d+{rTr`-n+Ms%U|mpjumCVcDZswQnY0YNk*!Wh5`+-(|sq26M~XcCowN0=~a-`l#NIwdkTt$L8H;pGWmzZ)|apI9XUz^#@*3>$0@D`r~Wqx!Q5;uDefemgJDj7UQh*`fzsX>wav~v~Lov6CP}!u?cC4MoKz| zk78dB+ABFTXQyP}f~~B0%4)K++L6lF%z4R_)ar_lhFe%m>WaklLI694JWrjhb78fY z?UZ!7q0Cm8-m1_a`I2Qrx3lxNj-%#1?<=-3GiDv0Uyw|V%p-LM2T&yzzLH0ipI46A zCuWyhn^K*#7)p&@&ejicq1x+hW81acL4FEYMWr4{U@xueBHISsmE9b*j`9TiB-RTF zYRMvkKA3Wj@~OTiDJbg1CS;FiMT^%;>~uzQmvp*u%dH7o_gWX>u?C9Wi1lVw`ko^V}R;fr)i8jLXGo3k@JxyYVb>M0qs*y?Vec14=Z`u9{Yb5*k_u^j0u9oC| zh-ZCDQ`tCmr^-aTj`Y(HFQ{ub`f>SXO7w1}<@D2G+0>_<5%fHBeRjiQC)T2PBV}6~ z!3}FljR%zIy=S(wF($(~ zFJvf8?7WVP+O~uC9=7B30=0RU1jE z&Svo|-#GD&rbNlk(W6)u^}g)987kD&*jZGvLag}JM5bxLGHfR8ctmY_rpNa4-b_y`+sp2ns7jYSSw$7nIfDtu!KJx~*{(@uSmEZLPIDOn)oGB+u5)ta5jH{D;+)5|YPGESFE46~Mz zJ54qUkGh(0PnTKI;z=r;SKcW4(#s(B@D>B^@Yh{*%)}7x>>5kD!6Ab_QyIs$A9Ad+ zsnm^DxjLT=b5oL(bPAxmWlg1r??F^xb!T>>&vi1k-cFnqCY4O{e@*UNuF1}F>BLUD zQOMfeRi_>uHliAHQwawU!`{DSMHg>VVW-@&pjo|l64yCubl{5=%FQ>MvTF2@(@utcZq8OJ`_{ADXK<2xO&dt3JE;=4nHMN6+bxpuTPI2!j^s%) zJ|otvT_(FbtUc?*os+bG9n6-08o;g@x=x%Bxs|r5tYe?_Iw{#zxRsiiBBu5=Zk8;Y zm&-19E~l&qw&yl`ydz_?r?AArX33#JNfkTi)Ja}vtBPNmbma~_TT5xg2XhPrqdm|M^et$ zSCBO$y3p0W1(o5(>8!@c&Jw?^rjkvKxfEH`i+*aD%$DxoK{vd!VoNLp9Cyx-p0=1L zCic{!x|?QG`-&a8wB49Sic2@>nK zwvv5wpR!@K684+9lrr6LgdYBYWj8O8EgD=kCH>|q3Ijb?v1?)zC{R?v&R^?7pV2)o zjvP?M8cmr+k3IdKy#u_d_RdDMYQPpr-_M@`ImwV@ zjI^mZY`$dB;SkA%$wS2-7O!G)firvlKoT`=1Vu-xCsB2o6Q~KJhf?1H5719CQd#2t z87k^yJ5JNWjhfGtNuqP-vk@OHN9c z(Cd;nQ*+d|Qvt^3D^$G?QC7lFgkX*e*mrK6_?BrMDR`U>lp0@UtcD$?g;JDWkoh}n-tGor029IHq2GanEQ*sY> zhgXuMT)!Kqv;HWXy}rHV(cR0G&W1&Ff6Zs)%<289dErN?D9wJH-I^qE7H_}}zc-5Y zebb9o+^NOwd%KS6F=-a(?m3WhaO_5F&P`%RcwVhkmD~|KRK=6A_({n;RSQb+NR8Fl z11Sp)Ew(ByQ|$Zpv)J@@u!KF)hrV*6BaK^1CE;HS*f(#c(-whuDDmKZ1ZmlUyY|{Z zGBs``EAmfg568!|?}OavsCt_I5^uwLZwsW4>{e&r*fz7xmn*3fqqzM=ON-bU;+YgD zv189{W!ReA)7jXe`fOaBCTmhToHD*jQ)f!1h&P_DqrRGdr1lo9Vi#ug;YOP}(i#>% z#L^f2DjJV?a0xx$Qxmcztc|NVJ=b#+tCrt^wh8i}?;b2?Uo`ijJvO_uqblt=C!|Yz z8m|HeF1%-T^hZdpi99)Dm$@vmSi=fmhEvCLdr*De2T8W}FP4OKDH1=pughsxm9we~ zizH3o#*06=`Lp%Y3AV*QH2LVvt`Z+&Z#6bl44LgjzEb!m>1pyo@?ywdw$H*CiJG$w zXOLrFi52Iu{)b3*Po}cCOf!jf?WN1wZn0&v59L#rxT&lKyIJhu+f->2Y7cg=J5Nj+ z?qyT6&yBiKDW>jCO%XqSaYAxRX9uO6>q)Vz0lD?rElD4f?qvVMn-Z;lgUH9qoTTo> zKFXu_IVx_0j)bwEMEQD*mk=lP*y|^2sfNXRmE%l}*?@uR;&A?pWcwr!$r%p=_H<1u zb$#+&N#&rftb)c;mfda3u3VYUnaNJBIh455gEN8fy)!}D=-d!L+Zja(Uvv=8ACboO zz!GSw;sVa(e7Kppx)~Br989ORsOdacWEP>j*^qB0&dIcjmg*g$7Ix7SD`a)%)N^op;?{R;{_=PYiyTQ%!D@*vgYRgO67;}&Y+i1%W*7ds>? zUq2_a9$sQ^8RW9(?(e4rJ<{k;w-s0e_u9%UR}T|~^?T{7#8FmUc#+De9mFPgv7%YvCTi@cS1h&Jgl5H3nv(hTT7|}yA<8@@G_a7Ic(s#mc-4)r+2uiVHymkO zyh@yNVUuK!ceSL`SPRxyS(lp^bBCQBX--eFze_I_E@N+YQe{t%NhRKN=q>CxJe4gu z7)_nszLGWFtxIq7UPP6YHM27>yrs`B>%pbC4W?BiAJfVOaqP{PL6u96PLsqenL;_7 zzD1RN?Lq|e(?F>5L$x6XZ)9C~w7a^ABGmt}U7 zO^u@HFDvwgmy49xC$AhO!Cjw|19xc)ziKIP*Hk=dl~HF{_HGarT)Il4U9ZU9xbTra zw-@8y_Zmg}2{nav%XYCkArC5NIPsL-;tLg5duj{QwmH#)D|Xa{lgezJs{>oEcbOWU zw3Av>)|J|CWJOOqYe<(2JH`6li{p+IN@>wjDb=U`8d$s8mHV*u9GxV3#ZKMcfiBxC zVNJ$#pfBW&r5AhMXK#H|q_Xwm*#b**Za?KoPaVw@@9sCVH>?VXef8V9bzDA6muFP| z>zqCb6ez)MUtfzyEf_>Eyx2;bxkpxgM2xZW-RZn$n9jmbGPqt&bFAT$~F1z5v&t3!N_XEMjle)O? z`??}?A7TCsKi3Nreij+7%Rr=cX;A@?R#NeFU4W0 zGg&ZC%@vq6FUPmnR1@(b`e1Nc8Mc1z8Qbd*-x4fd42E5@1war-xPBW8JQj&<)9WS! ztJBqB+vk(Sl@bSht$8ovo@p6 z4z9Y*6P=Nk|`?Tf*zkq-D)rzFB+U@%Y#sKaW@k6;mGAb~lh0dH4Ra5H=W z(KP-#?lomQ_VPFj$ohMZetzD-XN>*eq#N&j)X>#1%6R6kWg2^h>fBXm^-bG)g^W( zIx4Lt)>sKa_4(z%^MNy7{~#TYzcP_nG{FU=dY&g9CJ(@)mOcj!lh=XOvBPW!MfStB zoN}<0<7k2u2|?!bcrZJu6hF6i8aDPDfonvH@VjMFFtVQ#d9T)qSf*u+CkL-47F2i< zN}a6m*Tz$^%)Wz&MBQV=2WA(@ysAbBf*<1<oly4*CpgvyoL!{=KE9ZQ?<~m2 z^&jCxb-E*{{#Z*?CicTM3Q9rbreshxM9Vg(Q4v4z!V1%7O$d0`78LGzi@Qx!!wkC2 zw4J-S9AkPMz&`9cgk4*hK{$*r0r%fM$BYp{faW*ARo4PnTbzK!noJ}vo*77tFp2^D z$2x$_d+OlkwL$p6&T2%~Tut!o`axnls=-e98i0O-JisRL7#ozi60=^Pi0#YS1-1>= z1D0UC+fQc-s-8r2b&2Vij?2L zNL*y^E^?lM>)leYu4|&f&b4##6LH=)@gJsRrQS6d-1Y$!iTv^Nb&Ii*fopNikMTB+ zTU~K=G64_lQ*XO*qCKgt9zpc+?12x^UO`lR=7_3&4{;*d-ICr))zHog~&f)Pu~iBeAU83dEf^jzm(vE1rfc*qXGz z0vyL=6NP<`04M(h&iPli8%{y#G~ue34=?mTNWzT%0ltXC3W`q7fHtXS+t= z6N4-8vZVbsix2h0RT9pWK5Fd-fW$P&oy% z+YiGRL>(pSzpko#FB9;!Zr=sc(z zID~G)GixnDMBsCb)$fX%ZN7`$Y`-4NdNqxBlywpmF5ZrdroSYz2Im8>{?3@rt1*~; z{(XWqF(YQbO96LYjv+?&7J*v|GjMHp6{1wR3RpU=Am}r(xLqP7=4MR=*W7Y!RwxzW z*>wYLPg=4>#(_B?O6e4?zcB!4%sGzrnQVwZ___e|?5u#*lq(SlN;|-Wjs^HVs{=&k z?c?CV_0D+lw)ZwWkbtx|ya>|ACV}p=^ofiWexN^Yj;~*Q8H6pb23gat5Y^;7d~SJf zVtC99uqcADepxmVUw!W$)^TVEp;Mj?5+x&nkLL$mZ?7TV+y4Z1W%O6u>`VSw$=rir zkzpS&5_sSzxm03eNf_v=9D+SmQ?xxHI!3r#odGL9=m9W&Ie2W`6Ihzx$0R3~fz2c4 z0oz+v#QR}Jc+s;Cgq^Mcbix&EqA~~LeZqQRH)ixD5+3#h8@H~-gK91Cnd8mybge?{ zgK8x<@URp!dmcxmn4JU(<(o0#<$lCGoA+Sj8I$k+)w6}0i6K4=5h1hymiHTQzC;nc zD^A2~W*HHWo_c~M4ciHS<-Yjdtb5=@U^Eyr_L9xH@L~9_{<@e&STXo`p(8k5)er3K z-VUGhZL{s&of=q};w{@Dd5$()jdlRKvI(C%bqbdBE)kUU5Q5ySvDmAgyiGS!nK%{@ z2pZaL!AFg}jjy^n2@hoxv8kO&FhjZy7rVRwW}OKvLaz}wKAeq%`68Pe2Q{%b-VwH^ z>aXBeN~huX_N~FMEI5m&q(opVGad2d6b*cr>t&$rw}gmLRw9-@+KZ17=#feT9l^Br zn=!Mx``G+7&BT`zHpI!&3eZ%sjW}}_g1yUvaEDz=gxK>2&~ms;_^nUC!|(eL;cr(0 zo9nqY<`Ch%Zw$byX1yWGHf{#PR~^JJf6W5Xr{i(eHD$O$)Cb$kQ9JPFJ7Qokq#2*k z?>s&%%bN7=KL~tS7>EhAIUA!#6G^q}gNZK+wZPAJ8?m?VLEw1D3!6XF0Epl~LQ$qe z1CmSeE87!^9(~(`t+NMNkN#GTJ49IGDFw>pn-`5Brblnw@2W8<+@FoXoi6yR*leuN z4I`j5suN+qGz%OUd=w9G=t=shioig@WvtgSbG-P?Q9?g*2k3uR0_s9H6Z|j|?3$&G<-Ij{fgl&}RHI62?<$h{gd!|nO%?C4 z!_M~GXAQi*pB8RvT7@liY9cnzR3a`K55^LA6oKxOM-gEcqj6mS$e?ZBufWO2)kI&P zo51^NJh1n&24|X5aYx;;M0!drK3t^-xoy7{wss+d_u01xsNDCr<-eT9qF#C1exv<~ zH!}UO|Ji&HIb{TXp~=GbG;4$}=&gir4pRWM%x~*epiI1e!(v7o`Vh&!Lx>Ew5%_^r z4cvIJ5s@`yK5_hh25{S51ip0a3({sx$4@`DC2ICh00#96*0*-~H`1Xzw zc=bgky!*g9aOYYKVKej+_-uUvAJZh;Pc%Z4P+h+iTXVdh?NMb1a@^8P;|{%8cCpUJH#nE=S)9iSGj?0I z9Ll}R4C>&SzLKUV%PH=1tk5hpom03YW|xhwsc*f@%Y%v)5T-h6)1ZqT|1U#0EWB?N+c*WWH8 z@7FZ9-=>rE@u+Rr$FEV_wPmRK{TfAUdfTRIfmy_F)5+N{ivDf7|LNTSz4<4e)5`l_ zd;aD1jU>LfnFC^i6Zm{F66j1HM!c{ZM+ImvAaRX5;K_(?)Z_d4q+a@ zeDIhQCmtjX%=Xx*lq{v*FNvfILuSd|qq>uBs^h7p!?uvrO#|v%hd8R^*mSD7)SWu7 zWJP{%KZ4rh@`RW^Xc=ie)(8xKlT6x{b*H+0Jpz6?4hG-FBj0B!$GtrKxDo5GP>(XWtA2RMcLn8S!kTn68rxE^f9u+ literal 0 HcmV?d00001 diff --git a/data/experiments/2024-06-29T15-18-20/fold3model.keras b/data/experiments/2024-06-29T15-18-20/fold3model.keras new file mode 100644 index 0000000000000000000000000000000000000000..a26bd45b5db663c6958a41d5ebfb59be2a6e3107 GIT binary patch literal 35304 zcmeHw2S5}_*8dPhf&mc_1BfV!37F8;VWvwkVL$~8C`JEU*=b2HJvw0@99;QG9|DU>1v<{)SVn?e&uldOTj^NAZv6 z6%yDy1DFU zGK>rkjf`+?ys?E0Gd&}`{N2O-J(X;x21f=44lpOC{{rjqP|vXNMtOWa1H&8TQ#B!= zv3_?YcXz%*e~O|oAHRU`2%j(?Zs30MACM<{nUVYOqhBdw}9zMGpoT^H zcP$nFSLNYKiT?%y4uK(IArTXU1AIfmf?6~v+((JSX65{{+AJF7`u~)}%_l6RNxYvF z`m0^l2zjU7@XJCd`ebHgK%lq# zUqPS=Y(K;7qJK2Dz@OOqYs+T+>lptJ#+J}_`ac|8`0oH0|7Uh9Jisp~B*43|u0Ksz zlfP9N(tjV*rG(e?pDf)knKuQ&-}k9M-T6PTkqTO`kf6|jK%c+1s3D;d0YSg$+kPtj zJD$zn+q0!ZQ^f>|U`$yQ=;Ij{91!g19;S%96rRA=+SZnD+jNL<5s8a1zEC08Jf8qR z{|I+)A1}}Oe{mRIfdQexjb8I77vdKfGSf5A{pSUZSLS*KMm92Ob~lZK!Y9a6aX}Ta zD01#WAwi0OEV8jqTWgY3@NT>sqKFmeg#{>LL*FoE$maD|Vg!aLBD!!dPleum6`?~& zV-(QL!!OL!J3vvNyQh~|WRSv7HU<^$iqI#tF^o|8JwWy3jM9E+_FZ4J1ZbUF;tX8Mn%8qubvMaqi;^mFHpDk zU&!M%e)JokL_)lM0Ro(C#=`Z1Tghtbi z{>`{-!tY93N%rRzmE<%c#-X(XEDm&~X_*=TD=6r_ecMALmz3rFmfJwV1fr)0t z{gxdlHEyC;>G==Z+&{(oCuyLi9Z-#<$t?h3+svQeoT|p5-S3pE$quOf zfu0*a;Vc}6!xF6ya7bJvO!GHG)0W%8TCF?CqSYIER-YlL3e5b zTAC$7>25{veA+a`^NB#m6ZFunj033Lq(MI0A_BQ?FM%8TErrgV&O^7mx9Ozg4)AFA zXIyZ3XStVlIx-lRf_h|5hQ|-Dmk;$gK)*hbjA}FwBK7eYY*qeJBAJ_of-@$eL*vs> zl1UJZjd?3yynQwlsFlK{`xyGe;{&wwAq}M0DiFO-cu&{A$Hb;+BW?0zI(#=&9UeY0 z8|IT*Xkq?9WYRW6a`1{FI+T1ya?Eu#JZtU(1Ghw};M+yhxSnnN<#mPT+~~qgPCQ*5^?YFgX@g|AbK6v8m{U#{z8JuHJ*t7*bE8q` zZ^3X!(Rvi?w;V25G=QG0?E_CfaznnN?P#Y(J?y?Z7XfxTyy%(=-TURSyElE}x;BK< zIt>Bz_ycDlJGqM6dU6dCB|)_7^%gohYYQ6exeXn>pAR=op^;r5Cp2b$DYqcw5K1|a zfP4cl!@Qh$xTR|ly`8rXvI{cN@~%C(qkcDGS8M>3WSyigKHJCHM@~VD))t^VlT3DR zyDD^a&s69-@V5N%&eKqD!*VF>I2WE-^aPpj-yvC(6NzF+tf!6-%zF z>Q=(h1Hwx3v2Se<)qwcYZ1EQRm8;uhfKf`mN!&>gTjg@8gnLCT8@p7wzeo zRyzzdNb;=@)4AI}(jy*ea3O1K#lIA%w|sv2tvKDJdy_g<{`(K5 z+&_i+r)!{PoUXEayl#KX`XBwg{!93cY394N*?{~Oeq(H!+<&+RTH;sb zu8UO;sJZ?B?B~qM&A4syf;?VJ9RG)R!|!h1&*KRzWnHT0OjS4jQu_Pji_jiTLhCor zY^j>iGTu;K|JS4!%bd8vQzX(q>xO(TltBj<0TNB$4};arVMu0Yqk-Q%!g37YV0?T%a4S|DYYxhaLlsHXf$@48RWfnMwMtL3~0Mtp1_WR#Qan`bniLjGrIs@N!gD^!h`o3Q>|qEUoou~3Wt%r1s2GkT(H zwUy#d>xQGsALHQQ86Du*v~a}ktd#HZ)q~c<4x*>h2FbO0e@RJjH8eCEff_7XT0HkL zd{cLXGcD1CE}RiO@UD)F_-KRPk2}lF-wVfMKN7MA>GEQr8G zZv|)8yKyku;4R(zNG6h9I?ukIlLU2( zSHP$(5@-|W#m#u<2K{W^QElHi`uVXK=zm$8>)0V26`hZR;(G$F*F8VZr}lvSVQw=0 z(qc7y8u?w46qW~f_b!B{vX1oqopX@-7=KjvI0yCE6bCC^%{|e;@Nz+9%y=g zp=6Vz0A^lz1l6qCpyk(cJu7sfx{WJJJeWF`n zCR7^Jqk61_#}BPS{q~9Agxw|d0RP_5*6uhbIp+n}zj1|a{JYcF#yUf5i8maPFGr`0 zmZDi*!)U*R8L;Qo=Uj|kg1E2iR4B!&@gT^yoDta`M=UN^iy@YsYm6 zjl$rBGb=grPB~Y8b}~%Yks*9_As2Tr1GSnu8D`Jf150aG!{o=W=-0*NFt)xmT(x5v zij->6N4t2!?i$gOK4Ft!jZFu*x9?}V+u2~0b|e|TSu+8-bvXfVevFV@Kb8djP$XKZ z77ZtUnuBC>5@9!gb@6itW3(j69KLa=hBL2I@W>YdGEys%WcZ(hn;g$0Jr5UXZ+H={ zemaI;8#xBqZCD{LTYsF+v$()j4(W&w+zw}M_D9uiyVC6~XP~dfH0mkb!p&5xqK9`W;4(gM z2;fe;9T{&=u5}}?(Dfe$nB~PYn-tGdfqOC?+x_Ow$3N%O`Adx{_;2szha5<#wnir z=NzJSD>?YO-y~?gWd)*bmU260ZK1D39Fp6qg`tScS7@)@Fiu**S*>TdeT21S$YBe( za^7m_c@CmfQ&04?ZXi5^M!_g6Q*@SrDD;~>-K8Ovxzt%7E-}kOZAee})-@d7V=?qh zF9O!B%YzF>IKibZCUgQ820gEDWAAC_pbOJ?)6pMO;FtL^OiX41H&pNhUd+fupC1b8 zq*<$>*K#X3{ZufQ9WzKGl60jTP&B>KcPU!5v*r^Ou-&pEOc&FR_> zUHy2QoA`RA{OPxzFmK!nI5+m9LT7Vm%f(;iNeiyXt!JO%N+*7y=u@*jBl1R@+k2vc$=J3Id653d@4T=-pBttf) z(cKnkAo=PrxOa9EY{lhsr$>1s%ljK()$>jC>T8ZLccMSKerh{6%1Q^$j#>$W-saKk zviqTN{>gB!cq)9D>5N=2rb2TY8GUi8FY>H=$90`>Nj`BXPM@$dM}DPixsv65pv-PR zq%$>9&8mKqGLKl!vi$;NQ{9=K_`Qsl-b2GtRj&l81qK4gO=%e+0&Ml`E^t`bK9<$q^ zSUYf~)lw%x*W6t6Qu2nb54lIbFZMw5h_SG2QFpZb-~n3wK!3!I%H!P`$LAYC*FOc zZk0{s!0SNN=iV0X?#<3}!w(X8z(fK~z28VS)@h>|V`#baCQY5#EgSqvUX2}2IQkb>!ChazE8Ta~#E*4PE&@g@mdELEZXC+4afIbv%q0_Fsl(IDin#99 zH|g{PBe{MlvpN4&{gGdCDXq`iqmO&H$g^_RAhol1IRDym=zErc&+fgGT-MM>GeRosuWHy)P1`8 zw1&)QU3glui<_@A6zQKag=%9VJ+0iCJ|CBbE*p1-Ya*+;`L+Gf=PUxg+E*sFf4-U{ zS6+nP&hAiraSd8fc9sshwu^gQ!9(%0Tv5-gPn_?A1&AG#LGLxVD)H(wlNL&1;F_K8 z&}`pQ*u8!X962SG+wLc)Ydp=734Z{5&A)~|B#uEJT!QJ(*C6UR=?PTZX9N!pyvH5c zSs@<1bs_A#mgMR#6u_#ThNwPl3cQ~)36;Zl^!~21INRiSN!F7W96x##tS#ye-zj2J zLQO|v;BuN<-_ej8^JF*2)ez{@D{GkaZY{btwHPuV{NU$2A+memC-FA)Mb9j6bLGMH z&=>XNKJNTNI(%EnX+C~QpR*oE8EP+s3&{mA(X$_H#m|$Ue=21R`Yoj=%zR8c*!6;% zB}p)4^9QoOs6_l|M5;XTnHAa-mLsWJyP4DJz77tHQG?;So#AcQ9Z29_%?)+cfjU*& zk)3`B7ro*V9Z+0EpA4KuYt1o(M#<;dmg^QC=D+?Ns+tEYRZV#OI{AN1>CfjGnr4dr z@#_{f&95@FoJaU$ty}Dxd53;v*9CU#beFCTn=R=RP$@an%8JGdGwF%jU6pV1w(Vxa zEs!nb`tC@QKh%xo^80vkOIGT@k-cLibGu)oB~(0pZu(2PfyF!d(j^Am6r<~sQV$P~ z-(iQm`kof;wm3yDTGRnP?=qYdt=UFDslHGD(!6iW_o;qs-nSBOg6^N|7XLLv_-`88 za^6>E_oOY}$NN{UTM$^2c$1rP`CItiN;T1|nD zxsqk5`!Fd|i@SjWoF>D?*=mD^O-O`Odndyr#d}h_*XGhiZ;RkdX$ZV?<1vg+ctw|> zUa(EVLFCdk7oPq44XN8m;bqge^4cF&aOuEe)b6=D+$<@fZ_}GN}^_Hsa?Gy2@)BU%V{v6Lu7D*K!t8lAIe?NXdHt!s3dMorV zdj4a@#}6Ox;(jSsZMoO&w|xD=!A-6FGgkdeZ~r%)weme^spdpqZ~` zGcKF(tNx37>u(HglF++bF6Q}0J(?lt_^=_WT9+s^xSI*;aJscJy|0=a+lb-U! zs*$65E^L|q{qgmP5lzkiW9^?h_N|_>U3rj#4nn!fBTIQoWpA;~?t5aJhnv}?sJDdt ze4wmSG)DgQ`d2EQZY@r@J(sP%&u2U4u9IcbR^qN^yTpNCQkmXUH?x?4WVMS)k#5<0pvSq8XSk3v#?8(?dD)D8e_!!Ze8HJ^=+e^LK-rJXn zGl#5@;60_{l6K$4ChykDMu*DT3GQ>mYWvE?`v&L8mfhY+qQwgmi3G{~y$9tQJ@VPolit!!_qS8?J|v1g z$E&d;&2h=-zWQ={c!9Xyp{>MhLtpklbRuPJ(2aWK)>_^suS~q(^d7ai?`fuVnKQf9 zN5+hO?nBDaPagSXv^CeRhqD6($9Vz|3Q<=9>rBoXu7jdPjIWzmY zoZ;0MFe%@YWF0GoD!C9 zlxDJ?S9RDBFph0&-N2+7v}4-Mek;A+E{2-vJwS{a+*v`nvv}6`6AV8gfHL`VUpB1g zDbgnH4rRD^JK4eQDf3Rj`+mJXJH@Mk5`Ngj6#L2;L#{x~b|fj@s3qhGpLJ4f={hPa zEl~Sbgn8@r47IWM6M}VzW%wicfDfmb^rAiq~d}WZL>2q>G(B^PzS-^W%G# z>{7jmDp(|CqFSF}+T7kGuAJ)35cUp|g@f8rbzjDdsY|Wot>WjgM}4l5z0P@3u`?4$ z(~TzVqvJ`Ey_*(`zd5dx9XSldv(~fhfQF5vsG~b&-IW&0OHRwS#v8MRm$p-RTpVlL z;kzvH>J6%tyw2peK0-MhQKO1qe8vq89#EAtak8MmRJ_hhNB$<=RuZ(ioXSe+DVdh1 zK@G1NMct@fM@%}oRea%94@Q5JBg?pcr-qOAqVm7aA+y(;iaom8Qsy%<8ENYc?8K1q z;_|CO;=>L%skn_N#r5u2$WsBGn2g+S%w?D>n=|<$^S&+4TpZq!rB+>_o`l3Pw)ecm z^6*#GVxJVT$qH+^KCEJ@d_T*&wR$K0zq4m1WB!Qt?4^edzVmZWV$ppw@_XC~{7l?K z@MHxbryM^@%pVqwYniPA*&=Q7OVCF^SS}}CeQ?7icLtCrPi+COE}y`ck3LSs9vlhk z5{mHF^LB$)ZQJ3`CvPSijB;`Nw0a_U%>g1Y)spOL-JNs{J%r13mg75KzQgx+w!}@7 zEO76LGepFY&-e}ZBY^*81u<-!h|pa=4mYVA3#M|5h}K*i{G*;DvCd!+esEbCQMPz5 z;ErqI8OLd2(8Gz~#lnsF)vWU%wNoIT^RgJv-e8Tdzi^uPbkLA+QTHM|q_>F8h9&s1 z)k}eW+smM|+74f#r-MHWj3*rKox{gj^YQv;IfVU&t++6j0d_8Jz+HWoc-A@^4|02j zFFd;u%%?XKo%+Q9C|m~m1xz3Uo}R{{zWU&oXPM$U#=3Zs^L9L7L>7>1I1sho#kgeO z34D{oa$@7W!8kI>1(sDBcv^KYp!MxJNV~n1IB&BakJ>j0EQ+uqQkGo8Q>xd2EhoQY zqGJNW)`S65w`&lEufqV$P9T=Fo(p!xZUp$K+jyLPH_(qg3@*e@0;xCzOZv>jrK?wf z$?P&>4ZRj0w=5UWd)I+TDmKF_uROs#1fzk=rKg~NJcakmIz+7J4Z=->l7RU!d%}79 z2^>FI0s5z1$Mhsgz<;CZ1ZF)k+x2*=ze&Slep^x6-01WqJ~kIyl~`c=UD^LDVO z;V#%aAqHQnza4}-rW31<7T}Zbe#fK25{Z+Z&w#<~p5SirTrhZdATIAVuk46b){FMeuI4}w31hua;KWB2a%0dIP? z0mqGIfe-g)5$mtkf#U2oKyG;xzkP5IK6~#paHRW6?E9C8c;Ncc;GxwP{K6Ll@K({r zpbR-?oj3w$pU=hpS1iV=9qO?7DF)znSO@SLsNq{2{6Oz1{fU*a$+(?XJpN*X4Kdgw z5x7>Y#X8OVfVs>#&|5yMk_0&4F}}8@S=$4(}^52Af|EAoj<5 z;ieXgacNiwqE0UsSl(KV#a?I)es0g2qGHv2rz$Q}rN2KOd*a+=zghnu5}ROxQ|oq4VIRbK zvz@o~WhUSGBAszmNB*M0oOK~OF~v7M#hX73U|)7>%beMDin0pwr*vEgun|rVs28SQ zat*h;O!C46X7yB@{nzzF==gt!eo*J_!PhYziEjhk$@Dr2p?LiW-!k(t@xU;hD5^=v z3p*YH-R%i-M$k&!XXQR(*DYt<(Rn@#%tQL;Po zA{j%pXTsEa5f!*2`EJf$rhD}n^4!8SLFayYWU#|9O4G@f9sX=Ndvo>{Hos^8BDXWs zDd4A0726#I6-HicV;{B8&|3 zg8jS^XXUYr$hs6)s`C3#S&j8PS-3sNH1Zw%F-jP_c&&6od|!%AZbeCZDPrELR_uGL z<1*th=4{pyKdR6^PdcZUH=pqC!c6-zPv+vEMvk#1h&K~lWOF`PGLbK5F@qm$CZ=lJ zGG;T+Fk7b&rp9a@z-+DjLgtPiNr}Qd#0J+wsl-tWsFJ5UlzKLGx8^^%+zGc{SVHy4 z|41gK&!PHX=)g)Cjw*IMPjwsUDSkI`Ur`r#%=+OmP$s9WkGp zuqg_ro{Wg9%7GoDMgb!vnh$5AzP|~H zva#rJj)^ier^;sAhC= zQ8Hh;d+2&n@FPc-Q8q-zHFDGoOcLOAZ>LA*F+z3fi@{3C@U4P@RLW0*Fp2QUv- zK9&W}@+G~W8@8WbFLwAbf{HjiO&m}sq;B^cM!nJ4uf$c?o{pl36S<_vZ4>c(K?bRR zN0S=ft{eL-K91rot!8X}-clwmZnE%=YBm-z7R+e9E|gVdEr}Q&@wu-iyLOd5RlJEL zy-ynA1IEpj4ZNtq9>1%`4sQ$D`U^g6$l5H%rREg#HY1biwqK7;E$O2iM{3b_OwS=5 z82=7K*~tYul;fk1q{nM(Rva&7Cf)a74FX0}(u|{0+q^QqX2@G6Cf1vYIWn*4MnP-o z^@|&1{uLdWqKa)yaqv>&=qzuh@9=NT7q=f&YsV8*YPy@a1ZFV<1_d$QlP)rNVJ)++ z_dq4CVtd>i=sS6Gk*MP!cETruG#lr_XieEkP1~Txo-GIBJM+9Lf7hg<>zc=`SGM{t ztD5Y|L|MOP)GSg?hDS`;jSBHxCVB-=U4vmZVs!{3=P!o7;vNYZOe)p;BeU z^xh1SvQ0LkO^%E<*{JMay>^ISawSz-OfO+-Ql86p^m{;b&)&J4yy?RLLG3 ztOW;KIoh<+I>4Ovh?nJGejpw9K}r~RoWiXBp~ieW$&!&yq4>Gy&J-bCD9fRiF`{#t ztkgq~z1pLUEOF~3Zas@4tDN)6JC&=H{hN2jRHTu3lstdpDwUGhU zPG}BV&a|I5m=fIhAibx4*mgyn8WW{$MVfSRC(%hmBKGM(SLIlxhivRGn|C!t$(Pq{ zpY5HTFj=^w57xV}(mmZ%Nk_%=+UHFeqg!*3YETQ5r4%O;-8Pl-%b(6I@@!o%JB$fs zJBurbqhbg0=%YuB={ZYs+yGr%*uN`TM?ELE4h)x8U){`nppzK1%9>&tzEUqsf~k`C zbEt)SX|l%gd*Op*ptIvr>!PV1)TB?jePgBOwh6G)UhvDa4qBB zHdL8HS4MA0@6uXwA$|+D@}9&L23)0%#RZZ&bT@p>#|l}yf&Cb{{Y)w($CgRoxskFv z;>Bd16R{aVtC?X>tC*TAO>fUlZj)-0e*BU2YR!9Q$6i(z-McdrlVU`G)bGrT7b!9) zmr7=HR2;GU<`uqdTyNRn*Otup1)pX7;~7Ll_9yaEb_e#oT`lRgp_fg*TuOdgx|(c# zJBKvMxlXjJSVncTiDybDnX`6DrOe5E4b~zjT&d@=wGp!QGrVQ}Mq+FXA20eg+=5{y z6I4S;E0*^aBkQ&;kqL+96{RIEwasfdOcqY}WBQs%WhQG56GLwbWeaDtW9#TD@&Oxx zyZd&dq~|)5W)?!`=B!xeOyU}5wMG}l#A}SKOU5)=G`5?mdLN|3v;BjOf>!P2K$h*n zpk7tv0EacQRwg0Lr7D{74cW;MPK0!6rKR+Ni4T9fv=6gx+-cdGH=eRZa}F2TytI=o z2t6WOMV^-(O6`v8-FhS&kUWrSXfu~7y_CT?R@O3HW-@8ldKb=Et|#x>Hf-az`rkjZy?h2J#}mQ53dGGpb}Wa{}zOyJ7pjPcZIGrze}w)kxWsgvwkRJm*rBZxRGyH~zP`ugh-5Mw)DdMmU&6M9BX`YOPNA?i|O zLy3uG%89Pzr|>vZu)hyEz@=8&h-WKvO+n&}uF~GQ+hwyrC9%Z(5!vVSNXB+a4sIvP zmP#shsARL@U`&+Uc9QN68LH_byLNCq`Sn92G10J6=26&>D77$>X{F!Cc{hy7!%U&< z>}3&EnN&i|+ue~m8I#1A>3w9*4d}rncr9csKKLqeRrqDKOpCi*G_F>_POVtZJXx|x zMpXqfw(Hk1w;Z04qPmF;b$dNg-u~3UF3bEFpSi4TqrqDld1)Bo!cS-35)9Mjv5fR+ zYb70fy`4<3Er|3VmqS%;av;|YTuFh*(PYfl4PaF-?_nx&5cm68-y6`HI z`qf(|vGOI3d%TmO+Ap%L)y~9G!64u?QJ-n^{-o5(;Vv_v6`$o#?#9}Z9jVjj-cx;E zdQ&|s0p(q}REev>tc$F7)D|M3udaCTc}Jo|_ak}oW>2=tY6Vq(%9J&)IZDl*J5qMl z23eP0)nVY_c9bx;kQ|j@U$mj$Bc^2TM#|*jSgE)BzN5CM#z;qgYtQZ{wAjJC;jH80 z+3e~M-KkZivH0@C!IZ(CY1I7zUzL1!of#qPmhM3kOEksar*@Fz4=tj2x>ML`QF&D5 z#ermSt-Uzg(w~`auo8c8cod^M zs|$Om#(>#6YA+MvmcVEf8j#*bsniVS6yd$87ZLHrS81OgcI{)!FHa{tHZGNF^=n0? z7fh$dj-SFj`#73(y3vNQ<8P+|`%0yD1?~8Ysiie!X3=c2hW%T0j=4*TQRbWUj{SLt%gv-!-cZ!`buSc_XQX; zInm2y=NxUxTA?+mp0NeLbovPsl{~-b>@YhvXpO1Ne(av2(UKRo&-bopiY>-UXC6(L zO6v|ubCW+v+s%}d8(b$cIpYJQVUxWWq4yRhE!v5?_12Lhk`Q&u+MOBEdLWzr(u^7V zEt^Sko2|t2V~8>D6?SEPj0QWp@{`P1P$IJ(HI|xqF_syTK8W)B;m_O~`G`39Aen#M z>Ws9vkqNT~(`D)g&p8@?;zg0us5Oj>!)@}w+gRz`4adpBQ(S&?J@1#Ei&fWu|MRhl zcjH)5tj_zkE z4i1&zUFPPAZVYe}_}%<0ia2Eiy86AtG(>)2{!=sD+*=zH`5gc+Gjp)bWsgKPKI4^q zebY8zT1zuA!|nF?z$@Fa1L zaOt6k@wyFGzO`Lt)DN%th~cI(9pa$nN-%QYATY~%BfeW?2(&M@CS30=!#ayAg}iDL zY+xLVy*1Im7JNy=sz=%hom_fiB8`do{twldabcy%P~QaNkz!LpA(TDN+z;8%L4B8%v zo3C1nPx)bpuj5j2y-CLet<@|?67H#mt<<<3)TiJ+Z(Q1 zDeAdvpUAgwJ$}rn7Q3iD19Y-7$3^O{xL0xxaE+XVOVKmIrd}?hgWe-?6Q`TlJ!~yz znVl$*-5d@&x|ib*Jk3P|9-9dq;@V>M+)?0k>lLP!F$p;3)Pbj4W`g&(Uf_bLDu8<* z29pv$DfxDst|nrhh=h9_FX7tt1z5s&3gZsam8{vADoI8bzN2t z@^0+GzNv>}{qI@{{HA+~s{10mgQyqw)+taheAqFpgc%2x=u~5aW(9%`o%Qkar!Qgy zHu~X#!9zjWdkT~t8l~iWxdR@WJ+;hga^HN166OUk1b(26!$tuv}#%*xp)GBb@ zZG%8_PL0rgl@92cgkk2^a?z#GOMIUl@z_XKfRlyGMayO^5ZaS@2_Eo_!F!uX!GXK(*c;7hqOOyT zu>Jh8qKX60_-I`#;SSOgS6k5)3m)1_q?M9_B^f$^lXJqr#9n%!^*MFCWYS`=ywyiM zH0cTWaHa?t79Cge?L9hQSS6_t2Dv=MFB^9QFNXv0GHeCtUCvk3X9t$A=Hn~APZHS3 zFd;DVz%8~GV5w(TVPoxP3Q{h4WB1RU#y8G&7x9Lx3ry;#V|A^Ufgc?|VVR>MK&X%r1enTp2jvhzClSU(tO4bM4Wi&FV&P=9qoRd(G8BD227I4U0KV}v@WR+ZSU^-OeDA9) zEMGJbdvt5CQqNDb^FjRB51?egG+bY62rx_hfOULy2$;uz$I>L)c%sllWc<`dxX-o@ z8$S9p21J*IvG+*Kzwo{ww$6yZs=N-!7pY-ZvzLjOFWa$gx;jAI*#ulKS_WJrvhe47 zzhEm%NnMSh#v8 z_Tv0benHF{Fhei{Q-8EaMBST?eSH0fpKC(%-|9x={crQIf(buF9>=F)ov+UY**eg0UY=M;X|zu@RHsdJ6KU^FW`tb^vPcSN3nvs=GqNCtBFn_GJKi z*<+O!i?Fz-7~l;b2RcXT0*&tO;LZ30wmk|rVsFd|Fe$fK)KHrt`t0q@k2s$#bh&dA zgqnnk?wRcu-iXT(?e;#6EjqUo2=Dd4bJ8+#%A^fwU&rCnX-C1M&3!@rBU2@wuTQ&x zC3U%uJuoiCV`?g}kf;o-E7cCyUDq1VtKW&gILd<31Q%gW6)AkMPyo#9cVj=K-7(T; zh;X9xBc?qk7pH3GV57-mp+`_2w)L|YSbTO0*kx`5f?L-ElT}N>+P-zTWnBXpS$-2( zd|sr~v(;->STr_T7>Pf_jTfkaPgyQt@r_boU4!F?d!zyDPa=H8lEDI7ae#1EZF?CGFP(T~Ckfx6jS(WIAl_>E&W*z^bf!Ywz~Vs4&BU{UUEtkz-z zc&D(*r(2!EJO>&g*!3Jx9#xytCxjKKg|&KkVcEX zFh4NwUO@n}x(NpL^27VS+>YI!+zVeMu>!kywg!UwjY_^HdyZfO>kng@@dI#=&l9n) z4|iaJ)9-^@L$ZP918qG1%3v_#`91-Aez(YZh7It2q>sgww#CY~^9A=yW3i2T?*Mo1 zv*=!mmT-Akji@@@73h9};K9eUAlNnqzrAe}ws^>Jko@o!Hc)dn_AI(7j_n{{D|B1o zj#0a`@RIH)u%kz-v6qQjxXt+6Sc9=C?pXB-o92@wlGBsWZXYPI^npSXK)II+U z-#K%#D0=}PKOf?YO;i6YT-zoKdwVVlTp5!9dd$8J+^1~9zmvB`gEfTs+{35Ws?Y--@Ti#5FaI6(q2T{uU|MK<6dY?k~q8@A6>kKRHx|uDBSj=cLZq$u&T^Oy*%S`aG1Iqc4 zh9!Z_nMrC)?~y##e{GWV!nts&bzMHY?$lGp`OI=Q>7`Jtx%Rbmti42#=Kxvj1MQip zJ8fj^w_#+7@jUjaRvD9Ql`iXQ){mH<>%lk+M=95r8g*jZtQgh4;pU&K;R&0stG3BE zZ~x^ffuSf<8d^oFoS;*rs_m5g<_h`E74n-aD61dmta z^y{~%+U4Q$>vSqPo{ax>I=kj#ZLeRaYksMkXBGDAbSm+8NB%n9Kf3f^H~yq^n`HlE zk3X%2U5RraPY`{g){}QK*Wl@6+mKh=>k!HL@9>Nt9!hvz3hPho9_349Z?z>C&pUy? zAG8-=*Sm@kn>!Hl<1dIk6CH`K2TqH6wL*B(;41t{+P0|NZgtf7=g3?sp*r3M|P-M>MITbre}``h}=|Ka4!%@{)*1G9VgdPKh25 zuIlzCo=?&sJ6tv*drj9Td-PpHW^c(LV8d)8$8#TXK|c?F^06n@+sqday}FMaI68`~ zA5nlWImcq#hi8%bpBItYg9E|)L8pic%{21o{a~V0k18%u;a-*ge*8NvXwrMjy+VJi zxZwEJ{(lFX|16z&FZ_4VNyO3jl+$Q6bwi$EleoMdyb(POZ#HiCZ2UC;gqN}`MhO(f zFQa>Udq#L#&k7F-Zh331?e&uldOTj^NAd5cBSvkO;@m4F*f+rMXE*-6-$Ga28KbsR b@#}>xe;M6rbSte!3Jt|yfg&|eY|Q;XlT%1~ literal 0 HcmV?d00001 diff --git a/data/experiments/2024-06-29T15-18-20/fold4model.keras b/data/experiments/2024-06-29T15-18-20/fold4model.keras new file mode 100644 index 0000000000000000000000000000000000000000..81b8904d24d22d16b22e774b7407e609592a669d GIT binary patch literal 35304 zcmeHw2S60bw)PMu7zhRw10V__B4N6!yN517K?PAz0V7E=A|SyW2ofYHNl-uq6hT2$ z1f1!aZc$ND5hIE@VNRIEfd3%OzI)m0?tA;c``*5Lw{fPrs!mm%I`!2#r@E^g$H_9X zeL0<%Hb-^K^xGEVNXMs___NR_!qeL`!qX@)JS2F9&H|q>&v5s}K4IYjA;CJNmX4W` z_)o`BOGixP;~wt0*vGpg+0@vSJH{A{F(oWbFwz7kO@YoT$G>aIVS%*#M`aGD<0JmZ z@d^p{4e;w~XJLqUWROosO+Q-fXuvDTGd$cq*mL2JDIVW zSKhC9uni84jIi%0*o}wzo)KRD?&1EPKbn~v92pd3sD-=!r0MWb&#>?getbQH!aMkr zbRnRle)k`(yPJsRC(a7<@e2r#@CozrmPn$ba&gXoo@;BLU~y|5o%yxUygTyTx%huU zaFM|Q5gl?fGZt6r=@k*M*fXLF8(}^{ksUQfitC&o;MqadH3H&64fY9g4-l6Xk6^%Z zu>?EDuDjs>CO`ZK$A1Tbi9sP@Ara2O0lpz&3%hkF+~)@lyM*&|vFUX1_5aDo9G|d| zPWFBg=x+{H2c$cCFCNRtAkVO_-gknelb?T>(^X15YT-XH9U&Ik-xm5+#?P4$kIDSV zfFN)8zkxs}*nWlCRsY@CBL2eG-)c6a-^TdAFt*H$UH`kmg&F?=aGCr{Z-oc=Eer|p z?x^c8)zxWlC5rU_j_UdWFV|l*-OtpUnBX7V)L%;eCv>Ek)+=OTXh4w9-)hv5(1?JA zKecVY=_i<(MXrM>6jEg z3q8dN5|2e3b6*&;Q0$OJcGPKXL=fV(J5oc$zT%Rw0I_fA8}`Fx^ZFY$f+r~hKcwg0KI-LS3ic!J=7=6-DjzfS7cYuIuveTK!kXz{FpKl`c;3k zKA5un=B%slaxeR@IxIP!cytZ8!1l5ABUsSm9E-Ve|I{k={7bTF{Pw_N!V44 zb4RZ8PC=6JSNLxwfk`%2jvXDI)zxeLuCTrfXI)XwV(}`lIEBAi4-7I5n0O z_?_@)_?;xvS2LlryIC3^a+`QOv&Qk`+@jz?PJOTxca*F2Ea*L_}eQvcuo z{+S+d>?Xh8vty+_J7pn}^Z$Lx{MCd1iUhjr0j;jWX+Ae&+x0#>G^StyKwn?_}$mxM2auT{O^qY_5JT6f$sS2f&<5~3qKM$Nc^y0 z?1CiY4~7yuCc)j~uK6OVzdMd4d~F)o*`S23wkv)|vol?yhaFA-o^EMZd=vK%GW;hk z_A@=8(Yupjyi0Jurw8i$chXDb{3q@1Uu^x8B+y+CNaoS3Zh$cEYTu+Ql*~iRKgd_7 z9+3LQ{hJ~ejq z4Rl6hBD=4p0rmIWh3fk=Y@~E4)3fOkI*T%q%hzc3Z0b4cH0w{%v88O$q{r-v`B|u; zy%&2<`77EIQ^y|pRE28CZbpuy`IKt!#niL`s_dc+HMGWJCZj$4K3m~TvzzDWvhE*0 znDf8IBj!vJ8~?G5eU*NUTH5f{d~@?5c3XWe8|xutH>aI9*L)a-X4wkZkww?hsGfQ3 zVGTYqo;QT@77k`FXV#z_CQqsPqXCM05ryg+LYcE)x1(98j&-S2WcCi+CyaH=poI2H ztkcB3XpKo2diHV}YW2z%P5z>Tj`$u#k7RaIJD*jtK^R9w$!=xabl0<+>SmxCp#l5A za07$Vjo9galUQGQ9dtuifTr0ENB+ha&=9>-sMzbZdHi1NmJQGy*A3^5g#e(USSMS6dR&)S7avGhdw_kXPM7&sH!L(l^+?! z-?IEX`^jJ|rF}etg-guXThp!BHO>XBhhiL>6}6r1QCiQs3AV6{?AD^B4bkYUvoRYl zy2ay0B%^t4rtC_U!_>!AKI@U4!hHMc$`(2&qa4M2q(A;0{d!ablU{g*TKu|>Qg#}F z_zD56Mx8q4YIKU)ewk&Tw7e8CHEY>TCl8{B7w=L_H%cL!6)V{qt!T8QSsLZ#y+&_> zhoMQ?>#0|-J*eUXXDF$8LZrlPqZVFS$K;>CiB8*`Vz1OP<_lvI5Lv?Yzt0ZI0Hn-kj zt~c#xtt@-80|hrke$T5Zzxp&JS7gex7?h$fM>erBVR`KEs%E7Bb`sh*T@;>qMTjzNiJ4N7 z7_Q$Y|F_BgwO!~Gkd#!XU69xVN%+U@fL50$-d*n}{;6dBc)$nI;OWt#9sT^M>OpnX zLDfd;ab*>Cl@r2zm(`^fSNMxA?i|C|)g@4D*h^}+fhF^FeIpfvltsr3v#IQzX;g|L zq}Gj9Ws(=nqa1FeQRTgDnAI8MsU;TpGvrYG4oHCKzBb~qW3t1|Gw$}?)Cc5@Eg_DZb6p<`91tbjqT*~ z7ry_V?Z0CG;u7eNUx~S{l^CF|{{OSrnX|fZ+i3+kobEXO7axW{+`V7>6Z${ulB_c& z!}zoCkNX#)+MP_RbUoRUbfLSyAxZzA2^-dLV5GxYO4}odb^2z_-kDb=a$cgtdIhaQ znZrwwY@aYzT7iqC?x><`q7o*yaSd8}_9JsAy+SyJJBWFz9fVe#;!$Ic?lA9hYcr}T zeay&*__2>=4N%Q07v{A!pdx$Uq_Wz+P=~h_un(8b5RS--KnhQF*;j%?>?9dybl7e_ zYetCIJ~hthESF*~Hn%YOTdp&T{Xa8Hcb%X%-pOVx!=ExU@I7p>M+s8cT)+xbR8gPJ z1Y;GwkTOT^tn|a9<}altu$4Ctq8FqoGvw}5-eRNaDF3?|HLbTLnw!uE9eZNV7@crI zuc~Sp%k908M&H#aW2+IHt@y&cCVMxsyrqJ+MLV#{cek7K`aU$@0kv4wo*C?Wvm1;x z_YGAYW+>Y0gwU|6N|70rhbEY*<{?*GcVQ?sh?)|5lnRT} zWcMC2K&=kh=Kda2(Uy6s%!RBxv^uy3-LbDl*_(5zkHss|}a2%O8vM^i^1=HEt+F zkdFr5n9ANCFke`2A&>SajAL#hdnR;F3A1imIZ6vFKrrzrrMCASrR^@H_VUWnh~6S} zztIU{&3#x?eRXz;ufFKL!f;e8rGc(o-->eOoyjW{PTe;OtO+X z3k_F6)VniBskx(4*e!hzu)NUEqAOq;GR&|>nl_D8>;o&x>)B?6+omuoTk@zQO;g#$ zhg6VXpA<^@RUR|I!5l@O*hbk*Nn>6Py~0Zw8ilH>&oVmYE-a&LjIOGLpi3(fkjQuq zTh}88rDzOA@1-`d7B5m5-}(Yp^=lT&9k7zA|2&^fe-y&5-} z%2QB~Jj46YYYuxoK!u6CpoCOz1u~kJ0(RBr<7jz1hk7^n2BX+G0dZDkur9ktu>W{O!c`(=zZYc0El-H_bK)PjDjN>mSYQP%^7?lD6zf^yhZ zpY^E$Cy$`d8&0D%pQ%jQNMqzk6D-dxAFX#bL@B{G=*_#yqOssPH6f=CHP4>S#@F;l z>+cUnGpb{me%fZN!N>iKh3y{RR_g^Mcfcvsf97s>N6#d5?VT3VJDR~P_OEBZdsVU% zxB{w&y*4_#Bo>9en}*`I=%R<=h_cuf$52}~qjJAwk=9QtVjh)7+;7i&r?6CPN=7*JN zcVgbBB!;8Hc>xdqrGe;()ebhC^my%|0M>SC@Q)Ai6ron7ul`GOLuM^d`MVn9AW`YK+ z6;f|D=9p*K#WQ&iSt`wAH1+)EEAuUmSdlNNG>-Hn$zSgLxL7&z!no z&d$_1O%*vHq+OgTI{d9a`{mdGHg>!k3Qc;#B=$alw$@E%RnTeS!M0l@GfP@~ zvx2tM=3}VA=(9{A5-qYvxSBdzt#E;QKGh4I$jLW%-!*_u(==hvUnye(JY?7-lUDOw z9%-PA&ls|=*@7Zsl3A^*k?g89A#CjHlLG$^7g2GmpXDgl*X_Pd2B{SA9TL#2DLnAFv=%R3CCG2N2sES$sCwN<;l)O zX#@JB&n>%{q@D(Bph-1q8M=dgZMc#;*etfa?n_xSUt^TQ=&^EfhY*oG4(;!g!K{!$ z<~LXCAmtso?DD>sMgC8wpp9WOk-^?1#36g3-uKg~*J4?pc|8IZR3D<6XQwgyo@KC( z+G9jEVq5&V+?Bc>;eW&g?XpzU7$;O3x`y2%lr!IR zWgL3@z8Kw?`Ns6+gt0dgZZm6b6Bv$`CUU2WC@Yy->Qvt`A`>ceU(}DQXzx4 z*PyGrajJN%foT1Z6pAg=VE39OGjCY~_WP~9qVzjaOz9#c6my4V1i5>ev(|Ijt8G`A z_1H*iP}n+FPPI4tT`iJ*WwL?2<|50Ub#X*?d#uppMq@T9Xc=N}4Mc47EOgt4OC@jN zu~GAts2ITuMqaO)%G>^pxvZgp;*H-khT{rF$DhP7iA_1^qFf?dS22PevT6t0``Ie$ z%_Jvt+wkFN%6n5ZF=idATDJ!s+V_E(6()-~Odlk7vVgHTdV+fGkZHbq9&VnR{gxUq z=NPqGI+5MlzzCHLglI&aF}2`s33D}bE}NJi&JJzANxeFtg3P5Rpd&uxS=L7n4b$bJ zvZM*@9-TP$fsG8ZSeAum_fTgmiPel=nH`dnEnwrXS~6;IJZfH=f&vIx3D>J zW7%B|8K}0u3sT1Vql8=4%-N{R=2FBiX4)`}eeIUXYA~Ki?d4cjdWakfI{H{N$t zGX5~SpVG)=oot{Y%C4J_KNHK|!q%cCucDd459R2bT@UtUSsLrAk-~E92eVn1E7|Mj zvh2m`wd{(^N71CLN0iqWFLrbxpSdWzm$jHTkd@z;fMg#gQg2;iS(neZDBXjBC`@}7 zqqDGuNhxt=>-rBje^^_=IxTf#9pz^7)_>xlT9YwsZ}^!KB{QhjZZNukVLN379E5Ee zn^DnL!IWU!a zz|3TL?>3+|x(Ax(7RY|RrO(DFFJ?T49;B{h4q?@45{|Sy!{+iVVZz;ZJma8DIKCNi>%S?l`EKi1r%zF z4rbT8s+gbJy_r4KZxnm#)&dkF=)u;_e^2SB3}#Degv{`gK&pIW65IW~g@@K}uR|rz z!RjRsJbs(}-zN9h&l&z%?=70UwlZ{oj_~JtZ*j0;0)?wipjvtulSQL5C~f=YRNlfe z%3_d?NZISIxhy$>+Ul$?+EKiPYJA-!>a{0Ql=ECcV4*mk`dBeQR3KMM-E0~{T~{xp z%tksgf%md0KC_iFRF0kbpLv9@ozJQ|E{CmpZiMm9>3duy#J~97C6?)-mETM{vLh{$WD3*-+$M+zaszg z66lU!$$N{XUHFj*Kw`%KS^MKux^OFbZ_ypc5)|J*Z3J76PgH>n0y`uVXqbVW0Fk4GsXZmekpgACH&P%qvUGNwM?*bOC$hXOvh zAjLWTSnFeHD6Zuon-qPRm6DY?q^CIGSN^dE@!LI>=-bD<-=_O_%l$Q;J2jGIUylU0 zlJJk?_fyx&vCdtg{~_l;mw$ZjH75F*uiE{r+wa->mE$^l`IoQyAEW*6bl2V1OLUNT z*I7x4EdHl_)t0VyWxH_MiC^iTo~^%O-N~U=7o#2#oi~nM@xOw9Z3#&5yRWO85>I2_ zkCXKOyuNoo%OUE*t;7a($MHXplmFW_|Jt^9S|W)YJ5GOh+^dL_J98|5bol3IG%j^% zgzgrt;77SX`&U&LgPr(N_+?Lc-T2?;T%xyiC;T?utgdY1CBIGQ(Ur}YOsJob`*)>V zF8>KZS8`}q=(OUu={h|-@fqQXzfGsrm91d^+jPH=uRnSgh}*?scVBVSZ!`42oExGR zOa59W`aigm>}!+E9Lc({d;E|4*OMl7cK^?He(F%fPQjJ$qd6gbiwe)WRJ+zq~k3)-jM^1bWZdn zVdK6WLC<U(!H6#)<^thsKg=h4O+d-VJir;eoXMEiK;MsFCKaoFIO^ z9G{r2yjo~KL4&TCGMr2}m`pT8-y@3^Pw>=UHSo^K$_w8$CDSDqkNHYQy5xNO5?({E zbm9KY)AR(^jOS8cK-AOM1x<+=q_uQ98IxE}I$e?_eQy=eDgn#**|t)`2$fz!5mSio zqciF3COv^~`Xk!%Tt0p`bS1B}e5YWd?M-^itaGHfffZS*^@60?t2|x7a{5wb32jz0 zfnK1i!i!88Zq8pSBeFbm`ye}QuxPDn55mn_UPvmtlJ8^UNFCL|ytK9^e67-P;YaCE zdJ@@3Xc43(e5tESKL^kVDSAtX;Foj}K?i)mKiEKAJCyQ&B0T zslt15^7r1nTM?$jk&k9V50h80)_yeII3-Tlq}xjFDBD5H93)ANxv9hvGmOWUY~uBq zZ9^8QM-zQzHt-6}O!$dGl?1t=KiU65C~x}e!Qw7e2vhFWljCv|dDCk{cyDs_ggpkQ z^33Nwp>;(4h%*J2!hKV}3oUb=(KkFY$m+tYYc33eBx^0NDUBtAXl3#Z;$F4E6y<1K9O z#k2VCY(9D1W}zJ+6dWIUMNqi=8toV#fNKolknF9Uf+qQ`YD`Dl|f()4(;Po0HfjSmD-t)aA8zKrOq%y?2h zww! zW%BDwhIn>XmRDn`M6^^p3$>IY@o=FcuZAfkve^TqE_xyO-_vIrQ~r$lY{FwT{3>}5 zOg%akzwjy;KD3!aJiUa7c!d*S&d@m6HiU*{ZQ1bkSsh|-s}vFc!U3OPwiypln*+C7 zHNl0K9^qI|4FBNy9FMTt0LxZw#{H(m;}1qXgcH~0dN+wnooC-Gwg zcS8H5Rk)4WXt2Lh4&S(D7H%-P4fgx^0Y0{$1|vK+%>+^1+5%uB`}4Pn8JcL*wnMB#b6M&gb^d*MpOM$kBa9L{b%3hsO|g}X;8 z;*Zvr!!JjB5E}=!!V#6DVgBCX_|+BV&^l&4s9tg!Y#%QN16nh{u=o3+ZI~P0SE?77 zbsL8v2g*R7IvONaCgJ+J^>}Xw4LG#K8~>6t8{AAA1#K3;fxcCn;Do#cI4fQXelK#z zn-}f?o^2SE-x&w{PH}=e?(fGh3y0xD&Kw4z0or&AjD?n->7a-76<}ef2HU4b0gH2& zVY;3L9)DX1o_+ZQs0mGAcbf<-n30Mr#3$qPhH1myGBfZL5D)h1eg;j`?m!s5147FT z*vsS!7!rRO(o-gb#+d$)Q$GbJ_DqLP+uLwWjgh#{k$WIXsR!y3;)}e&$^1M#eA8@v>*Zna?U++=Psk{6Zq0E} zFZ~FX_}M|H=#SuY@(#fGZh^k}+8~_PhC_RN2fXC@u*j_lZx4D1AMT9?@h<)GOJ?)n zIIH7WB_{;PyEK5NewLu={xO(=>*0ana^U>fQ-Iv^9i%^v0;{$R#!Wa{cIoH@P?p1Yd?kC#iqzWz~QZ{t?zZbg8MNEP@!el$FH$6U;Sn|A6;+ILnKkkn`p4O?qx;y!aoymWa@5dg5 zaJk!K+JDhT`r<}wp)}em@{}om&j>k^ z^Kd)SKJFu(y<$5dW9m#F*_}jJi~PwnzO?YB^wiY3OY7K|NK)Q>3cmrL{&$dRI@vbh%44)o^ZgzixF}@FfRHRtb7PXF8J!cph zbHszLE^82+OdCsZ6i#6Jhc5~GyIAlu_zC2kUVQ$e0q+GWHJ1G6@C(2B)Ifftku!b& z783Yc1__2-8%^&S7%O-un8)8KHR& zkZDOx(1Y8X&Ne6MmlT`S%rQHLau#m)i-W^zRYnNt*?xPm_quQ(+1o=f7g5_&h(Hp9I!gWhh1?`Ehbi8Rpl+{^ zU};$j?X>TRfP3~Haruc2ZeR6Xuzl+&q1=If!olg^=#{Hg$=Bayh$$b#=%SZ1=@ARm zghm2AdInE{pwnr3x?mSQ{O~o>Q{^*Vtf)ZR_bi|zN{i^I-pTyA`;~=hRW%0>Y1t9g z4tI%ly7%ZN>ofGG3QFWkqYOG@F}-V$c7yvqVQ8L(J$b$;BsnTV)^~Ug4Olg1ruFc zi52(m3p8UbP1Qgu%pZCeKc6$3pi4!9%ajjsafcEe|K5XGJ|W5^w);^c3y&&E@$W-HG9bFJ+ldaHw&`B?Hn=EAe(%1U_SjA zl=4^N>-lVKw7{{D%Rf8x09mJX3Enx9&OfjFfWYqY=~G@k==2ZLgkAIu+82$a>&J14 zo(?nU4~cyQ_uTuFRU#c;?VD))MAAq8;}NN3_KjR(UXCJR_qaE4TgI5ke5@m|o!^@t z)Hj6G>fKv#F3FvA%PA(*SKE?rlg!Ad&~rfZ#;QvzKg(Q z?s|T}{T+nSlq^2A%^T0H9ZAyL1NmVY+4Qz{b>WNSH|Wi)S;AHWBT&`^+P-NhEo?5M zfkK$zLi;>I_4GV)!I8CeAKo@H?6U=Zi_#+JwyvkEq*Q2)q|-$4qi?j5YRT9!3)sJHIrOgdS1Y_J}O9Wi4!ynJxI?~HR7X` zkW3t)NaoHBCanyo2<(SXB(9S;=z-6KZIbq@+`ch6lIDKF{p7lka9BSi7R$nxs zTShe#qSyX(+Dk*SceyOzMYT;(*YgDt9QBzTFCWI+EmKTxz0s4NeBv_kt;&#Gs<(&? zQhiB0wXPudc&pK|y60%}N+DSvokF|5m*KU#KM?GVT}4irl|g>Fw2Ej|d_yYtdyC)N z0|jb}PS8r5(&-O%fkf$rw}PQ}PLlB_chZ}+a{0O+6ohvc_MuNLTTb-S_)LBo`jyDu z_lAi1QcniCFBilT#{|BI90f9Ny~u=itG3-Uf_O8WAGO%h0c}4J%*r~&%!3zs|rT<5KzWj7Twt5qJw>XtPur*6yS=oZ8Cd?wgZ&ITV z2CgCJ<=+!*I4MWsJ_Wetf?oX6fc135Y+W;@qZx?Lj)69l*=KS%N=K%cjj@V)#H9u}lV5A=5zX6r`@ zw?DKcBb&VG%WNH)enV5JnEx8*g-)ZnV{_=4Dd%a*(NAb*a+02D(3?b-d~#B2CjBUw zOCM4(6{c!y@hp40)FdrWBscZ%Bg|L6OimagC43O0My`LFPoGxHr>~Vq3F2OHgz*#C z!gK>e{`YwX#LI2Q^rGfCTA!wg_C73K6+3}E{?d%R(UL`s;bicmd>_(<=fvkWOQeL6 zG53hZ3&G?ACYW~g=u7v_=L)SBJ}15Q^I}3<*lNZygfkMeOe{V4jIjB!j2Le+s5*qub+W0{*Xf+ zYn(28;;Y0994Ad%x{asjkXpQ=Mp@wz7dia>3&d%zt%q=dX#uHnTUl6> zX3J|g&plYSlgG0hv60-%GbhvZmI=m|JR*!A#t4pG%%-1~>=bynPY|TdRiu|$B+@<) zjtN@pr_zT#29kBlt?9U1Qnck@3Z9EwPSjlz3EJe}5Q{~Pw9KwjEXqnwaQ;*lt-m0S zUTGvRxZ}H!|7P4F!MM>}T6K9F3ebhh=6z<; zz2^<4eWo0y)6hWD$k>%A%{)fh%u}P&%3DdGyp4#$AAyU4pb=z7uEP*a=5Az8AXY5yERJTgf*eC&@Ri?R4}i zd7-jYsZgup5*eJYOg{8B;b~bcrJb@~l7l8E33nf;A>S!-g(6k)oYs=(*$>YW`kc63 z(R{py*xjnjGao#G7u*vHeOr%_v|^~R?Z^Ngf1{$A+BrxrsEs4_51WwvA|Y?+gH@!? zvMFT$$+5f~e+z+P45BYp-Jmm0nel>So)Mk~(meh9QKYihR?<@bJ$=Z28@VPvlw9d` zl-PNql6?O3IeGWF6W;9ep4eSs!&^CU9Iy6l4*ft*hivYVLvL-PN!11AeC?S|yxQwL z^10c4JgBLGfQs3~ro5wkmvjv}XkPkL(5-!e7+D{2dw>=Q?ykm2Cx3S>yzXI8xR{(X6G z%2mK;RO{H#Cu17I?LUG+&bqPUEzik;6VsoV-`$nk2pbORXwD2&5qTy z&fwSF*|iGSJ?TbNUtL8{n6!`ZH#$N0t-nvK_nJ)jweJ=13lG8nz4ft%_n&cnZ0PvF7NNfXd!4q{&M0nprtfOYgZ zkfo>tf^MF{)~E!7cef@$*8$H>H+(#3W>>Hrd{Z3>?QHH~`LFXae<@k0fBPetbym&n zSa~V1Ju8jbWW`}Vclf|xt1p;pJsq>#CDXijk{b3?p9p^1?59A!ztgm z+>;96%Jmemlv3nYy;}$7B){T5TRRr$)-H#w3*Eu{ZOPblsR3|OPep9;tN^UkKodH; ze!^<|U>N7LGE6C|!>WUhfQE;)pog0h_@sRqn|*REmfm;}lgqdb$_i3UebT?1z3f#7 zI3>N|wd?~JwbdPaTjvJ`^@#s+Y#-?r8g5?PtU_ZAtTq8;y4p1uqu^}hHsyA1`B;85i&Jta)Xy+zO)JqYx40s4G z1zzNq4VcC~>AD7vKe`&eop~Gc6eeN^UAF?wzG_hB>T_)0V>fO)UdFr$QQAeius z`y!|rXw4mu&&)J}zNvBmJvD*)u}84ehxCE%{YUU<6&HHmQ3OGDGEkQM2KvpX;hVs% zaK-SQ!0mZ1ctAt&b#54t*_R6Kr^Rx6nqD@WzvnAP%6|YJ=?P%%X$F&(?E%%c42R`P zy}=6iUa)nP8}>q~j{7EkBKSJIFE&>`nX7bJ8-!jgGJBuipR2?z#w_eBux(*{GqsAF z*vq*$xW{d>u+fAEW~C~Fxeuu1_VMI!XWqTW4INa1#jVdXTVAGaHhPy2=($uI93H-h zJM9F@*eR^? zLK<8Vt`3hW9KvS1*uxa_5+Hru4E8xO1o|qtgW6SQ;HLUPY}!)|fGeoNUBmLZw=&mp zN3|qCL8}k6lrjZ3&I+-kMGrvFHeGntViT4)EfE^PNG#2d!eISY=;`JFCMFC6-tmff z_GuCKjN3~LJTZcLH=YCG!S$H%(jxd^EC#OLnE(TIX2Ofm5v9)HkYQ!G;?#m6o~iz%Y4$4hCbl4tRh`#w)Okt_U7{cpYR%2{2*QDDb_{ zQtYY4d@TO35ggiTYWA_+$1JgF8W{Z65PlN8!0t8A!(QP#z@+Q|kZYQbgb)P2J=qr^BLDVC?+M3Aks8#ByLh4i7L-1!&mupTzy zz+u8y@aXCkZf#H#xYe44Exxx2Y+oM&mU)z6(XH|z`DiOQ#5D?Al#mXJlu2wsEzS*^ z84dmF{h^i71I&8lJZ#48C5j1pSUCf=^?n z<25JGa~BP=1lLpppwcc?ct`duwlhfvAOENctE$)mbxv=C6~!-rfo=xKWc0A9oP2Qm zg$Qg@Py_tbC)_L3NL&x-;*;nsuzmv$J`GHR*~*t-;?iN5bcq#gPJe(cxO5nsdTBH? z9;6IjdIVusazi05+r~{BI~{v>`YX^j*avErhhz8C6=DDMjlkh`0eECq0NB=cY)|`E z?90{B7SxSL9qsqbi-qP5u0iS@y zbz6+PKL$h|TnFbXJ_9p{=z%*E)N$x+k45q?VcAymAu;GBgbjNmND}biM2f!e!L@bWj#l1SB7yfPGb=dQqBe36o3k%cJgiCDW zq0!($Sm483U}xAeOz+K2@e9l~@WAO)VDD`JEZ+gVpG7V=?)XbA@bNhS-c5r03kP7r z8&S}pP!lYeHVP_zw1$2PlR>6&63}=hkIi^jixqgy1HQI>z$g7IZe5fT9^0cge&H|@ z+nnndmTnIVudRndoh0nc?hU|xQZQCu-VD-v^ukvQnt*BQChS(U5`65HfGI}`FsaO~ zuq0tPL`!yIQhH*m1|33e~} zB)7SbCD@C`fn0$bR&Xw!yCmW~Z1Zk_&#T6Q14U)n>TT~pk@XZ>u`wT9cgVs7 zw!5%C!{yOEkd zyN&4(xD8uAX(BfKq&GMVdk*gG7yd{G1a zHIuP`N!P%@VXfd!z706)NrFl@dF~w9W#Ean4a`}d4UWFPiRlJxfg^iR*iFA8tWD1m zF13zEP*1IauPc$*jUXlzVeY ze>f&^6U-c6jXfcJxbRFC-qhnJ^S|o4GQP5*KcF6^ea0sRm)f~ z#|dJI&-J-^x6L7Drw)UPpI}qS08Hj<7Vyt*2SaBXU=@XaFfzOk_WEo%Fc>fjpQj`Z z!@Sf0d1Nqzb5CIBZwv;ubQ4_sAOJpbJAyshNdtpcZ-Ae7Ccu$rGrK-6Fe5*)zj{Q}HnzY#qDl!B*UZ{;4)(SSQk7hxXn z4}rFKyYZ9z=E79xz91&W3Hr3igBPwnF&f{!r|r#aT>5m_nz9f$({BG4|qNEOZhd zzDXXS3mZO;g2qFm!8=ri4b{KQ{qV#O_%uuf75pb$GqizwSZW&_wr&vwjyj-d+97Ne z`vBB1#*kcWz@2>~0fwgS!%o|30=`2ky!$W)ROUXyHaM?9l6zQn$R`P z2YSA^gq139#+tY0fj&2%f~2oX+$KLyz6q(@*QblVgq8s0=E6xRB77wC6C1!!MY$2j*}v5YrX++VMc z|5^Jf@UBw_fA0MhgSINs&07TYfXN%^r4NpfG4e6I`%V3YS5Hd|KNS}X=NM%2#yA%f z)~YUKZB!M1OyMw|(u_Fa)NfBo*s>;c?o1Z8`cEe}`i~(WWf=0vL9c!}{b=0z(10U3H{A7eH5{|9bjdOKuH(NP z(3LJZevEg;B^8=ZB{)ays-}G!_Q#DuZ*jZ^ifCYXGwS9$-`M>k>8^J&4R1i(x@aPk3C1iyw8%#mC!g z!qqV$_}6>A{?pG1CG$nHpGFe@&r^~Ec{*)BO2({E__ql zPrR4GkypMpRg~TwE;@K@yhw449&fp&p>W8+gFLThQus<)S6C6gM&vyE8@bY;m&n(5 znaJ3yl9o3aFXEO=z`t2e5qd8*6eiZ+R6me%U{sAOE}Kux5TT?t6VE@p;z`9F)fsE57>?U${ENt@+Nx zs8j=@Pg6g9z?E_MVx4KY&i5nWC4Cof!Jgm~O&;T%%W?SK%bLWEjWIZ}$%WAD-3yjB zU&SM(1`;PYn{lh17xCz(sl@&>srZ<-2x61-Evyhvhi+SY{_g%h3GOA~AD6ph*QuxO zXNCS;`z-Yf9mMC#yJJ)12V^9BPbIRDgnwKn-YYw?_~(`hHOZ88oGc~Xm(#aPnP_uV zw@km?aon@x)AbWxKk}k}2u1wM=$_u55uQeY;UU4@i#jZjmj9^C;dFe&|9-imqyokF tULnE00e-(K_>X=IT~abiDoOn7h24J{-Ep#>jSqGDD|m@{TY#hm^@n0@!+-QD;0zxTa;?{4Evbyc0JI(6!+b52)RIgaDyxFw`2iwc-<27-5YWMLYgoOJsV&<@YKwGHoBpKN*jp zKyN>vj&=fqJj4CH+G_gIVp{_q{_dfnu7U0WKa!_SSvD=fs_FVKDdkIKSA!oAv94T}o?QHi&Ikb9VobsL$#dz7S8k{aeLHR{y3MMvIG zJd6zt4iB5qRVpFg?Rb+g@$>BczH@C(N?)6=ReQ2y;q>5wYJXuEHuxyJXgNee?f5J zfqr3aa}})`5)>FaPkin!+V@&i8X~qv{v|$)E;$`Mdf_%1TDiZ;3>L zZDZG2@PCsZ`h(-YgTNU7ppc-j>4ARUK_LO1Iuz>l1BV^L`E{`wwej`;$;WK3kf3(< zei7(z4pkeZ+j=h<%W!}9kdEHBgQT6Gf0)xzN-}DpKQJ985!v4s`YGernUIXh{BS>i zPuIVJKs(re!ffu)t`P;i)Ez^~f2UvmF} zWgFq?-r1l@eFBLy_9M&R%RMB}FVM#|MB;ZzEP9HWI!fz5IN9 z!(2VRJlv!H!(e#$`vnKKSw5Je0P7>pEKH0BHaDM+ZyRGH*NOZE5KcnAoW-z zG1q{g0Et5u-d3lj1&&MFZc7c4_==GseiGl%JLHGU=J7Xd_y4h;|ZAwAa)Z&HG!w%WWyf&yIqgM8Y(F6jXH zyU&++6rlk@L1DfURQ!;^4~J~AUt1T3TK#@cUE87ZH{zA}{vm!If0NKoA<+sy<%EO> zx_Y_$c!l`44X>1|AH(Gu>=okbwb;ueyrXAr3U`5Dm}IK_m@-oO=)ZYBn6%`^%xhca z8hw|^$h3Xb+MYy$JiYuaI+(QZ<)=8MD5;SSmMn=UeKe=;&U9qH;F^>?P5<}_-QjD%8JzclP9CUd)M`<du6}0(-99=YEPHy=`Vu6r!%J7b|$ ze!pkOc64u-g;dV}`z7;N5B@6>=&T0}I|^rX%s**eKh_W>k@mGjtB%n6hcDGegGmYh zli{!7SFPRildOH4TK_%W;*NMO?+-HkCoT4CdO)XV zJHuFq;C@dJH1ukxm&*B1+TFj{`WH!{vmTJnqnVumVcF5XRYxeDhqix^uXa7qh`cA0euu8WM>50Wmj?Fmvn+qa`&=eV3?MW>BY-LRiz z&8Y1%lwOZy^N%G#UJ^yvh5WrcB}x&by3u8C#mgta_A@^vsilbKN3#9w+)$G z*uhPG*34N)U*{&CvgV?fE<}s=Rd54SH=|6gO3wKEV{|B^nk&2JfPB3RxVw+MIp=9{ zsQ;MHg0VfWBBJ*Nc1h2-Tza}Tr%@fq_4^c!Dw98Qv2;0lD?W=(?cK?m5Bkp5n5a?@ zf{nS`59`=P<8E+6=9zPblZSJam;KO@;$rGmuPGF}cMFT1vD!Y6AdG2XiF?#Ckhur%QM`a&lxh%( zmEr-|GwNCSCbTp)4ShZA%Qe}J=C+#*MWn(Ilzn&&J2(fY&Mvb-r&?I9d-!T@eXk~V zq33y0!zC644yCvr>*on>zYY^51dKv!sx&3?Ekmu1I$U{82D+A%#1#ZwrgUQC(e~_g zsxUSK^%=TN93Om6pkoz}Y-{yUTF5%CGGjScoZ=-;@Vt!jmW$D0u8cF5uVbf7wqcK3 zxC^Gp_CX)D_Os7#G@|Z@3(&koMedefHC0l+3(<*Zx$SD1==qc=*6P*{c5ZQnz^t;6 zvova8kC6hD?32Z=JClOW%{V34kb8+6Q0t9`?=VM`)t8}BBa=B&E1z<{=Ed37vFON~ zE?kcB1~d@A&Mm62M(+S0O)6WA9`xzKZ4@+9tx;c>+!Ajf^`WUayf% zmEVs?^B;L46g3+yy8M-O(iy>>TiaiJ#AYS;JO<;g+)U-Zw|WqTAMLmYQ~d?n!|JI` zYkG3_)|K4YYeH7!pO4BTm!aT-f#|@5b8@RlVgZgi)5viF{lNzqy zCjYm|{n;+G3#dz%cDo?82h#A5+X2H4PrS3|W;zs;q}8o1`f~ zgL6{YkiHwaTbC|VtF>Fjb|1E|hE3^$W8rb!(Uixm-Zef-d*q7F5SHBdN2S!95eLvs zW;GhE;g1sQW+7j@2;|u!M()oGICI}zO1x_hs(;Xv(mmnL%?g@=YO<7&#sNRHCqA50 zI)}K02Wr>}Eo-@@eU_n$341vIQ?mra7i&^CnqRVqwELl@OAiS89L%CNS~OGVMr0%B zv2keRM;DGZmF0Z09SW6+6$3zXV69yfQ?EYzF(U7HFX`mYv!}p=ZOQx%-ba(ACJZ)QY9^(5V@X$Ul53vYt@RoeLg? zTKZIw2b2UHb#aYA)hdteZXArPncmzmxv^*g6)5h%L%>a<-MMbZ5(GXMFcfK+iRO~J zsK7IyO;Ezvo`Ew_4{9yS67As{X4Rl3k0-3^n2~5soDX*r`JfTAlQ{og3pps%VY`cx zxXJ-MZqbAS@%S;LkVe-W_I!>5YMyS1%JuG1U!0;i~7{lRX_oK(xGr60dUD2Lhv#6fsZ>Xf_J-B06*Rsi%FH%bJ+mZay z-dynDS8QY)_x6D$@)s;U^2Y>$kpA zt-BVWl-)eeEy|9QJ=l|b9=29|PrQP&o~p_5%JaD`0hMT@(p(O&Y^1cCODN5WrQDRo ziQG7UG4*<_8(R6Ih>}g#;C#LxM7J;a3JlV-Q4QmQ7DlRY?3pQ4rI9>mXSs^nvIL;D z(;T=@ih*eJl$Gr339)RMoe;%-9L5a}j6-i%3D}5V7|9XZB!2sdkeJhd#U zfwiy+WUpsV;A%&zpdAV(D0$Q__JUF?C1ZFG#m)@pj!g7H-_ll)g`2vgSF$rWqoOP- z=RlZPe&ZUpah^WXcx;Pq1>a*;5A8s+jI5E5nj@F;$O6g4HE^nuxuz0dgPbo4IJ$t( z^&VY-o>GOZdGCRHGyK z1M1BLGpbduAE*52JyYF;&?_AcDz;f4_35LDo;Hu*O1m2%o2^ci+{|Izy{#)y&~XFq ztwt!9-V%=laXcglFXW~eZ9o<86e-p_7+rIT=4uqnS%pE7h*z)0x~D0M_b$yxBb1_0 zMDze|%SJganaW^?e^Wt2)~-RNhw~`CY3|(4nKq=Q*9>m`$)RYO41uyw1aiZl58`^- zJEJepUQ$;xS0G*6@$9{?^|!D|L_bLzCw zgxfc%7{kMqxcn5`W1AXhQ8SBE4Jf2O%h$4#V{xS6rHqt@<#FpyB(vC+72M8XG3tFl z4HYO3=H4&PMwK-ti1esM2lptW>%8w&pA`<=I&nH$yemhL_~J7)f6+>0d0`djRiDT< zXKEtZz?pYshvfg;A zxH*k_vv&&O2Sl(hV^^}<^Ax!9%cH0x)nm9+S6Qxg$#j%F=`B^gMvkL$1l(-X9&G8P z?VQ3(U8GPwiqkB&;0*dHQnm8o-1+de+|fn-1)=O7@xb`8+#Ym`t<0H>j!wHND4C+k zr5QeF(~b5cwP>8v*~~-H2O6k-N0m9>L7~*f!NuHx%8jV}&LCuStSeHMn~E0upJB#5 zT*JoJc_7<;IA@=Co4VF4OZ8CQ&aIiWNia;J|IQp3#2vPt&u!hXmL1t3WRDzdWsknF z;?xEY>E`6Uag0w%in@r=rGhGGoW6!V!SqD(~{mpF5x3Q=yXdOCZxf9js#iCa^ zY1D>$>D>9o9hBc%l52`vglr$5KzF8Zq(;a~FsCM@o&yc;!d)*UvxtwP9vx!4zllZT zdQ3spmtRpjF-a(X{!(iHhFor6)GSo?$Q&)U;-jp2yHGFRW-2FZEA^z>9Hl=zN%eAY z)N+fcU!<*ZrrP|o7j45Vu*K&t!Jat${t(4C7}tochz)S^iv3;p$iWj8W8 ztJ4Tw9PNzyYKg+IF7|uOk ztS@*!xt{%!dXk!TIE6j-#Q>FVsb@=vOy-);ZbrHBjtd%&W}vZM<4|1W zAf%-sD~JfrMKxM}-0;%%9Hl2hC6=;W;=(N`MAMF4VReT(5 zkM!ie@itPXlC@^?>q%-XZH}gITZTRyU(OzXJOOd~U#O~^=IGUna!y6t8(|^_?bFuc z@H<*4eWX5jV`{T_1GAEQQaO`LnrDR8PT$FCeOxc@e?=1w9;nEbie{myO{=&)HAC2; zI(b~)eGP8Yg)UrLv>Nw4B^nU}dvWIms8F$*8^zU)5!9E3E#mz|tT-5(#Z?CAabqU= zA>aAw)K23eTxt(pl*cYat;Z9%z^phb%dQk{u@!LNcE+LR`!mp(GYDN6(H+@;OhZ=0 z0`|7*JvORo1$sPy6T9ZBaAD^XkYn!@YWDPPXp+%7>iN46v;=q|%c%iek-QJJh}T2V zM0Z2)`vh`J#7SuPhS_L-ay0qecs%EM`5IN%Yal9IS&YiGjM3$;TI`<2&y@CouINI} zLozug3-x*Olx=lqQ1P1g;`GaL?1b1nHr4woIzXxyE8wgw-F_P^YMLi?@fw3Sr3@h3FJ8w}sF zdnD|8;|_3chut*1?)Fw6Iaj>f?UFl zIhF1=*!{dL^kH2ldQb!qF`-r*S+tHDU806gUYdyHx~^q07klozLmKDdw?VAnClu@N ztVKbI*=W^Q1El|`f*tVj85OU18qI#EgY12JbI06DsgYk7a`RNTP+RI2v1i;6_xkQE z>iz^-R((i1yFFQ#d%4z_HJ+QwUVoX&#hp7T=ov$CDS{C6#3Y$J#}#qPUq*5p4ybSo z-0V<{wl3QA;t*?~oP{d3yNE-C>fF&TU)YFS+2WZ;_OmgKXDPijdsbfEkV||u5S8jA zusK<=tan8gmr)eNMWoI^1FJE%Pr4!6u|5jj*{}-P)#z|&;RklvkgHUhK|SK{W6;4k z8#XiK2z4<06jgh7AGKb&H!@h7jJl~$M>4v}EY-h>4Np~N`@U!r8+>l0)(+S$PJei!L2rMU~t(L~0Aa zi*>HJqKSEZx$KbbTz}hZZ0NOUw6}5&*R76+UcXO7HT_%IxWF8we=8n+f4+({EZl^) zO*=!r?y{28imw$syEY$Lz4PQ^Mvp?Tu2dtZix=3Ol=JL3r~9nHcMnRgdqLie%wmTR zvf|bhr?S0grE{VytI^k%RP=233Un&^97PBBKu=eE6zdsJ5zvD}P(r8+YM3#On=tzY zyT)rFw@hs|+oy09_t-=eftX?3n99>6ikMAZs*T~yT{GFf1?EWYdlK8*bRTQ+wUphI z5`flMO+h2h4ds@v#?ic2rbw~o9p!Q8reM#p7^FH_BL5E&s7`jTVBWy3Xm76wZrDAB zZJN(gWh#CGXZPnUN^s%c364?O>6a<<^8jP44u~z{#@@ZwBy66Zz@UDBfA>$=nwPQtAz}? zvimmb=ExyzL3tGwwl7v(g}o4;ckV?+CMr_I5(P@Vy9rx*2&Z1_Po(PY*HKn|_6S5n z+^EwF@+rFwo>Y&@mqc8;nZT;@tKewlUWz{cN^o|_QR%GOl%@qE-j&@%6mFhiVr~P>UUGFV0emi?JJ8=1X_$?&b>7{)CUFZIa z{GXRVXZ%XvTP*Itk5m9sGybpIAE(xVTj_g?&N!Cx@mKiw68PDl_{Z-pq;i$MzmUfN z_74(#ov2{y zb~Gq_AvYo73wPpsD(dlV0=Hs)I%g941?3i`{^TF);J@8dslI(g{x;peTkg+zZr4cC zeLYg#O2a>n-wz!p$J%#={)e3ZT>kO46N%zq^Hn>ab^ASAziecCFaPpY|6{cOo$fl@ zdZ`Zb>^LhamBoLTuX?|uUHJ}Nw&Pd!SI^d8w{Pdru!B*zu=X3rj`&}}|7{6K@mtZ+ zO{u3*@#7@@zpn3{&vJ-6a4WSzopJoH6a(j;Lj}HI( z8I21a8lkgAEBsOJ&;C`_!C*VS6o1(hUT^o?oJ;k#@#x>Co7s_V8Ts3EZXMY|>4f?f za^H@0+aWGe`Pd*g5{k{c8t@_U`|=&QEC+2a=a&_z;0pf&}?=gp z56Ro-OvQZdo#bgcg^boqAjc`1kOQ84ClWPD@~SYAygexrb4zu_OIEEWbuQ`?))SxL zW{L%*a@uFSCIHcetD~6He3sM=%p`OUZDl5!?8ajjK{8u;8rie-29cC#LlR7XL8HDV zBhJUfJ;O>#fl?M(-@B(k=yDxbPCvn9xjQlX(ftJ1vtAN26E6$yY}&bK5d&X6N# ziMA3m;vduZU#})#l(3A;7X`BFP$IFb+)prR<{M_6MJBQ9A*4P0qKQVAM}*Om;iTb& z!$OyJ6Nm{Kam4-b)got|1~NIxgBZ{iL@Z(b0&b>CdN#Jqx`PR=2-GdD9bpD!{ZbdJDor_<{;Ig&w1XULgv zOc^U5Pcd=#0=@C{74rMj(@edZ95Wd95|24oN5464O?I1cpEl&rAv3ba(^|=0NafET znM-5T1dh|D)3IUMOsRi1Q4wM+ls~kdjJx*``{?;V^mc6q)4yyEd3%=%KGAMCfl3FF z#+EH)>3}EX7^_9hh>505ZqF*l`11=oWZp0axB5c3jk{D+R10YE`5le7J|>j$XY|S! z+4PC8?gV{qGu9BSdhlPYjDf4CkQP!d*Y_W9n5yMiLkrbT-u`RJ>u@RB4W{*{X*UPC!#rJ(}?7) z+4Qsd@tBf-8EKuko>9NGg6R6vkXa>&W4z%}l3TEysa+GxES*}$7)HjEgic>#=j&Y^6XAg<|kc&sGBJ>d4m>_bvm1v==PFvTB}T#jC3Q`ZmK3Xy;v?@c6$t2wOE1C znZu_y3I;Kwr(7e{s#-<)yH3&LoiS!tzusg|8+Urw;;y2SjVtK|bsuPNpIW-u^)0S^ zPKWLuV$4_veiVsTZY6gqZ>Gn8Iwx8>c_Py_>IQLg#7JD#Fp|bg49L~ivv5?ZNZ5+^ zL$w|K$g90K5k%lIdiTyee0ZuF`7l646f^O}1d*2Le@>t2O#CzIv*nwHVXM_}>~Pq3 zj4j!Uy<TL-YkhBu6QcHy|88cXE@DjUXmxJ{U z(8Tu3&=8b#!TFa4z-{wyV|oT%@R{-#v1n~yc=6pg?EQ;6Sh`{%q&MqgxxF!1x`crR z2H&B6@igd?5QdS3df2fh1#Hk51KjL|IW}QjA54G$A*iFe9pevw1A568!HjG@s77rB zvW@exednh`pY7JzlVy5P=THO|d@BreH#UL1h&-(C=W1-rxqeXjkTZ5vzaAu-Tm(m~ zv*26HS+IKTcaY;-2yfTj1U(Ro>l;i)?9&82p&8Z_Z>R)=?Zyfe9X+*9F!Tkz_VT%n8(Hg*a6#0(Ap4% zUG66XA5#-R>9;+wa`Rmv-17y*T%8CiDumF>_Z-MNngg`0w!o@}esIZ^VOWMe4ZY6g!6LgP zjNYe#-RR4~h1)V=?PVh@D}4=USsD+IAHM?J?06vS{SgT9PascZg5@{d0jqm1!OXts zgT_Y;L1k8p8n1cx)%x^d;~yykslO^ zWx<&22DtZbIe))r2`CJ8g=70FVa3`mAW}CGMrA32sx#xj`*$rMrzr`HwZy;}`z&~O zu|7PlUJ0`lE1-H!1ZQ{%f1!CIX1mvgtabKa4-{&p0*4sZnA}z#yg>_pC0I@8U^3V zt^!Tg*ZHcBW8q@c2$1@v5%P1^fNlF!F-@D*e9Pt#5H&CbdJpf3g&%td?3V??OrJhL zH+nSKZlw$FBo~6i16F~b^;x@DEM4!E`eoAakNabfrnKv?&QAWy_T)dwx8m|ZF)?`x znUEe$#xb*rC)d2Wb}c1=SjUywr{+frRtm(AE=**$j6TYoS9c_{(0E!{bBUSW z;!K`u!gb2Zm~Z-B z$#JXl=>NWP2%h@CVH`e>%)z#`^uaD@)MLRH_hG%iO~CpkdI@cT|JXeaj&J2hJ#>oJeU)EAXOU5oyBcjB! zi;Li>&uaMVb#Cyc$|P9dG!onOycot$PJlm;gV_&pNuO7w^WfLQKR!P`Olu#PKi4^& ztCK>>xcsh6nymtHTk8q_!udI-=Jy?cw{?!laHJ_6H*v-On=juHPfyB`D6)kREF;Ng zvqA!N$sj*n89_hL$s_b$uB3yHt;3%8v0;{}?w~Ip&LiY9c|_GnFM69gWRyRekZB4J zL?_bgXq#)nq}xzWY}@__@>cFjCim$HBEfe~&450KL;>Th7>lP>HBTM$n5eH?_#T2t zp?FId@^mXhEKhYHtIt;xK0%wwtjtrilf-XZw)7=kXm^(mg!h>p`sPgL5N-1Aj%qyL zSC+||oX_-`$Rj@+>oa}aG?sOJMCAiNiXJEx(>-1{6G4-@GJ`Yog}KZ^I%`XBY~}bI8av@h z-yc&WEW42+dMb025T<_+j(mKC4r*OTf3Z@+*Wcho18f5su4w>KqR@{Klg?z_r_J<$ zBSyrES++vON0}nyE48qO-$In0ml4hwdPwwoW);22$eVVUsKAtrktdxqrZA%ZGNReK z*J#6_b#S&<5`ARY2x9t;;l#}k0rb+WJi>2fqHx(}ZSup53v@;IafEmNcp_wW3e%X9 zP1M%M;aXiK<2JWZG#suoSe z=7_|$mxYa8Cewos_NDDfOPaDSrv0yurhOj8)7_i0X?g!W^ydVM-eyM=+dl2YPtQ-F zx4WIAjqBBM!;c2EPE;2C#=)Q7a1#-M(@x+cHnI4lBM5JLo{LwcrwJc2@=QjBe$Cel zVf2ETSNWwE-r%=RhU3*rt~jBUi!YWLOZ3;;gV!%ir(f;Qz)yWopvP}qLCb`WX1>qP zpjj#f4;WR0S2pF*bEY}bx%ypk!TG16nM$+iC;L+9;uQ)6JlcmaI=CATIz$nNL_s2h zM8leONfjc$x2l-!bzG$Ik*&#{>W5qK05NjycRaN3al*$UU39qoH1Vx}voJ19g~+Iu z7lp){iR!-J5(T!*7L9M6P46820vB0K64}~c#lz-S;<**okiTRHE+1GzjL9j*Y76S< zy*Da}0~_y)PU>C7n+s-$dY#b6=cu0*MO*eH*N1ut3swymU0*Sa*1tBAuD3f*C#(%3 zY%NrnU|t1|t7Xvx4`~te52uMHo_j#lPm?FG1xx8CM~@OooHAk8a1C$G&7|KSpG;`# zl@Rs5+RUj*iTHt`9^~m;ZcK)5jJyn%mcG6d}m)Pde-tG zDfwu zbh%9QWG(TXtIpA}bxBOi(yPR|5BKOauV-|_-F$)+pT$;J4<Ogy{ZyuBh&1 zI9@d*iNadVXDtrLSCbSDECYtp1YZmi(|ED#&a@hJKmHId>2VnOm(K; z?+&83zR#r(Nan)T%SptI;~YNQ*^V~-MAKJbE-}@|Lul1Qfj0CEBX-UfVZ>B@TBos) zxOw)8$UDY`II~e7m)*8X6e*u6>Yo=$xO?lm5Ot-HW3d%eKQmgiKkB~d zRGcQgW1=(B>J&(~>`xMX>zPU44jzRqSa1Q(l;2H{^L!;Td$NmIiS5K?E-3B~s~^A! zW732@k9MaAROrz@rg!PBSqa3 z1z(-lUDOoaom{u)DABlSI@zpuUgRB`Lk=tB=$-Z|WRLsDXn6}E9j3FLxl+}Saaq@Z z^Nx?k+y-5yD<%(R(pDLfG6T-jq+C8dJSLsYzaKA>zlD*HBmJ0HN^glbi+x3=q9_%G`~_itW4U&!=Az zI*o5c^vMu>bFwNOwjzqQcs-hKDj!R4HuxgEmNb+YcXt$RIq)jIE$SVntQ;1?- z9Jo$ou51#v))bI>my?(!4<8W?CU-E)%2r|AVw^cOLD}Nbfkg~9_70pfh$Dugu4ICI z1`!kPPZ}oe$KTiQC*!Tw(qnVa5?yCKqnn<~(;vRYGKX^Im@j8+$N{EDMSGrKrY|f` zVoHbVkdLCC)6GwHn25M&a?8B^_`6a+Vsd;Iy=+b}zFD@rs9M=e^d#+>=-q=}BKxC} z^qm!3YPu)w!o@=e6Bfnl#3fHNV!^x5MC8NA1TIU_YxB&Bk=OWiqKOJ))zF7IQ@4&T zDj83tRP7;NzwA#hSbd!Ce{m!+JvE%3y&BSrK__t`bqwtItWTI4XpnMd*`m|8<`L7E zqS0?7Sk;)6GirA2Whfk1>HKVm`*9w zq;Gf8!`8_>Br+@m@RHmm#3c9$A3cl3P3q1NOOLOiysv8hQ$k_ zwOoT(R;4czf;=LqE>hT}zn)ede5%^;_*mh>*@@WXxnj}%SLa1q>6b)B>Ou77R(Uc# z>@+<;U7c3@JeTf1S&6={eg}8E;xCeEQRd@wyO7bB$KyqL+VoYCGW{X*im33$anS`I zHTsmenC5jkLxd#HB3BL>$xMwaBgTui3AHpMU_}2)dS1;XtYO$Q`e}6yUq{u5n5nd$ zXs|OQ-oMo)N5D1oiEF;(+UW!xap(Z! zZ~HL(4I2rA1XntsJdoBMJ%oIhSb&G!m`0pcR-xl=r9kIr(FE0flgP!l7yZIdlXh&l zE^7Ri1YOSD7REVRiYh9FqUBW!>F0Sh#O>v^^zwtpMY&PdbZy)`e8QMgoYj6t-|@?) z&9*MGeKD1sEWzU&I+mg$KXyFE0FVLPyx7bQl$-2_`J~v{LdK^|) zZ7#YnA(-y5W3TAht0lDKiI)AF&Rf$#cdLjJ?fFFGyb7YEqFMB%po*w<+9_(iu?o+P zuN4_?x5u<|4%4k0^yo{I0_jjv4o`TiOXqG5p&Jf)6P}Nrh}800MGb>93BlI0!gmK% z2;0c7v`O-60Cleuj-pX2hw*;3ru3J54SH_a7QBKyD{8Q) z5SlhM61&)5n43y2nJbsYtkb+poILUgyLTChhJ9CKx-RZ7Y^Ge8G1)hvpOOQyrQ3TV zRIr-3G-5h=#`Y|JbbT3V=$k>u?6^bhD>_K8WCS$j;m>TluFkyv!Xq^XWQ*qAX`n}3 zUCG>9t44lNkY(=QRAZ)?WRr_-<9G(B!UXqE(C4CLiE(?1@wJ0ii=JwZqW5ZF67^mp zOB;;M;WtdR$Fja1#Qi6##w6J+CPB=A*u=iQm>x$)~!vRY4ru;n;9Ocki zhMA)1Jt?@DQm3__O8iZu1z2V`8QSpba?C*{0yiG3RWnZVuH+uGoHj7?Ay!82z=p{h z;?BW}jP?(-3R%K#@^G5bI8QsAEEVxI$JQ7Q*e@*G z-YV*PMTTfiHWIEF{9K4;%QBHymx!KJ_oD0l&(zo@9Kb`}_ThC7Pq0rKYJ^wfJdsAw zPJHY8Ui6daa`?oNz39XZZuFqyn{?k6C;G#@{-UC_gNX%QX3*V^=FoR@bVYp~VnoSL z?}~u&e$n1uBXIw9xy1ZKS4HD_nRvcZSA5lq(Rj^>Dmob2VQh2N5zm zbcth)AMiT+CB%ApR}nstBqmx-rfqFU5Tl3r(QYt_wtS_{47f|vAMd}w*}3wB>ymid zC9jo!R@8(|zb#L%4gDy3G$CE6VlfT-pL;&m@%%GBANSHF;g#yHn9}5B;JQN*zcfXM zx0Z)N12cJWp1&7nW=ye6xMK*ds|!F+Vs_FD>kt_9Xd_%GbOF6ozk`{E1K_-yuYu*j z)4Z`;KY`5^gR$>6JAtZ>1(x^p9Q53JA6VPI1p|x)ye=V2fcL2w-rU#oVS2xJ)=%D; z0nNA}urX*gI6U$=RF)Zyd3Ysb3%C1%=f%m;+%z0+e)SqC#Lj>dPWObyW7FZiydI$R z?gVhDe;iaW;=`KEM*eQoSuk_s5bVu^d*Ixz*Wm2=g|KGdQvU0q+F;MEQ0vH{D!{xq z$yb!D(|b1iSl_Ml=Rchv3-~Uc{57d3L46Jls%w|Q31J_3aYHtPih(15!u(zQMM*s9 z7Je8RQJvB2x_h<8f$B{0)yH~n_R7)3l@bX9g%W3EN^(Xn@c4RG(ms!g{ z{^B{DUGf~hEiC{g=5ZjtqSi*{J_9b;E#=k8I6(4NmF1ctWBJdr72*6f5DeCdgp(Fu zgqmt5Sd^9xFy1~C9+A9H;9X?^fjPtL=kI`iPS$YuFk}AAp@;b{H#R_-(w^|DPk(UT z$sW!dUj=8rTmn?R)`G^0)9{nqbRf16@s5m3vguk;4>VJ{fgU-5P@68ZRJ51n2?GK^ zT7DS6-{>mP^2!$0_k~dNNI#%|#|C^D&4O2D`@xuz4sfL7S#ay=8Bp-NKQHvG9_U&V z4|BfjgC~i-fTLjs5RUluCL-{9b3d-pccgUU9seS(z--Xvfh&yFbcTobeFvjz9pSgevtX`5 z0(9CN2h8LXz`MC3U_gBX`@I+No0VI^h$+h0ip!SZU`q&C5$%U%Jb3{YVSfD4l`YoY zc9}tu&NfgN+7)|rbm_3=bM-;)fpef{?l=BIY&y=*Etd-plOfPHmizV+P1U<~H%I|rAGkZsY>+EX&?B1DR z&!a@(tE~iYtdRj0d**|qEvv!KFN*-`-w*0N-wG1FZvp)!0{&^H7f>A)4%Hvt0B#dbp0xye_#kKE?h>>CZIab*0N>&%;L^Rd{E7QDVR?^*P;T)B=ofvSKg0hKn0>7Z)ZMY>2hJS|Usz-S z&o^&D5PgZiG!4}`922Cb`R!}&{Vd6m2C!LHVN zcyqZ#56a2&pY5M(GmrHJLq`~a7mZ$!U6^Whet1vbt1mg=@x3y>!n7Xnko`zF;7}>- zm)`}%)g%L*(0!oCNe7^OQ~*QAm4H$@2SjZp`04i_^6#q5hH~B>z+F`h6g|rU=3^q@ zbFH4dynre&=RkMN$8QG6xg*ElSk{l%viT9H_%aSeZQlnSHzR8eU7COCtsJ0S^!OPD z>%o~}bD&kK0~FTTgWNCA`K}KY;K#L3!0>T2+q3U1ING#HpB*8_A|oxd~E z5{w-*8@eWApli1`{EKhXLE1D`=;^qF*L-6>wrAQFSi8&;h7gZ|;6WAdvAY4d(MUN8Vc3GLyD=@(-Jm{cFB~&&D=hjr5E446aC5dB z96L`I^X(A~mW@<~2ICh&-$nLN<5~${{lO#{d&mo`IU)m0Uui@2Q7hrm#KZjgj;dh! z)??NQ-z@=Cc8!<5!y1+?kFyTFdxocN90!)nOXn~8^Z;z)zX2*cQlY9B&Odaq2n=Gz z0mUQV_?{`Q@YKcepgIi)Dgwy=D1V$k`cN0x|7$AHS#+ImPp1RH3m^FQej<1^IUa_Z zl*4iEV}W8p25_?c6A;wgvQFzW3+UfG3hc9P@|UVQLFFC$Av;zH zqXKLA4SSW~so`J2jSuDgIVL0EV7eUKao2`!Ui)mGZwv+}AL7tG_yE|xE{=b!To>L- zx(;*iy#jXUYr&4yF>rKU1OJh_I`84TVw>INB|v8RN8Y!t)8XN8&T8FMKCta~l&=!T z@Fo~90Y`N=g1wOnuw=~@{$QJj{13~r!8ZpZu>VXHL@}jc>#BpGQB#e-akw4OXkG?C z+*Sa&hg$f%dbtAUr@3HGlp_D#S}iQ0e+#rPUJVMJl;L8v(>50;$%CHEd0v5E1E}!( zVl`QAHOQ)&4(B!cgF^`yp|{u+%XZDcc<+~kQsYcG&T$P~s<<84>m{Sfa}mcST92# zurjKEck6p^ULY<4ZZjRg^L`C*deUm^8}{jZ!@^!*;*M_oh=M{eW>+e7R0@YKuP9Kv zQWlU`l%Q#CBdD%`#tg`{@r+ReOw3#tGo#&B>VBN z_SJzmJpnw0%K`)UX5Qh$6KvMpn+q6OflXnYCUlsy--@zd2%;ZB;1IBgzhQ|GWM3Hz zN;l4i>f_S*_xzK<(7>tSwL&4kV){%NyvY}2PiO!~8piOGkU7}zF-_vz%mMZe9N#7& z2l!p1VC9!oUbnYXpw%@A{&WlYxn5I%V_}rdz}8j#ZP!QeQ(8peY2-Vr?{*t)K0TTa zR4jA&drzGKgyTrq#dj5a?2yCvzMBtX566L8H!twE*IRJlW;YN$wgOD4=*5qJKZU=( zECo2ubq04$1^j6(SwILVSmkt(f8)erI1kCe%B@pD$OC^qIcYdAbgV8c)UUF!`Q{Gk zy$7sc)8_E5oG*BKvzDK_@CY8Bd=r=%BxhwQCd&(cJI2StUM?u@3gTaIct^7V#H8vTi z2Z7;%nf$2++Az}ev{eq@g7@KwKPY*>lOGXq6L2Soz+-i35Nil6IE?s?$M5+&Hf81YjczXg4RuLF^F zKL6~lHGIGBMK<4e%>*BFw(;)oD+E1* zzucUDn@-BdqmEr4zea7_k)i1EYZUG29h<6U%tC&fPRjm{@ZYBUXXpO+%|Bs8JMVw) z`Ij)L8?M(l3m>5S44RrBgOjKze%T8@EMGnYIvV%KU%zzZ)rWk9)iV^a;*@c4CXs{{ z6+Xc-XItVEg?r$&iwm*JqZ2S9)CjvxTjI@FDE3982y+gb0~3pz;R-YweRPO)0acGG8$MfTVb{t$3HsR(`197GEDcHwg6UD5H#73YDUk;*|CYf^PprXDv~I&31NLK1JM!^{ z&;hvn!FYa4v^IWVk}f_%WftE5NfjP9XE|22F%jEZKI|XN2b~|{k?ymU%3m7(ar`@W zoOQ&+@{@0fOJt)lykV!#^$)&t>gc{Bz4h0VEQRX=IU0O1(ORD783p@WZy5sn+-P$PRB!88X&@iPf_WuB;A*Pl9 literal 0 HcmV?d00001 diff --git a/data/experiments/2024-06-29T15-18-20/fold6model.keras b/data/experiments/2024-06-29T15-18-20/fold6model.keras new file mode 100644 index 0000000000000000000000000000000000000000..85c1665714c2eeec94f83c99a8e01503c721e2ec GIT binary patch literal 35304 zcmeHw2S60bwkSzNlpunj0wSQ2L|~??x_hQe6axYZA_h!I1|>-_VL(wtK|w)8L zqJkpO-P5fYFy{z@ifcqv%!=s`GPCbq_U`Wg``^89-@V&7Q(bjVRh>F@>YP)_@o-gE z(N$=B`Y71cYF-;8jkJC=q@VD>Sl7S{MiK!GR&?m-sc3?njvV)z2aDW{c;6OOqW28M!IuND{J^rqyF8VWrK6F-4X#Gh4 zDfmZ51ce66>IshwhzkpBE$K&%trhr(`NqWfMEHjPNFEzFD=si1HqH&)=#iWcTOPueJH36tYZ+f{BW zgZ+Yrkr7dGv2Lvy+tJ|X8|xq96BFY5qngPPabaOLCiv7}sX8XgH#(-3o*>__m{$7a zO$co*-{(i|KK8ijLMbRZFgP?OHZVFcK+cKQ!ljV^d#Z;9Mo4RGZOkv37SIaw!G!-0 zjEjp1jcw(dz)o7EuYYXlY~NU!Y(xi!#kH0cCoR)2)VCE&)&tT`jR*|$36;IFENrBOk zZRGvT(BJH;R*`OPy|gdm!hEA;t#1>OHhTUcM3zh1YcW4$I#$ZEzs>Xuz^@Y_?GwMa z(69iXzY&2pVf%&5F8uG7E$lDZ`diIr``a@9Z!B8^yQ%-}!Ug_-aM}MtZ^eWLhew76 zw3hXk>T0vMaz*;TM|J%Wuc<$4x?fXoQiOkOQ-99+f1x9#xc-shQK4ahf2&a=qhdqD zf7Q1A4E+a|ZE%2ZdxIwT38c>04^UX3Z*)XxM6ge^)bEm70y|qfJA1pfM+k)k6k_%Q zDP3~{LxV$NeF6ggedqm`!SD|Yjf!Zsnm?P6;IK$P-!PwF0$NjM`-a7}Rw6Sut%D*k z+*g_)_gJJcpYX_VsY4dmTBe;XK}hRvO^uZLigThvrM_WM^beQK|8K|$iiX7oHK zsXGuOB|SPaYF<0HMBa;jKM;NV+hI!Gx;Uu^)#h2p#D)Lho{!9%luA--X+hDE;XYxJ z!EIibyaU2~{iGg6On78uY=~4Ue(>OjLpC?GwFv|4f4`+ZZKCow?3Mcd(V_l-lhB4C z^*w(9iH?i#3G@vPj1Fte9Qk8h^kOc|~tsm{ynMhrSs6?8tOgOr62_bH8lm5A6P$PKfb=p zp4R-Wk38NMQ&5;Ldr_2y$+ECWsqIBkq4iHe!9bSYRaSm`JTK2-!xW^L^77@OESti; z4sCC0@`S&_|0oVP4;$>!+Te+@R$IuzQ!+V|MHOaCXMwHnZL>`Ug`W+C3_&iZcJd6r z6aJd~IxDwj43WuYoBaOQ_-HS`zf;X$;D2)tw3lDG9!r+VkG%PE`TQa5^2Gm-aO`OJ zp^6I1KWlZ1j%|hgT#qas)u}CAuBX3<{~phrYKsqTUDA?1a{5hV<3L_s`*G2R{lEYF z*Yto#JO2Hi9V_b6#tS*0|Mzp|uNM5jaG<>&Fp*_WmyJJpSwGegrIEI^M0;82@WYpC z#lhu>|Ciyf$**>s=ciyNlgruIwId70U6B$l~{UwWZ7Tu!qCnTf%bYpK8_}~69_w5{r0j@J`NrKAYE;G zK=Eh$)7-kfDt+YTwwL2J=wILMIiRS}p^axU#wjXT{6JAuYDDRGz{6XP2Qul>mN+ z`X_#yeJTG0z88HDE$91utVX@8&rn`@x+q0^3(849#rv7n@|qVE59hWh4!S(L8g+Zq z#O--g&9iQ|xQ4CsD1KQwUp#IZH*ZWLvg{hh_fV~(G)BgwG27PjqehJ4Csubx8`9oW z#fMg*t;H94WuXOMs&&*g8uM3N;wZ53zddQ9Mqp|{NuhQm?6gu;d3+5wLE}aMV z4*aXF9r=}|7?Mo?!e!}g;aBJ)v}oc1s^HTH#QGiNs|SksySgRf6>b%rzqKb?d3_SU z!R;nLrD7Am_IohD<#Q&FJPP@TZ!7r8nH{KrEewB&>5l9#ec*PKEAc_spCIO|692KT zhJXG}fxmYmmG_=Mjc4NraA7+`_y@y7QAfo()P3d!q;X*fUly&70{34*Bi++b7xxJ$ zeO)2iFvNm76}W;=&}pRBH8k=w=PIF{JDO0$ih=xl=)+%l)t$N!+m}z=JQAfW4@Dw6DZ^o>(EB^9_}8{8xe*^z`AKh8ct!A#O6stHUpE=!XLSwa8#km% z_Nz=pcGHUa9b76;)(7&D%_Grnt_lBxtTf61a0X{Wy9t_c$OEo+{04LO?pb@k(XmMY6Xnf8csjXH`(`Yz?` zjUG@`Ba2#cds6j_%lV&FjQAxx80yO_f0R_m@+-N$$bnhOU7I*e+-4V)ezprAyZ*Ks zk(()Px#9Y4^#2&>FYQ7bgA^6p?1J1L$iqKw2TWw1czeB{{HNmer~Dc*d%=&p``MLy zTeFcf4G*SfZ(u2_%$$KRUPGVv9F}t z&J4EJ$C8q~lTf;Ea;Z0Z2Z@BbdTQvteUueZOx;Uisj{mywNdpkwZ}k*3+Px+oiH}1 ze$7vBKY#f>Ki!~r8$0Fp`%lH(zliy#bD+JSF4ubshJRo6fA@U-*W@=rR&Sn6f&8BQ zCJbz&^JlvMp6tJ3|K=QMFTZkgeMD}6WbOZF&od{=D9E7{LeT3cRm{kN$g^WL-3drJlMRZD~ae$<;+E6Aiw?+5eA3vJQV1H5Qm-(>1( ziy68StHNhp%SN^39XO}%!_kf!y70)1 z7rLAAoX%{{bhriTpgoh%!#APso0g$oE(f_YtBUx|d-eHiPG0LD}vy58~p`{pjZNjcz`7>iNL=`+-P%AQvx8@SFIjht1l2-JPx zQvPf90Df1{a>{MhX{_k2iSlrn#sZyZLo%)`$`qr9nh5=nzWpwjtkMli211RS3Q1G<4x+;mnQ10 z>v7I4(2mQp&Ec*zL&RS*ML7>%Qu|%C5W9Lh+AKK9pI*HWJ)bn3-#Sl?GRS(u@!I|Q zBQP0_-PeP+yXMc`UABeKzo)^69@~Yk2INp~x2*YukSo-(ovA#*>_CoFd+?ycK8}q^ z=TAxwAid1*oMX=(eCPD@l;)wc)X=9qa^1NUMK5vX$5=>x@5JNC?4%k>UHqQAlA^-1 zt82vrckD(LWjwk)@DtavCIwymaD!5!Us2ON4^nrIYM@=l6S!G}hVnjlHt>GquTU+P zlf=i2)A?)1w;{8dDd@}b(`ZQfTol;ckDqa0NnC$QlRthq0QPI2wXzVJHHwEUAx7NI<=WPtd)a$PY6QkM~Cs@_v88dF^kbx zhYwuy&?auv88Kf=^+N+z$5GvEtI+57m#B9$75FcXPpOH0yQ6s(k*IeQ;^N6de(aqT zUiteHM4M$(@puLj-rXum5vTGu>KdsICRM2S_ep40Cl3x=k$`-K3z3s(78Rbi9!)dd zh5GMh(RVS2-l%uvhin^yR6#GK^|YLQ)lHf|&6%I{WH_2&5r+~!E1&~?uW@UJt8#9o zf&8nliu{#o4>Ue>sYozxk9fJ)DsFfDb4kdOGZIC(p0}#bM+YnWbL&=~rgpdVMKvpp<~+5Q@&{+9 zP;5paAFdmWZtv=h3i5L)wdbbj!gCvxePcE6E|r;z<^$->{%)x3eLPoYJCi#!BcGd8 zxf&G=If0hEoXUUDI>F!AmxqE^QGCzA2Psx%2olGf<)(Ff#dWmXz{PLxNu4dr;6FYQ zpYpvv7O5jes}kq)SL6uc&}BbMdyy}=KaQI@TMIoBnlf$X&+jL8b38s zqtm;g_>|#%@dRZq_sccz>g4rQLaBrwo*BoV_>zKBY%WtSeLr!RKW0#;esV_c<2Fl9 zgl-Yv+OUDj@U!PD@WIsP-sdQD`$=5qNC%|!O~~m-cHjI`)Fyr7@KF~Lt-qUdFIPbZ zuTL>8_Ab22pakA*Z&!5fyBjq|DTKPQsROz&DH%N%tMmOP^hX;6_o$emhFtoXqg-)^ z-n?PjKyLkj>5{@eT09;4MwB_n6`h^5hPu(HEm`Ji$6w7!;ybNQ;Kdz$csP49I=gc< zI(<-!V~6kIv_~c*1Mj)0TCt8Zmagf|QB&Zn-;w;hfo`M_paH)c5P8W&Yzu7a;&{*Ri8a5?2#^i z_SJdr-W3O=)2mjbV!w-esMtvoJ5r2@OP{ER->Z?aR}nS(_Bzh_<$dbBi4i)%6p3sP zE#;?-k42sFP=2c@hs*QIM=EwNxEI$Os8wofP;K-=G_v|Bd*GuG&G8na%Op)5T!C|& zdhMsMcbdq2TQ&x?}p+~G>y=W$yML-^9W-FaK5 zerTt55r;y?aNS0ma5Zkbse61s#C4xV9iI@%4Aea zDcrJ)m#M}5r%(^>&ZRn|x%>*f!+b=+Ni@W{KYG6^1=;8+@jIU1;WrYq`0b?%RKG); z`S1_s60~s-?|lC!u3zJ4>V)Gw^d!Cq%Ix?;;-52-D-NH4#`2Yv-sFA~?#M-sKYLZI z`L2%tTsTF%ynsc|XHVjLnws%bym3U>&KK*%Pet+Eb#6Eyx!H~s@|#-DJ)>u%IphJV z%5)Y=%qyqXEx3S`*fD(2j&msdad$K_V?9r{G;@#pU7&pSKHk8)}Zi73$J7DEU-kfR=G*kloWDe#EU!T=3{LD&Tw+Zwtrr zPxtCjNr(1vT|4ZdzDeb(=$ROG85xJJ`|aXqah8az+Q(fKY4LWC^7($5rF`)H9JJ47 zBzIOa65aV!jBX9EMUT{`p*33-v2H2IrCJZi*i~oXam_4j^zX8QFLC;U>&4 z=4%@>snD$fl*@(dV%D(tog)-{8InO}eLv z#?^YW<6rWU$v3+4sYSV{? z!&Eo))5HM2W!W=I`SV;fl32`dcFUsD`82NgStI_$x-4#gMR)H0pa68fuNU&SY@!Zz zspXECs&Sc~$LS->}$fMQ| z9Wl?~pY$5Q$7YN|L6-*eX;a<#k9yxFw*)QJ#V_3@&zrpX-Kk4ZM5jdl3$IP(ZFoRg z8zmuQ%W#fu_LT08>GSRPEvB3N_B>R+4t7eu;PKn&|1r>Ct~30z_APG7jxw}gNBDE? zTdbjK#jK_?_2v0GD!O_nMYye}_HH+$vQDg_PWUBDCPWlbUk|d>t``-QcGCrFa>OdC zdZ-dLNH3iVdu>eB-P-n7ev-y&#E^B{v-=h6_s^44py#(7t_pg16|Ck~CcMWa7?km@OmF>>s{j2sZ zaIB5Ii88tTJ^9Te+wkRd|6Sw$iu~JipuPOc_bukiG&)Bdk*~4pZLf77IMDI_b=q}KfZ5aA=4b~{fqYTzo++~9Xpb?9z8O8imc8r;lF$8 z^Y%S&@)fJIQ22m7$bu>7o-TaJn`48K_@fiQZ~GLqywe%fWo-@bviBLEHA0{7JEM^D z$pmoT0X#?7D?*%`hj~Fezo4|!99HJV(l_QTgrF>&2Ro*^mJ+I!g236`_|Al{S zK>T(~<@)xC=(q9y)1beU=QfQbKi4CdTY31$<@clP=2+XQ(EsA|pUXc!W1TPlwKEFs z@4Ee-tzR&tt(AZIs{hs7|4DD{ZM|Fv1<3A7%6ajx@>L(m>Q#}+Wt;pe{p#KNx}j|p zn#c&99^3ZfA&dVN{CjgiF25zRX39N{k{>te|9Ne1f0sidlUunBYA?tCJWBp|m;6iH z-e!s9d~Ch_-TJOAO>ToY{%G*8-_f`x(+KS?THcR*fA+638G&u`rS|ig@Z(OuO}Sie zn-BkOyooZf-JIXXn=S)a$_Lc1pohrP9q0cFf-E^o7J9}1HeQ=&C%q#);yzfI8pFf>vpk^Ci3EPhZWKi4K7Ir4d7`}iOCubrLSn*Zmz zKXo{kzGRy@1G z6fcSu^~_yKGC|MDZwE$`+LvdLx4w{U?8+7r)GikR%@iW(YaLl;vP!KDX(i~5+r%Yl*Uh|$YO2$vf z65k8t!d)bzR@;>+wzCp##RaU#<$*-^cg3Q6?v~8#Cwa{I+76TLDIg80J z;o1G0@`;v3_vpL+nv8pTN3wfS3t6#w4U?~x%rsweWG{I3VmuX3GOy3?B^Qs=XRHU5 zFyxBKqD9#wSuf?!%sJ;>%mx3+q8%NUk*~gHvfrOs(dhv@*de83N$2O4^x&>}#JLVm zY~^9^N=>^QQTRnCrsA}z=yOIhxrZ|&b!ViK+A{``my{P)Jn68U1mg|Gi!KfjXAjsd zIvJMFMlaA34L=wl+Bjn>dFs?2X1Beeq?#)b&A5~;(sR%kpB~vnzD_^ShPZ{3Pp0i; zuH1=WFe5Y3EZb`Qi$XKmynYl34f=`-?yn$Axg1f*y0DL zF;k*zDp?j|NzPvMjy%${Cr%t(3&YSH6)Re&0pwzHBCPgMHZWJr_xhrjD#h?q=rP zm@-kcpA+fOkRhslv5fT5EMVV1?m#PkOB2m*j3h5j`M@|?jc2AycOf6;nlij&8be*z zVOKWBlNM(OFx58?Ggj{pF?*(4vDYq-CGQ^hWHY9B5h;C25PcmmiFun=CW^DUL7d*} z&Gh@yn{*0-jOuwEvgM7g$l~ydiVOPXq}tnFxJ6eR(I-&=O<(mAE$I1{II%#NnZhIy zHzyj3GG|U<%04_G8_6E5D$bFWq%mvKV$E1|y-8o*wS+nF(**KdVJbVgejYnBnG|ij z`JPNRxk@qz8;OlG-ZE7U6uCvUgehLKnz=e_vWPJQOzQo4PSV&88lB_hvOcFut)tcd~WBl1bk5lP5W8l zm*#(k3u?;YxYT+0^qm86A7z5rKHxGO71)IstKARwV4lJm&sZ?4@9(;egVDT6lNIGLZJ}9sFoh0#1J4 z1N{p}K;`8<@wy}$4?p}JT$@(}xCa-&7uz{tai~5%Fr+&k7I6a)sOSr0g52;vQ&K^{ zyK7*bO(pOwtA)$I9D{eiro-mOJQ#mD3C|e16DssmB)l&V0q=_3aSh8uV9oPXm>wa) zwhbHvODs)6i1-}T4GMzZFAu^` zr98@TtHon2`@kZ~8aIzy0dDC}hK?Ft!NtxgQ1|jmxU(`Dy4QKblE6{8akf8vl~#cp zW=sUHHreAUE?J=Gngp2KT??~RT?)A=BY^KB3VKC0gD+_=aMp{@P%tYIysg{`rr)^; z8j20T=s{KR^2I)I@aTM8l;77z>%9>*0*sYS1xB z37^A%0h*oN@#8ZUz?2nN;Vip_ASt#Ceqx7Wvky4Iy4oJ#&^2#(=mZHBV>iJaCKTSS zSOOkbgo4kT>OuX@$Cz8v5!hsM6W$Ccz#~>0K&7bw7aC=Pf$rnrM>`uJY7B#y?MV29 zUI1N!0^s<$uVM2?45|$C!tXrl2?&8YzO7+7s1##RsmUMfb=V9(ec=VhM~fhFR1IFa zRRD{hKY%qUBSGIr0cf6Y2fn4e#qtNo!xy6#z}UcXxUifvOXrA|smEFK-lLgso;%oq-3!^F zL<@6fMJ1EE^d51$XAoO9eYD6iN+jBFc&KPgy@*{k#ge)2TFRD<@?c&^=8ML6I>u%b zmx!Um63Hi9w=*}_oMle$SC(u!(}j6>R>C@cAIkje`XOrU|Au}TWgmhM*xw6IU+#{- zn>iLH^s&WHdkn|Z{8;=z?*PKBtPH;M%!eYKt?;XOJoFuyhwBVX!VAnw2-AYAF!IS) ze1|p#x7_x|s~r17^N}8S7q?t|Sf}xLn7IxfTxCLhn(K{srX)m2@+i2f-yPh>Whne* zKUn-=mwdh=9|yk{{_*kg(W|Xr{#^HPa=UobCD;lY*HmDPgU->z?^Q7!E60&#M~@TH zHE#48aS~&yb(sJjLzo2HaM-LBTRE`*8|HntW6XQwKzh2^sdA;IY zW%#bXjIC!GeW}kTx+XlUGGtjDtvA$&I5Pffxu(ul+A(A)t-7a_9yd*iDYJQ8xp~v0 z$_^`!(`%y)NYDQ73GtmBba%Lc=%C_iljWUJp|@%aG5$zDCgDv9W;|j5oqKZ#QTOHw ztv&n;t$utOQ9j3scrk&+V?SkAPA{KY`L@QGS*vvzxAO_4bDFAYZukb=!1*BkW@`kq zZ`E8{Q%9N9tnEYGO1Gxp={&B~nWn|OHeSmRSMrI*p=as)WyRKO%`p58d`2&_)+6u4 zPk^KItO${I5>qm<0{0j)sB*eqLHYcx9T>ZZ-{6pPoKc)}l9t?!V@!14SKKPRPZz5v z(sy!`X!V#H+S=WSsp|NYIkfpW?J;I*g?NGnp69!)^1!>7bmFKrjDedoovDQ?uMVw+ z)Z7dlzn4Wk8U>i9ka$9C@-Q-A@hGnEyP1yI-ay~E*`0haI)h0gjhKBVb@awhBbjBE zcEkqcLi9YX%5DjoPLz6RFoPeiq)kE-@$fw>m?uNh7^j(bjCHS6T4SRX~F- zcuoyw>KB@`%3mAFIi(sRXZ5?ZuZA{TP*zBGsaww+f478elzbwW5yot91lTxtf^kbU zCLCOTV(ug>h>{iwM2z}CHcXsO*qqX$WB3}}B{6}FZO~?MV;zQ@vzh65*`LfkYRn$# z??pCXmW)D3B=bn5$DI5;lo?YmBtLepA}&ocrSIq(F}mZP6aBU39GmSCRBAExh$-fNSb?|Q6`QPW;GjNWc!gfl1m2}bt4>4 z*xv!1FYiw-ojaGg&U7X(jJ-<4hs>f^J?%`}bSPt@Y#vugPAs4m-60)v{yC#M%Y=xm zPoj&)>d_|Nmb7H+4d$)RZYJ)^9(wxnj}&z8{UQZ zf-`2M%H%9YNpT3F&^!QBaI_{RC|_DfIpjVqWu6}oWFn3=(OHojneR{3NShI6%!g%z z=q$-T#vn}xDmDye<}SWgsa;b-*Ih_u?r-bJzOJ!g+^)QbCD+$7Ck|0$^w^n%^=S?E zW~4w~mXM2i+5x z%tjw}5k7#dHm8X~e}>lTAHagKTZzQC>lsx=cVfz=t;EuKLN+TSl>OZ4EN!72L$A(z z#pDh!A(uZgBKtR*usg&?%*M2C^b}|J3eP8>>8Zo38Dq`SjEm7a=EA3sM32Ua>@gQ2r#F@-;1g#jlRLKWpf3b9RR$|O#@{hhNRNsy6+%}; zyCfg2JYA{H>^Y}N4!2lN{a$huQZ=kL>Ddb@@Zl(#uOaZn=ON&EmG z)3B5|y=xy>FL+&PMSR4+H)t^9Yi5(V%eIlO;z9Ir&u?@FWywU_4PZ+{Q^`6#JNkX? zUiyK{0JdO;kQ|+A$5`EdMZBdcGONEeyR5$vI}v=Nj~tCBZZtJ9qwhQA@%R`uj(t99%7v>Y2$19Lsf~=Tx+rx?HgJv#jtd!APc;*F|QCeg$zi+nyP?D;3_|xQ&k8lf_KBFoIUfUxO3L{m6{TpXftZ*Aqdd zn(RHN7jV)5Ehg3bCEl2sPo~?AW{)qxSoT&gGURX-ZSHxF898hv5v=u$8GCvVYkGVi zt$*%1>6LI64|DTkuq(B=-%Snnsz(HyFm*KHdZw1KCI;Y*$1u8K%@bz#?VUu>q6skh z#W6B&j3ZklxJ0Bqie{!|<n8ORl622MoRbTuGO1}Tf&|6;`us^a8(jH zaY6<7u5q35(hx99R1BEN0j?x_F_Da1wVqbp*GNyK9mo#db}$Za%t+^No5%@$JFq!% z%b5U0oY}6rlPFMpz>NKJlg!ZGOE$bQWEJZ>ks)t;RSxvLj5qBWLsB_P?6#~kv_s55 zW_OP@l~F3Wj9tZ7Jgwgg@?bc{Cc=e5*v2Qi~*+!c&?s1Z!XA^?9^&O>||GH6*}>bmrEl!SramWO{1drHcG9+vo=&#Y6ymiV)MC znAlgt36Cxq6cj9m$Fgnv1Hn%GBWgiC)VKIn99nR8qCovIt1+C zNvGXhLsnfVBp*zvVsfxfq@zI*{`qS<@y>2N;SpTG40)apNf5QM-Z(y1RjVacx-T(Nh}a z?RPkPT=OLHQ_rsKhAaJ9orULN*>WM#$4ddt~-LBE>=e}h1p0!NVomyt@6KC4` z)H? zuEd%$ebAn5UC$Mh=QZZhq$YI zg(okPz(entL++B5z-ZAetgPiGC>-(=)}?PDHe^)-*2&UFSk>ndSiaB{oZjaECcIU~ zc2DUB^On{NJ*V`*%=hxW@^*kWcO_Q*T~J3MYY@Y|XTy7sq+ zmR%kSYet_G?C3E8G=Jy`E`*){cf;4h&sJVok@s5r>SqTX{IY|D->O;Au<51XiSA&~ zW3LjJQsoR^L??hJ?*;(D_uE*L;YQ&b6Y)|M8ys(itG z$d{N(y@Svo!U7g(Z3Vec1AyYVJ(%=Ai^eXhU&So1PQxx`-3DuVc!1`}MDSVkP54Ba zfEQghVuw@jVeTCYu%jyFK&A2+-NEeePGYF7&v zd!2Jwx=~q>eReB0*?14oip&sZ+k}IpjG z=U4&)F-qf1D~vc938(Ez7`)??!O;jV4fj zKU=u5thZoDorR#Eofj7LdM&UuKO)#0)eP1fECVh#wt`uNJJ{yh1#pVfus4LU@J)V4 z@N)h@;P=x}pzf7}RlcvmdiT7G?fN=eSXitA<|h%*@8UObMQxC)T zPCNk&%2Q!YOAqM23Bx8ZMS|L>+XCfXWmrIV4DiV;5_GgiaC3nV7@edG@F`_ripp^; z*IW;nwp3v5fm>itKTUXc&{N=cdp8DWZ-rAupRxJglR&RLI}n>W2pUO!#7y6JaC>w( zc5HH{@ajH2s8Cx1hEbtVC0Z3f5j8^SrL)i0MEA0TXkjciX`&di8&ZXbj_bjrufyT$ z)i>ZeliQeL;Vo?2mKVYS3!?=`&3l1W#$&PB8jis2dVx?azCU>E7%(htC1x;38GION4|_-kfuP$J*ahQmSXJd_pyD?O_8zzs?s4r2>Nafv zn>UvM0lOUg(Bl?3_UH?2E?EMb9+7a#8*5Cx&r;!dW-G=|%YY?ko$=+s3tEp@ibXBk z;xJ?{El5?}ie0by0zS@sD=>CtV3Ks)pRw);NB9?j+Md@i{mZ>U$jdWAL#JSnrbmED zPddXlwidMw?JZO zF|=A>4iig;W5U|qcB)kZfqVWIY`*?D@bUII;p<{McuA-ObDfgG?RD{Baj)$=lNx~GD0>&Pd-`ARSF{1AW> z9WMd%Q5E1_p$(|4ABc6abOq0qb3ye}W7yxR9;;nz2MeM_U{=L;?67DC7^1rs4)vM_ zL-r7G%q}}@+Xg-1o;8(NlaF+N&ZQp4olJu@W@XrLEo0%$I!f3tdo;Fq&TeqYuTr?` zWC9%c%^JcSJ$S8X1L*B078tEt1w57>!Th_p!^o8@!3#Ye41b%8-AS1PyBs-(nR^Wa zbn#ovIDaWnIE_QP$3}Q^aXNMiw-9=a`vk6EO#tIQO@^;5THuUAd#vov2FC5$4r3m!1b#OjVqM-21fyOQU_EA?0S6wZf*6x;z&Jw* zGf$rf7daY$^YNBIL(vLE9UlaX=0!nG=XuacFBZG0)J^#Ec?yUcd=#u)wh9iqxgCbS z@(^~kyE1TB%x8Pu-1(TPbqxqk&k|~FiU!NEF7VX&8SqhQEhZ^mgOzqI!rV1Z2t^S| z;3U_8rPPf8EtV&QTXIz4=yCCw(}j`P+kh1q^>{VVxVaJ3E_?-oT8f01J;yqXiobzv za~}i>Z4}^ZFD=;Tf)eI3c#!>;>$&zjMq~)E z{1)6Fo3uYhV5r{{oC)v+HNBg_OXvp=ZZN?{AFr{$w3~Kta>*8ss@n#}jGiofbpHhw zdb0{Fj@O0E!g_Ea%MwK8g<@yZSmC&3BSEKIAHW@bd#G`T!v-=!Fw)8e=$Q7$3LeLT z8w>MbVze5}H!y_j6HW`GMvf42*AlQd3(Vk8nzeAMgE>6D0>=&>=qxbOuNRD4t&Dl9 z*Md%^I|Z-L`@*={2@uUI2l*2mqgnIYZK6pyN+)`AtK-$Czir-b+^s zEk%#Ol)GKv`td1nlA1QI)6)t#6mK3_-EoK@E$%#)HKrS!5j@JF)BYq__<9lCjw#~C ziFZLzeHhlDlnt7u9>oS)Z-%d>ws5+KE!h9{0#@Jj8MZ86jqQ5e9h?hv!?yM54;jHK z7%sj6CmU?TZsa5iuPfdIrQ3IdpNjjy$h5AwUFU6BXVqKwhruF2(0K`FRuK+Oa{PpP zw?e?Mmk~?gR^`)xb#^<}kn&hpv{n!nh(I;h~i@_C<9PoRirN59l-=#xLKG z9T0d4`bKC7U2~PNJ)53_!6)4{XwC_)|uF= z8Qz%P-L7EP_P2tWvm(Hoz7|-(1_x|sr$N{mPhYUH+d?pA>sUaYT`NQ(hotk58Cc4L zPngBBo#1@-KJcQYM6j-5h`qI@wS%qYPr^ickI|BT z9!%l-hiub2f=$*w&XiecG1F2$G34!DYUPqMloQytwE_hNJK2l;-mvWFY7_*rbon)T+4WxqAWN5DKgMNo`E^Qr zS%LPl0_|l5+RF-*-zAXelV$(ipzRF4s_fS#6clcG{B{<3yQX{oHlCc0C$du?zlQB7 z1E~4`8b({XvkYtz{o8nQ@{8hr8}Gjx`pfeh20yC!??2B}IlGPax$Tf)R^ zw^+Xp-$l#q*Rc-h75lzWSN!yJGCS?kO`^L^23uDW#cH?1l4iHI+U5MxYd-2$(eTen9ba4GoB;IS>68yURG-5Ztgc#Iq zF7ck(3ylI^2^Bw-z`?>aFfMa49=vHASedOt7~ekxSFUp>e%TKOKiDJJOLDoFhku;! z9KR#0gDNdNu(Bq+|1zWYZ;1ce6w nBI7^$Ep&O#1jSX-UoUL`%jh1i9aLK}l%;S(5D_JcN>o%- zgz28?0<&VyIR`{BAZAhjL1y;d%U*Z?fB$#y+js9a&Qw>`sj5?_zB=c0b(P~hMpaEu zsr52dI-20)GguaB`E-_jLj0nQz$e%%GSVZ|E96J=B)>Ux{X(Mxy@G$_{U|FVUu32r zi1Le!YRQU<@Cpp|^8Qg-RK#4r7FMGcg#W0-KRC=QiqC5y3-($d>y)g98H>!?G(J$C z_bVPog@(_K8rxE^4G-R4Q9c14kpW&mnwb$gH#peFgmC{!(~;p`5s@wY_!C{8xelNb6aYfE34Bx(5rGuPNa^d`3Y-TNd{eSW?-7g}n zmAzjC`kO=50_m3C%f@nUuvdh<_pKml<>w#f$V2j4i&c`+qyQ$UgusyI<+8$iP`4VS&Ca zb^WEfTJ5buk^b*dT|eOE{)?vjnR=5E{9~K?OUeHW9Vw&r2@44i4EFn5jT#mn6&UhU z+xAQDKd@{=e7)KlG=)zfbH;vT1^anLga(Gr@`#Z6T{25xJJ8nF&bIXu-~tjCV0L^N zU-SI}X9Yxg`1<*HE%+~k;S(Gf9@=6xe=#Amg2TMMf<1nn(ULOHD|l{8BXV=oGAaB* zykrRqk3|;q2nh?3Ib?HN>a-n5lCrj2Qp04v;{1p}nQ!PH@xx{F`5QKZ!(<*^q>qMR-cELkI&o?nVoELDm-MaPk4(Pp|E>0=hVZlwZWG0YKijX z?f+mPJTfr&ho5TaH^3H`k$8nfw$v=6`N8_nO=L?>3wtukU;8C38Gip@+=j|L&4>lV zWbQzujP;1H@C9w$62&Nb{~+}6X+tS<>*mTls8-K9a&E{E>3PV#Ng0w_YV(f>3-JgJ zo7L)dDFz_e%UkAAM23WgMFq%E@k0hb9J1)ZmM#pi`~9AJv_j=?#4GdtBLaQ?CZUx= z=6n7sCt_}>ho9Fhzlh+L;Z<<;W4JuR{USX4qWyg4%6rzLaDxJ)WK-qGlu^(x`J3m1 z@e6Oe9`avX7O+@JspX^H@+1=G>lZvw&g8%VY}Lr&BRY5N(NUJAq@LJD-!=d!bwi! zhbt?o{-V__+qYKsOFQy-c!$<>g`RE}{XLyI-5MX>vZN)u6#SdW=YgWWw)3Ku`hWlT z&-8$E8~Od79V_Y7Dhq|2|MyGguO9rrNT97AFp(EdmCrv#T|d?kWs%mkL_2xN`{7Hq z&=3m3|I6@a_|*2P;!>zM$|N4l$F}G%1kaeWhKiWB+4qS2?{-HBrn)Dt}0v6X`$3H zF_x_vwOl4j1{z8R%YNJ|$!gd5k*}iCTA_w~1xQs{qiZWkjr_?$UO*{Yaq~YC+PSPi ztWgG14|;~K49S5r$LvEoiHYb-=nGiuv{GuOJcT}f_cFY{u^t)IuMvj!z(e1=!H~zt zX`4qj5EkD?RaPBg#KTK;|A_~nuy-sCF@AMaPp7om0_+&Cy7hnTv=^R)R*q5^#k`1F9Cqm-ZIWA>B4)yXS z^p31yH1D}Sde=38o@BZM&2bwFqnMS*dR_v$yxS0hx)?a%eGFVUsR9nmD~6?I){wek z1@S2*LbtaJ_rhT?bZK6WjK6&5{6E%<#wOQtvx6(SXnrQwxPnA)4xLB)59+`!fvV`y z&?G4EHlqVaZQ~AlM8A>_g-iJZxs5tmXwk+F(4j*%OiQzXrUx$2-(u70p*m~0 zPb{C-IJ}dNGtNSh^S*G;u#uceUjc1$vLhnC+d!YlT)1n^1gPg_jf7wf^7r(IHCN5( z6*gDtfTzve%^rSeN#tr+*li8cNl{0|2mMjdK4;X|s7#c7fIwGbx535qV#uD&<2Ia6 zMI+xP!k3+|A+3YMkVJG94YM(Z%bskLUX5p9XGscrcdY^@hGxKpFD}5PCoaMd?px69 zi7%<_l!NF-?=`6A`~`YZw@Ns%&v2xpjdNwhWSG2Y0NfB9gF4^q40WOsQFRO^bn|HycdjYW9*C1%) z4W$E3ebKFlE2JIW=F)v?Vxak{v9L#w7woy`B_(mY9zmL^wmeX<$) zh_fxk=Z%GK54OS3urb2xMYHLyy62FXvW73tZbH|F_C}Kpr*e~C>cCMWyP!=LpP`kG zIy|DG376YUfID;tLv!*rC+w4p)_y7Abk6NU`l*{y9d8wS^wb`1Tt&l_*Y#YZyB0b) zUkbCPKsY?88(eq13)0h1piO4ppj+*N$}e`|qt0)u5rvu3Rv50|CjXDg{k2_a6_B!W zt6fmo14a19?SP5g6K|{c6aQ4Q9zMD^J-6#^QLV*wI(iR99~=Lk?l*dd^yte9TD#hr z``Ay1Zd&z~eyMwc_G;KqF0Cn~ujsAgF1nF4Z^}o}i~JMxS6&SFbwV09>r^Ifqr_2ho$r?-86`8_|~(708c3j6)1 z67FBj{L>}S)=yXHJ*8fM-}Ha?^ZL*58zXNwU#>uY55F;kTKW8i@4sjJuh_r21lr

<&U})&zXv0{8{+N{fltZR;IP( zD_e>#wDmU>>HnILH@=*fZhXh7_i>>4CsWXe!KIKo6Avrr?m@AA!r=IQ7_`z`4Lv0; z(mA*LOUr^fLSNGWdeo^ibo$t2_`OFGT%O(mb@EezH)>tcniuV1?6_>{?I#DNAFp>8 zjhT@udNblS)fjIEJ&q^Rtm-4F`uuh1n)Z77b-p>Wn${K8PQO7Vdd+<$B6W#8{eq=O6Uvy*LY}!w)jN6&gkDgj{ zfZJ!W3OT5%(z<)Ti7vm)MM+a`LgA#nD5$X$9Zc|{c;8Nm?&w75UwRj=*fbBSXiVm= zu!mq{k8No3o)kKLN11e`Y7J+d^b&5mR*a55^Awq!V^PGxr(DT+0FNA@k>x`p+RrTj z^;)o&o2$GPRVX{c9S2q*C5?^ThC?ih+lIj@4cB2x*fb9IT7ia&@{xCcA4E3Bz-6wT z(d;c5Xl_I@)Y8y_(c?{!@3Yl#R*n$e8#ITbChdWZulB&?1xt{J?PXDY=6-Hu{3rU^ zg%6_g3{CpP_dxV&=oolwULTm*c?Y~C-3ogaCPIhRZ)g(>4hC7}(-YN7V1Tzf609ra zRvMh(KCRsePw20QBh@XC;QKx({CFCc?3pUnS>X${pZOrQBWG#n@r&VT$M2H)ND4bW z?MN5xy93YLMN3mH0sPc`0(8F>$(_8a3bh9Hhm9w%aTOi(;QG5|bi(s@w8a$~shS^$ z!#260kK`;^lvmB|Jra#PyT`ygCK0gQ#syB^w;2f&Rbhdk3aQ7lTv|_KG(2D`T<-Rb zCePWyS5ZOIl!g(gterl0_iZeS}4_uvRJ{ox|TKZbBkb81^A6&d& z72O3DobTLHxW7CGIUh?v9RiE!d`blCXPQ9&*a4`&<`Zt2e+G)_Rt)DX>48ct@=-7K zuCU2`9qcbHgs#&9pmmBG(mOdHHP$YJH8HVBb73tsTKJ4so14vP?O4QBPjp2U?N4)` zZfFbjj~mk~`!>@hz{DNw-2(@XTgq!d8q$GJGdbf zqE8)cxR9H>xtHh8i;}FfrAPG(r1zS1(OKgZ?#(-n_R4-jrx`ATYx81Yt@=9j0`)>x z_Yct_U7a|Gn-Cd`Rw4G?7VhJx>1;yiCiv8F6-+Vg3(0zWXq`MtctLpxvYUEYtdgP`kyw2--~ikMp7oX$LBbG_ml{E7zv@U;1xUBtdiR_J%M|bHcR>?QIF0p&_xG4 zpNKjw=#CEF?uxc|oCd!<9E;v$CZe#3N2LMIBhjI3asC zS*GPM?vxX!)2|;IQkRaN#l^!t$bw#@n6*x@c zBH0CWskRmhfA0sYE(>5z?HP&9c~x%P)UMDXX)Ha#co&_IZG`W?j;2rQM{~TH9-?Ut z%jk};1L;rm^3bd0eNn@ML8wybPJ4#MBI#2h9K5mtZXfoH>nzO|oXVbOKtigD>^kehzm3QiPrqU#BOJzC^$5{+a7? z7UT5&ve4=A8_=o{KB{YQM}}Qz!0Y025e%J)l6&VPH~kW>cP57TU1E?)P7adjPeo?R zx9NxFZs^E0Z`yIN1Q}68d_5XFT0OGNi*W$)r3#NMI*z| z)e9E%V~G(=HVQ#K^K)RXcr$z*oy--CT*qyC7Z2-Sn4rnTrY9?YjVygkOfSFe`ZJZPc|)waUq zt;6Z~hfc`&fEsMpF^0Y|YvI@FnY8UIB~E4WX*z9;0jumi9hnb(Csi4+5>7SHL|r|{ zKpn@fsDJl$s7KQz&VTA_k^fm`7_tVSuI0}3N}~)IbY~3O?U2S@dz}T2S39;tUAqLJc6clr?@$gSbjr}Qkt%e__i%b^ zd>kD7UQAEl83_#&S;+;xMCmg1eCYjQG`!Mn6ZF5^4z3>74!JW&Iih+7r(I%&rcOLg zM=TYfjd&642^~>qK>&M9+kq0TC!orm)42FXPid2IEkxxesH;{gWX;!emd1r5 zgIq0XoX1l7%k>1bUAY1dt{6uLdy3$W`Py(@#CT*{w-j2qZb3(Sb)h%bW~1`om zZ0^jNjnV=sh3Y{Hy>zQR*U!FAs~-3igKVhPlbS%bEX@e{o>-o{lO)kG#s6VQ9zbM(%&HgNXgGWy9_TeQY77Ve#y zgx1_T!i_3)fJY`cp=tGVq4aJo_jtSk`WlLfUgbX)b)I5FUw#@0P4tXW{_r)Nd084~ zbH0dv<~$MId76&$o;q&XrKeSLVG^F3`L&B}skNe6wXe)c?V`oR-g zPs@TMUJZmV#*INLUkB0Rr~$NcV*#Q!ABGz3K1p=~uF?`~N2I(i8^T8?Ilb;N+;orG z@cXoI)c#$2^wDVolI%DDzi1l6lRSImSag^WzD%Yk<8yq!~e)B~pG^@qKS&U4o`I>3h0Cb0L`A?VoR_9(Ry!Eg0fX){#|w9$S) zv`S8Zr->2pYp=nmBIg3f-?fW7Z|crrUADqq8SgmnY9p?{oi7*NMF1yn+XZ8`P2|$Y z?}CwLt5N+@E%fzqq4fSt47pD10+XlCLr;&bg8RlirbnOEmliI0&-Kh$DZMcNv&eV% z2j&n;{GdK?(DCKS zJZlNcxu}LDmuYxLDT%Yl8p8GQw1d{Y8Cql4c6f8X3A!mvq4l)9;L6%msmH4fE^tH~ z{65ee<{n&#vOiCUIx6oNh2Al)Xs)R+M7|g!>aIT(_C0PEe2WS?SdsKmGphX zbV%1ba_@X=(6(dA@Y%9Cjyddw&CrpRiYYaDofn z$!j`{9|^gq`<&^BH~rw2m+`2p+Im!;&WD3?3+PSD`XI1sGHgy1Kwotu`uyj0+&H%+ zX-<|9M#VO8BFkWSEKkHW>(tOEyKjX7W1G21gIfB`%LAxTxB{si$b&bz70^)aAl$z9 zGTdJ+L|()A=vhRJ=upaTII2h=P3k42wR){a&lfzRrD?0^zK3Ht^JVkUyXx;;##CLH zzi>VjR}bbU2G`L2UVCtTD$TeR>-5mVq$bW~a{|J9YQaY)#i;YbO!TStlhiq)6c+3* zg*W<7;r6OQ`0dGQdRf0=P`{HIy6G~9BX7CE+&A4&0-=T~GpwW=dAI3y_r0JiNQbG7 zWpEL%9KDJii8hCBlpbr|gMyL=ay2WxU`#Iu*mU)pbo-`Ssb|1(*gRk6x7IS!#e*eM z?FVb2+Q}tIz0WJD=d3vHbo(i&TscoV$aET7j-7!PA|V>-WC2rO=Artj=4e#W6K+oF zN)FsFLP!aq%PIG1!95B-t#L-3YqenZra`dTAQR2gDu4?{ZRB#j{AiD5fOFk-jcaUP z3xlSOgU`LnMJF28Bg0WMV5-{=u1nHR*!AH9t~N0V>O{|%A`p&7Z!)K|rf)VCrccb7 z0_V>OL!nn@(h;ZP>AW*RFz58+)7vy=_u{#Q%!pWJ`w@Db}+e* zlXPG8ZTg1sF`A#EL!XT}N*A>Yk_d(_q3;b>;@;NA(L0B%6sb2#X~&2{dT0CnG_P|a zUAuA~U8Pz>j|)0Qhx7>H7QXVPtt+-mf41)1c0bkct^1zCTcP{cdyD^=Dg1XGZM*KP z(0k%G`|tg73fU++UG@dkM6~uj0K$v>ZPQ0VvG)KWl%S zwj8&L_ZDq&tl;CX@b4w?Yk%S&zqe4xRq_5p5&z@wEiC1lqpg3@Hvaeg{@~!EWXmXq(?-n)TQM zYab|A>y6KV$!?pFYrA5omsy71d03*=_cx=kYYpgoR3kFDor7{3`@<0(&LQ)V16)K- zBXXa94z~4=4awi`sY2gA75+Bee_HOZ@!YDB6#IGyiP2`MvMz!8J%j16q|K1W%;I~}fO@*gX{^KP5Kdr=3m?PR!gLiW6SC9mV0eka%+zLj}HI*jK(FoMrdo%@_&^3vwu~{8EnOu#xHxq z4-flo&J}vwe8g|lxyrL`=l?dHr#xG%m{30<50IzZFZ>CCJULt*x-9x_x>nClc1GCo zx9Lpe*&1Vio9_4V^+(SF3FI8M^%Xb$Hbeizxna7?sb9;)@&{LneQk=Fqj)ZC8~@|} z^~jN}-T!l)pIWpqj@o)wD17vFpy=>Y6DsZNP2sJ9(}ineR!Fk@Un2ALEg8=hdn8S{ z1;QhX?+d#v+$nKUj};!LRoF|6m;pVCh3?nZP~Q84No{Klp<9kOvwU_Zk;$IXl9=XZ z=E24y_CX&2TCTR$-Xf3DA zt_MrfBF_jrO}IzyA2dv~{pL1m^uqS+b(IU$==JfEk`JtK`}NhrjQmvLg&CPtQlo)n z{L53qXeWj|HKrf+DQ$pcz_4`2317^*5yryMrdUa8_&Ui4-Y&_j#$&=ySqT!gHAjTU zPvVm4T{5X?p@1xU?j@O$JVyAvOQ!I3otQmyZz225cNlf_a5_~s?UL|dk(p#g+HDGr zzb`aT&1C$IH!zl->cZPQ?@_N$Tot?QAlR$#OsHl2EOFd~^Xx0zTDGP#Pgpr_gHTrw z3LiK~Mu(SOU z*7D4LHle15$`I(10~^dGGp=2sbQf^KiavP~wbBe>>aGg%@vCgsl0m|{)iX$kh_!6( zWNTJ!@J#BQo1V~WV>i}tfR1FuyJwO^+B*i6j$Kk4iotz0X|q>PbZvJZCgN zFl_usKv~@!NG0Y^VC-YUiRfJi$iaJ~D9@XbREgPoYU_~>!clrI!v2m)RLO!GXG>CiQYUE#iw$~l@U zIbzsFk{I5X`Zn|vwYujSw&0B})zEG!5oVA^b&PVNlyD~^)oW*^Lx(J?Hmt8Cy3Y*Z zieu)Knsp5|OGj0*d%l+Ne@>qnj{7s}v%2>b{&@lqSMh2fq7n>HUb=Pki`t z5){5UOEefmTs3nm5t>*|tV+|wt9I=ncAT0*T-;KC8+GV_XYYvs7n}8PEpJ4)8TKU1 z&g&C-mvB76_iw>Kn=(S+VhZA!JD9h)3t@2P3N8sTCf2PW2*&$9-kui;c)ctL{ZHq?_)j?TY{NR@WZY<+`7o3yEH))7 zy1mCEZ!HFS`|N@5@GOAOiXk*gHsdviH{ktpzkszbml6GRZ9(y^4_Mxqleqt*TlmO< zXKvM1^mI)VjG z&DfyfDY#x^ES_^hji`Np93R=Bi+9uGfforWczokJ{IqEaHnm$VV6T+my7r-9X46?b z)glp0yQoJb84M&YpEJX^*(niTi|q+L!+d<1)<$qv^D}npOfFbAX9`h2%pPB(xe~X2 zhCr8nHbj&AOYGB}1gz}IEocS5b@b4R%#{zwdcKD|#qU*}4T3 z8>-@($?Gt9?=y&4-wPj;E5W8ahT@jDd0^=J)%YWSC1PG=Ea+dIhpPtf!Fy=L;Es>Z zVJp&CVZr!W;9nm~6yGq%*UqrVN50z(oG0`rdbQI5!&hy1NzDU^l_IpYGq%fw^VIQ0GroH6N$4IK?%9g5&o{Z$e*RzsIcfy65rsvoq+x6_> zK0dO&$r~g-_J)*cU>|mr{U*sS7i~$xoi&oFOEV>uW;m5p`;dJdK8cMv-9cI#-j0nC zjAYl&>Mr@$jYIgP{|)1?P1FNlox2wwH7|N*lU2-*(QPK zJL8B`rJ=<4KKVrT?LwkXU4?l0#SRatP$e4aNFp`23^;wNz`NxxAj%he;&v6FBAuh%9ieeu8Ed1m1RLAgng%(M5Xg8g3ZVyhUjTZ5_XlaiB78Iu)y`KA*RZ%J-Cb& zgVZVm&D-RN%|NnxO(jvESVsD*O=HHKULtuOcGf?NgTT;VhWj% zTPcpV1=PHO4@fHi8~e3?Co1ZBqNG5jh?=80gtaeLm5eytgUl`Z&fd-=solUzlI44j znCoChecPf$X=HAv%rQVUFiuoND#uP6mq8tzK9)GDno2EpE3&KN*-%QIN8_KyCs2aW zow&wqH*)c^a>k_$67Zptq~yyO)+MKcu$g1eZddM34Ru<@R;-;uJ{h!(O1+rJb~4jr zUPsr8m#&>oeX2V}MlDfd8`7)TbK&nS1P5<6CmWxpoq9jx~A4WrIY_yG$O9 zT*TaI{%=5vInT^4_nPcE8WBj!P)9m|7d@-aeskFkD&})7yjxk8v|NQe7 zrt8Wy@@lmn%fD+xb#A&wFtwvdtYYK$8uFaJBu+PALx(k!xF^L*ftVV|3n8ZX^Pa!Sy)7bh# z7PsD7$1aSW#HMW5W(SU~5RdL9q3UhY*l!zNkax9gC|~Rlxob`>nPHR8dS^c)A5_jD zpT=0Rx87H=H`O&Hhm)SN+A87XyH7zR&p3{C8TeJ))$JJz-yccHEXsXYs*Y&P+`j({K$+hlUbJ;I_$c!2gIodZZkegYGllb zyJF?3kmdG#X6_i6k-AX}nHSVnHfpOcJ1;Yvoib|?*)@Nka!y_g;L!KO4C*dF~rY)!v=hf{&Sa$)IlRu!04Q_KUZ8Pb+s)rDq;>Em}6e zHf|$Xy%FTOC27op^Y6*)uh%o)n?_QBb{oklm=dG)>;W^hyCK`WYB3Xg)__V>JyrE= z{U~Y>KB>y}dNNsbOqCouXc*=HUYpv>%cq(TY$d&OR**`cr;0m&>`54Q?IXzy+{7xK zQYT(6nm``!n?a78TFa`ppDK1;^MZPP%|ZPBo*HF2qkvuinMb)T)?|*B&0}9z)v~z; z7Lv@SffB<{>sd8l2P*lDs>EIOIpaE_izJ|X9^)IxXRB|=vneOdS+$4D*+(XbNxM6p z0TVK-v}61kUyGwm&Vw@c&HS!ZX5Dr6b@njvC0~k7TocODUsJ_aPlmHEohw-XY2NIz zeT9{JLVM<>k0I-3v6>Z+e!-5L?oAfetFgM#3Dl^|DonuJMkaQ`1ER;%ev;vPawX|X z9VPm98WPdPi|m;wb@E>F4kqJ)xzOar6)K4tA<5%Zg!dzqq@Fd`sRGc%x;3Rr-rwv^ zrF0IGXrI|l&K#O1(MC0-NrW5Ksq19wxIqWu;UsP0gPBvQL0t?beT(WzJ#HwO(s?=4 zF_y-Q$1G&N*Yu-C26&NvJv)+1qs|ga-aU!wPG`goU2t~p^c~FGtvTWk17u@6Hl28J z`7v|v?5e6eK8MLgvj$Nfvjmh@cW-vn&@+VKtqa~IZa1@LlLl*Ro5&t@&SD?<_9thK zEhVMP5}B;B9L8_8xMrBX7(B+*B+sQj(d*mKc`*q7!5sQl<#tm^c9(tl$$d+@v|d2G!|QagZ0 zshoX8of-d~>UDh_6*?!GjeXOVDyKBXmM1Qd<9l<=_L&D6zLJoAeSR5p?uG|baWRS6 zb1EGG4g4TBBqP|2)#J(b@fK{i8<2t7Rp4B&D|miMJ~`o;kUcwHow?~D zU>$Q)iMZ$i47_=kp@wL)%CFLys)E_%>wGDb21b#Kw>gVV-#%leyCySfA1^aOx`)}= z*iB5R&sU~++BIg@g-CMW=OtpxszT;Cdx3OW7sBLknJPZ`rH*~8AIl`=ePi~_T*fX< zs%M+4lEfps#!#;DM;Knlccx^23WJ<3GBtLOs~SRIkolEI#N(dQ?AVWI*n>|KDjQ^S zUolvnP2inp%Pw0<;OP@=$P^_>eVQv96Z{s$8P8@y8%b*CEn{l4?J@RF+!RXVQ<~&y z_&svn=?!dvL?CguyG?oxsAoeNEw*0IRB|PD5c%1LA)W6`VS!UDW&c%&A|CB0O}$xm zvRyuvXpu$CEb2$SPp~8;=63ApMIr2&xgQx%6EpJZx?{}t$}Hl-vt04sG?F@6XGEt**<{Ql6Y9)_ z_0+(ocnT`pQgi2Mv!_o~F?Vm6i)+jm5?nhk#<%Z!#`p1KCabSHvooHn`W)=c+`XB_ zz=4CrGar^PMgbQHmB|f^(w;NqI>~k>X2i|?cLrcYjLJ>%#7VYPZfzm4x?d>)d=@dD zfu%(Fw{2Btm_1C7h(J=mdpYy=ZU;)5UoYeSh(R1Q%>nbBjIjJ*Vt1BywuaUYo&;l&*BUPn4R#8%bVbY_CQv&4BR63RO} ziIA8)WQJVq%OYU{Gpw+fnQ}Xdnawi=Xe2#pXIRGU-Pe z*mquDlv|mxq~Gq(RZ%Km#6>suu~o$%Njs}d)@gJ!duRJKc7Cif`Kr7F8J=*6by&NE z9c|ahG;|215_&lhb+cfetKDLq7tLaHCb*Hkx}IRVdI-ob znWKmuH60{#=L~1>9p21tD70gJEPW)yUg)w!3@f&MIE*y*FlD1Ur?cBfK+5Ir9=7rM zI`Jl6cSiU6eRkxk4AwIB7^{)BpXsaB#FU48U{!e@%=%NRY}moo?ERURRNlhxq#tQV zY3*gme)}hpi9_x(d%J!jiZ^tWJlh+|Cfwdk_IR7eoK{v(>A?|fP;fi; zh6>3#?HtPzCU1y0nId*T@@BEdwDwe&=($8@`Kfdz1&mS z=c%*F8+W@?enbK*(QTm47)P=LmM2qwmJFj7h_Mm52`qh9%vw+BD!FnykqrpergG6X zRx6=N?8Yx(6JafRyMfOteLqKR-(bzA@0iJytQjP}p6X2|Bz_mWnw3z_ZzfY)hsKg6 z>m}6WYD4y}`v}TlPCnxwx{WD#`hXb`TS`VH=8@%V<`XLKgBbm%)nwDxA=GG($JAoG zbyVQSEb`D&P4;@S7xn01pcr3%iF%}MHRylt`Pk6+Px*XY9)lHa?}?MP53rR%g9K~N zXA71ad=tFhv6r_%O%30Dwl6q;`79QlItGk;@emiD2H;3}2|xF2EQs0D9Yz{_Qh zpu>pu3!Hz#`laAgzr>`E?((@4csKj?#%=jZXg?YCf+ zNA2(>i7&7r6>s_T53Uz@-Ln+jI2Fz>{J0$W2KfO0@(Qdz*8mJu>OkCDmyUJp)kQGv z;}>wlQ5V=8FaqB)yW`cbw}6fNrGoK(GXQmAuhTL$DpjTA)z}FfqUa& zU~*qa0Lc`vFGmI3O@tJ&w&~<{_0n@=4{R@IeZrOt4i}VCD&SVRoF6ql_NRxne z$%8=3GY4$d^|c`PqCa@2vJPCo(@mhh>XD%%#^cFkPa>-GT@lK4LgfKg0tSqw;`X|84}?Lld036)#xTq>86Tcfbeh6@sqM$AY)K zI*`0Q2-5+*G2skb@a3cwgsAiJl!bi&{YeYN=1m8?!!}^ahxEY(%dPyfCR4U+xPsJQ3LX<^uLSvCgMiz( zEd%i|8 zOgyW4J8$OsY&$mHd4j!N)(>{WY#!krs1aCZQ)pmaQV zux1=zr?)nKZQw_&c->OaTe%}18gGmr=(*Ky!)80IveOLAD=;1mey4*sZ%xMh+`538 zOLhRo4FZP_Uj@NqbNQ=wbO6#$tMFI2DoE~rND!2)h8_0#!haB%$lq!@4TL?21m;yV znE3oUa6LAa7|{CwHu7z*;G2a%K4+#IX!msy_%65%5@#6V-7HoM8V(f;?ksl3CIp&* zv_r*Uq4YZD(_jg-+fT*HhnfSU?FTSb!#LYPg|czCdW>bMt--9Ty?NW&BmARlwJ?2r z1n*m-Js!t*2G#Ro1@ki=V*-PMD-i>_rwqr}wTs7*b~UgVj$^62SaAFX5NtT>fL}SGDd=IgL$H0c6)5yp#-f^M z3y!;+2s%J1zo&f^@5AR3pdomMjd^c~T{_?ll3k*~onr*}Vrwbz%X)`d*cF4(g-uv! zAK9Dmhs!ZLaWSTQ<(a_V-5In`+Xq~Q8aR#_gAr_3OuB0VdaxAK>C%og;Xs0N;vEC%KMHiFSjWti@^tAewQL%|54 zBVT=gG3-&~buoJq=1!e0h1rY~I`5UfY;(6Y&$4|`h1WGFku|5a8 z;wvWh#9wiFU|ruN!IQ^@U{RN;c;Qh!5b3)gTRYPLO!?RjIFAU%ijGx+JCl0i#z$7; zLGyBf!-`_;(xeXf*@P~FPP;Y1@#g1(EaHrE7?y51+YtC4io)T|yQ;}f#MIO+qF9ApTyaIcU+Jo97*98;(wE^!g;$3~N4u-9N%^&(i zAF~Tw32cpHvD0h&+CCnjELiMfDwwi=7|-T?E(nN!fa!hdi+Ptg0{774An2eTs2Tm3 zr(13T-sSBA7Y)=geZB*DIxPpA**k_m1;z?y*-rw(9v1;`$2Txxv^DVFse`5M{Di4Y zJRyL~!ojrEcXm5_OvXw}W`YB`8Q8IH?fG8e)`I4}cLfL3*YNyYCgPKwR|Bm{w%AJ5 zo1m<|H)uY74jlb_jKBMFcW}3#8$M1zVzrNsU}jxoF>|#`0s|X=OfAL`w`m`NU(T(; zL*IS@ntL3u?jPR*93104>8ysQRK@U>wsF|dDm(m}oi#X|`o?Zf-XTG#N}-^>-!w+>)4<&t zhT_GItML5cgy41WO_*PKFlfqG#T^f2IqAsDE>y=C5(c2YsUD+yRDq9b+wi@U(?GvLRsz%2 zCcyQBBdGH>2T#AI0PnboU|Pm~-s|ioST(%~v^OO2J&o3QpF7#W=1~&1)Z#l(iE7|K zvQ)v%PVm8?q8P!jiycAVhTVdN=6Cp=>TmOx^?Azo$r@@myZaEJdpcRhSF>P3j4E*1 z?+GeL-Nz=*na|(-)Evt`ycpd2xC-mg8OO>y$74Q@MuPW~b_)uvI)adpc;ISM1!e@k z#vV>^OI(65X>5;!&|wy z0W5sj3s_y=D;U+|3znUdi}~iQ24llE^1nB1#BA$Ug7kd}Si(&iPph=C-6b~#{-z|> zV_gP_+S(0IoF>AXrlx@Tu3rRr$1LDEI*Xrv?*tgyBU>;$I$bbx;%6*2(no;YaY6m6 zlYF&_P6C^nTXs!jrvvLtF<2<`Rj}kxN08s(0#r5@Vm>t${H{;3G4~sRz(Kqg+jM*- ze{tU;j5)I$Tb;d2Ft%L{rrhiXn)D068ZH$(U|1ti0j3}@v$Mcc-45&c=z^WmuyWNv5@b1YXs18GzA59d?0i?4hGl-60?==V#P0j;GJxb z&FF+#phxmNP~oqNTWqw(Lsz-*$CBp+?{96!*58~6rmjy1{d)BRr&sF%^I_L8u2LP$ zetQ;srm^47by#OCI{YoB1sK6>gXjFFQ}zO+OJinP>v^6Ivv6Z985m!FDbP~+0?J3d z##X6b0n)>?V9F3P@OWM#{-E?FwzISm3wqK4L#Z_Al)n%gGS2`Hn?d0#Z4cn7fk(h9 zI2bDn*24ovp5g79ei3|dt>WKqUXFQ+=YR>TUSP{R?&8}&n=05_V2WkBtMVswE5h%q zu;5u=YpiL-IS}1r4|woI56@VZU`n_U&l8Xv6Ihi z8^g~~n!|HES_jtn)nU(j-4it3j{|)ZF%bXS9Nb(R#UFB71vF$KFwU|YmY08Cu=iCK zmfpY@B(~GXilVxKS4;?)(5x@>>x5vEYfnsFDF8Uz+~P0XGaO74;=Er!AOExVQxNh~ z2Y>GU6c3*Fk=*N;D7n5ei5(c|&Avr$cEL%AI9jmO~opp*EAlYJINFB|Z&W=?fC1B5McIORciQ6|T z(qmpb$+wlY>_N9e=1_e(8|C(qX>UZI`5Ld97EMLBu#-wj&#;H%4jT|!Cen)7cLQS{4m;&0O__;@Pc z_3<-mdwGV2&(A1Y)8(70l`JEEn@+)g$=u(j`|r;E*UdliyjI@-|dx;zPKQM~RNYZsd&Hy@-{Ygm@ZUMELdA#4|@NC9>bI z_y_yS{_#E<#e7lhr%}ZJ_&yqY`GB+?m$vc$Zsh%TeXMPww9nZfX(gc~71fC))-Nig zmpac8nr}TPLFbMN=Q%|Sg^?4a(XTRvAJ@c4tL7Ps(oEE)Z#+|_9W*WqH{k80OYQi= zB+F)r+T=#&bd0`e_4aJx`tL}nBIzVLm7*=|*{4YQJ^G9=*Pt8abK#0G{kt>s>-q4n z8i(Tx{_*_ypB;zz)#haOtZH(_=vZP@hiSmRq=4*3uK+uDD-#)R+X(66(WF7=3L>%0 zl$bR!lRUrQofNwk;9E8tk)3UJ<0B1U;e(AbaV?7t#PO8t*oHmb$%h7-WR0UQv3SNP zvePwBLdjj7O7pcQZZ#?s+X{?{)2Zo#Uyp;~5Ai7WSt@X^2>&?#o#m&V+MX3k{B3~# zi*sYM2gv>pq_)4U^v{xs@8Z_({kdh*bYd~(JVseXPf1Tc8m3A|6MTGHj(fIzZ%a1B1N%{j?}eEv}L1Ps>14 zOGM=99ON46>Cu&JW@3gInqY=zq@^iJnGzJ&OlzI}-?en9aI(?|c@C%RBl_pK`}=u$ zFX?H=*WV+=$Fr-ZA1!t@;O^rZ6y)sZ>iZ*kmgkBPPrqPqSDznwKgx>8*Jz0ef<1$R zyRw17W4Dz@RREyj*>Py7&`!!Mm$| z=O3**o0({>6J-T@F7XZu_6+p&5KE$~a#7BIpKEJRKT&I4o%va49$k6Pn92Wx;6nVo zgS+I$H4#K^PJ>KfdGjX+PIkgl3SM0L7(yLM6ajDToR{XBh~y+vh3Bj~+aB*Ct+ z>n-@d$q)L$@!vsUvX6hDfAAbXZ!iBq-(DRG^8A6r9^w4D*tEL%`v1wte9u7tZuWi= z=x+{H7o@v-FB;1bAJ@R1-gkqfo1cG}(^E<`YC%6R9V`;r-xm5Q}`y8HVEc>8$%tw!|^2=?~<2_t^8#J*`AacfjWchfy2KssXEpZMM`CTGQU}9uqVrtTTAvi+f2x`g|@wL*^ zd&$yZXAe(z*H!;zFx-8-1N^$I<}W5>iI2aVtB>=~8C@x%u0A1Mjr5qCE_?3j>nchR zdn}@uv#-Ce$RP{qs?)@XBt>m^rTU9}#g&2HBHz#}@Q2Ih{x@v+_=`NcAa_@h+`L4t zgMXJ7(9_0}KvxfMQGL#??(QMJB0JgTR5*)VpMWkmLTvX$&Z)C$cY|Hy)fF}CY5xZU z0YTnAKm1fvPeT)2MB?fj)K#;H<_GJ)ZX&yKy4Vv@{_K}@WqAIBaho9WGy_*ziQIu8 z5$l2e0jqksCE`(Z`$6dJ-iuP?)`f^XsBX_XD8%=N^qhOVNfDB|YV!*8_jUI1U()S$ zi3h;P)lKA41o`^=2QL+&;)e`=IAmeoU0pCV{r#RgcSGfG#4Gas1HIke)UbK z`s#bPmagS+x<1NXPa^&vo<2rBOd2gk<87=bDfS!MPn5;s$jWl0e^C91{rKwaxw^`C zUE+9mjKgv1xsm7z<9fmp$?h8oPS+oYqu!G~pr`)cbh8~MPUMIv#r2EBo?@IkeY)>t z#R-3f|4|aKnK<6QtHVw`z1HgqkM`iKC&~#GJq32%cRy`%IKLQ(9s)5=O~eI$C;T=1 z+DLU5T-t-nZv6h&{OFC}-)ZKr?0<6!^v17PkHz)iN8EieK7W8+ocRAEoMkt|T7o0> zi&oc@>8|XTc6#Cga^2}-J^j`E@9DJZ?znZ=l9uQa^RL-655)ELo)_KJ|M$OtO%K@j zlHc#yu@Z%DS%~HQe_t|x_2B4Xip7|%P>&F_RDAK)_XxbB+{qUu_Xb3Uk ze>40w{3>^QejJk?T>c(@tGb*>(IuY$-Lb#E|5GH;8^1kp;Mn)zM=S@iANGq~5NG_s zP;AGy2SPN#&LJ&O{H=DzX zy$^u-+%%x~x{=NqcAS25U;!*&N zHMhaM?OyEhp}ws7`5fS$yNZ3gc@}HgwhPM69tT2X^T3@^l_0mgA2c-O!lL_w;e_>x zKqf+$9ybZY#nK^ez7&3&fiQY)RcnrGsc1IS3|&^1ZntncmfPC ze$BeJeqo>Wn*$d=%!M@*TPT?g3gF<$jqJ+6Ofd1vMp(Q35}a9W0#^Dvz^Su82wg&p z!5GIZAf0CqGM>rM^S5#7$z#lTWi$K%_jn`Se^>+UK0IIG@irfHG-X3ff?-YFG+BkJ z6Y#T(D=^t&3~>8!fb339Ddt@6ZGeUvePTuMSQ;7|uRvwgX7bsm#0$Zi_0E0(q z;KaKuP%uvih8jnK!k8%Nv$6_k!4q`$oL1q@&y}#5Hepkg!azlo2K$8@53B;K!H%y& zx+2GwjxTvaD{dVDEvh6yALV6i2i+I0R7-)ww`bEswf2LJ$8W;7ZPS4%mIhMK60p3V zH&in^0b9wfVCBmsuzbQtHu}n0DDbU?7v3%qXnx)USJ;Gs-QNx1hlv0jYCHxXT#AA7 z%oousMi#N}^)Iu$`>oLI5|{3_3zEOsg^vS%TaAd#l(N`x{Wkf3OzzKip<6%_65Vz| zY!AfYAGZUVJ)U@Py&w0dlJ%si)%4Md9klgj13Dx1Dm{I`16oIZGOa7=VD7jvKxlaC zDLqpACap|1nvY&A1?1l63qzvn=^61Zw2Dg&tvjiJJ}zZQ>-*p|vsIc_jf!SBnugJj zMjO*_O19A3L$1+==g!fy(|l;e*^REca+uy$ew+R^KfU+!%kTN=>KfhR6x;7Vm2m%J z=ASNs-hR4R?{S9zebfKb&+EU2-|(Jx^LiA>@8LJxxSP*k`2Ksg|BC&aOQ1J?#pb$E zY=CH<4_kQ*#^nTPOe$EsRu}gAtVj*o|pX%+tYK z0B4?|KX|;LUrw38+LT#<7Xiw!zwrm5`>TWO{*43RyV4{WM;!-_>xY5*5vRbX=r(%x z$C04pRR*1Y>l1yYT^>3aMT2>VPOt_Ndst2^3ZtLs0``a;lyX&qc}edD&&S8HwkZc- zXGjsm-fRSOB+}SGT@DPov=a>f8Uy1Gr9-{l$HAP@w$RDqjJe=IB-p=nA<$bF0n1#Q zpoh#$`qaf@I&aZsHtBo=Op)^ek(YevN9`Nfao45+?v4&RD}NyjTU)?7S}1}G30L8z zQ(xI}6_9OH`po(aF##!+!=ZQl9D(b~jr0*OS@_blgEx76rLa^s4v?#2;Tb1c`hw+X z5WdYBXg%G@Hh#ZAdo|RtO_Q~OR7^hn`e8dX3uvLGR9@0HywO1MX%M*doeNJM2x3Q{ zmxkL!tHHW zK*XfE0J$Fnbq)ZyBy<;WFN%OxMed-LrvNX;J`~0&j%Q8$%IQQ|S*V=HfwXf9Jhnw2 z%Bl5%AB)z58pmRAZ*m}rK6lRi)Z=hiU3igxIp!!m3s(hsE2SVjHJDx6mJ33UZU-sS z1EAo3Hn?F)!Lf6<(chmQU=QUT=M9UH28)KdgB)Eu=;(2u6(nf`jRiKKNn(`Hz}*gL z$V>&_-n=yz9ul%z3hAJBg`TjW|2U|lpAL479Rwb(OlLbe7Qi_h0hup8u$3>D!3mF( z;e}Pkw94@$AYGmct#1!9AM-E-Tq|Dyr|$KK$xkOjx7V_;FfHHFiCAMOErwv2

)sVC&fzY(-QwJj+d@W!6@~b4q-8_>wf#(z{7x@1M~dW(0#{)Fe7rgBG?W ztI^vNgF{sAMxWD0todnXu8n2*z=Du*=SS!v^^X_O^~6ykoe79aC5jPDZZ-Z?8wO3G?dc z=Y|?|qM1f zp2xx_!_TzC<4tT+gg@Mto(WTHV!`@!A!zs<0a~`)WG_5T2f+!OK-%m@p!H%9h(DVI zT1HP|Bd%|!ckVxAK3XdPtW|f03)aYkS(D@7VR9xrWB{Lj^jre2TA{;UYbWR&S7(?$ z+#d`bQ3l4Oq|=412*~Nbnq4H3EwI;D2S*0J5RRCI!D2xuG+kau%hcM?3HJxUgmfF= zwcU*kK_bAlx2?3_fF#g7*$nQyaYqQ{_p#Nl+UWyxe88|#%i;cF22^ZMhTI`mVDYOF zu(NeM816C=#MDT@*5jJ+aMogAZD9*_j6H<&lLCRm23O!a@I5^%qCt3WjwG1p6$OsH zF$A63y70KJ3!6|V4_j#lOw}0+gZv0O|8pGJ`*kYw}D(!+}604nB%q zPnX~MKwGyJ!9b0vV0v{nh^RWkuIRUe&Wtkyd13RwE1gJo*YSMX?6N6rRqYEcI+rPG`LbrGtW9qgdKy30?hc5-6D%4Td{y1sn86L0SetWjhOl%Tn>5&c%FlGfK#2WJ~w=)&c??7-RaKz7hkTKCRD;gdKnJ^1uvdg(m6?k-U7rvv3W@_=om z5^aP~;EmlT`fN)%ZC1V>jK8@6^gEvq1lkJF)&3}3HS|4uWo#O4wXIW#DXPPStCQHI zC05X+BMRJ@sn2Ex%mj-%IB-|&Mxb#xlQpO{1;Ojbfv0Up%_B$^@bAt!SyZi^UOz^HH9sK~ zzFJTShQ1s|Cond2$tyc>u|peT*~;w^*oQG#5Bc!@#aDv*E^|nb7!51}n+m zM(@#X1m3^K?g}UXPFdx2y>&gk!9@oaZ+ysB z?^q2prOJVzJQJca8Q@Go5|kL316pRCVq>0^(O(}IgUL>J%u_au0Kp69f|YVs!Yy+t zm|Qv+G%76y>((TKq3f5x-E*YDm#Xc+Zk{R_xb+}CVCG10N^>0WTo?>q^m$013!Mfh z-cEzc75B|wjm~7B7p6e2kup$~InCBsjiM_Lr2%VMWw7AF8MZw}AA~F_1O}1wfrXnq zT(P5wo%l=&j)~g=pJw<$(&CIR$*$eMKOl;88#QrDK0TToUn=3 znKTp}wQ(@lyR?Hf*f$+|hs%J?Ba6YX;Rk3=aXdKcIg4HRE)oooc}?#z$^g!9$3ZPe zUEp{+6~t~#1C_JCviSonLF|i2iDAjtYW+|2xyr=eqC^!ehTqB+Y4aW#G67wI!>JemiILBZg-(IKJw@U<{K>kM%6d(Up% zu@lHmodi5vEMcvuGRT<{2BN)bpjuT9N*0yFRTX<_GU2xHQ{`ST_u56_fj7w@{>XW- z=W{W;7~c!l8%aQopnmMg6Y5ZY+Hf!`p_zVTHh}m1HcRUmzhVdJzoGZ}&H-DhJ?QlI zr7V@V8Wdakf?JO?z|1=_z~hc1B(_(w8e98;;qeFPc}E?DTig;sU%gte;DSfI7t!XuXHW*hm+1@N&Bmh_)NX zu8j_W*^c|oSH~O%Z%u3vLL{n`rp0b8G5fH{JGv+gx1*8Y3vF5aZwE& zRj5wy=48-Ica_m0_Xg9$HEU>>g5&haTNBM!Xr4FUU6NtG#bz3P|7kSMbQ-en3lr&? zYdq-PpCW|McATb<4*DXDE%Z14=x9y5&KxdepK7uP=9SXT<<-27Wq#%Oa{=3fo75TT9KyUnt-&=(B;72R~u^Ino?T=IL!L9hcMQgRdkOsPPyFNe z7Gk-I-(QI1fBe0LUXSMJ?O*hc|2@C|?AUm3(Q{J0G1PUBh1ciwwP-e_L~CX(ken?G z4C6B4@k6U%!}?<2A=wJNT7BV_39G=qQAa_z=y{!jhoN*c4z_gO1Hw%Mpp)bT@Oe)f z{dwz0V1k-~%n>CtI_VW_sQL*g-Ilai_V5T;=O)#V`SvB~?H{X?zui-@zHR6IHr;<( z?$3Dc)=1)gJ!0I7!#|GSk3A>Hx_5>Cmz@7x{_)gGfA-h*DD*z-_ItK|?S$@L{^hIw z*J%GI-SxKhVjbksb5>F;i+`1``k<#>=^k8m<5%)m&(`0t?&eUlhf$Z{?i>4__+P=l zw*-2Zmy|O5| zJIC@zhkyNy#>F0u(A%Qr{V4Zm|ElR>up3{pzw8NbvHES!#d=$N(r?o_^<AF2T(HY^%zfGsvlPzoe+jPH=uRnSg2^^Zeu|Q!N)hQIA8LDXcw+ zm!kqGImI!&aAjvaqwf~-O4cyOR-Vr^bsF%RgJXChyWM!ec`l{;;XCi(xESW6vK}uy zVhK^I6(^ zA2nNzAsTe&GEvKx^6YKf_#eF&@id#t>Nl9%^4@;#V6N;sPTe>WC};^*GXJ%j2 zqh>ZtHb25S%QK#`kvHamhWWC!I#h?TJgIwjGgUZa9;2#qT`+d$W5FPY?bK4vfckHf z8+i&NOL&Xr`kHGG9m$g!TTb;mwVHRgHJ6uLG?I60Rx*`QTu$VDNMu9@y?E_QLj_L# zhYO5lnt25EmW;4|#e0^qhi8-7P8@zEC%E-3lBel^Phe|%Pw=iyNl;bMM43dM;%_&! z=b7(O3to^LkLNNelP~dYniueg_CGi73qpgM@LM*W|Oaa=eK5SE%DI&v|+U8kGN_6TFK3?S>;BjKsMp$~>JXY~i0I|sT8HeF7k#+GfPw%n8u_*_>pU$5Ro z3Z^GALjNhG>epCi{B~`gU)c-lNryXil7Z9={!8k^d|#ej(>$KK`#Syx^#n5I?L|gv zWjZ+;Q6$5@@ObH}l~llJ72a0h$+OqEKo-vbKn?nIkQ$ReoflqtukP(cD?wZ<$&>Ln zX0rB53O=_SWnv<;8TaZ8NP0J0* zyksCaFBnE~-(RKt9Jljz*YSz7k2f*A70J}qK@*uRePel>OZ5dNZrkfmPMOAQS{KOt z@98u3>3>FjHcN36@zo6wlWOM@ZvsiHYyXE?i@mIsW(AM z`4acu>*8DbjxQl3$@cZlgtoCI;dnQXu-WZLw2TKt*79)Txb`7@n?)a@LouFcADxc(t$Ko; zD|>)D?|X+YzBrcXUp|Exwoe_~l_Zb1y^6&fREH8f)_=m5sJ+LvZ}!C30{E7 z6I&9UiT4*>@G0~zEN1T^yj^V<9<|MjxZZXfcfBHqeTpaWK2z#(zQrv(eU1iJH~Tpr z@aZ`=R%!wMdH)FfT=_(-({?n0+Hi=2!VCDkj8wdcpH0-xoKN6!0$j6s17WGzmuNg@ zNra4_NDTcViPxOJf-fJuf!J2Z$1fCb!>U>(h=h}yaRphNuo@{zq~Mp(>E#1)iTGr^ z9FZV)v!$2|rvq1rQNXuNi^5lqeTZGSQh?bQpTq;p&4>$29%B>iYVmWsqKNZ#EaA0V z2e+C%hw#cqiGiziiCyDo5&C>(eB#kn_^i3|L~zAg{DET(7Ws7t-e9^2muh^7@9VEc zr1jxoPZCNn*>Q&WR$ocNd)^ETUGoX|{&*eh|J?wWUA!5)5~Pcj`e)%~D#`@!N(DCm z`xgA*TY@mLJVrRJj>j*_zQM{(x;8T_8aK5VMWczlpeGJfHx60Tq~1tSJp zn^S6>5m)msWrE;mJ7SEN&d1}=a~w$ zA7YH3ZGD8_2wI5AB)!C3?Gy>?Sd!R0-2gYt&A?e)kvQF6ihtU)2aj8%hiBRh!e^&Q z5#z!};Rih3F+&SoJm;tyUazH?wrLFX21LQ7A5Y`2=^Vk6@pa~f8_Xpt*hp%- z_IgHnjR_SHe4oq%Lj>v<8Rn31kYMJtO@gld~JW4F%mJ|0+3JBHgTe#e)cw!3vmMHVoBuwQEasIk^;#jOBp<@(HP`o~5f94L> zygUHEC(=U^EwM!8%wf3mnhk{fyf{3&qzMm#dvFcgN7(#9j)cM669j+P9ems3F+^^< zHYxQ^k3@5Hh>oTG$e+hS?}xa=&nx12@N3~8pC2D*caO`T>l}{j$plIb4ri|T>}Lw^ zaCi;pR!|SVwDXPPDAGBuj8QEQV^$xRq8zMkDf^c~3f0&{O=(x498Wk9ho))@a(AAl zwhuMr)s_kQt}oOm8~1z?vD{1^e@2oCRVn1L3#v@+f(z8m!6Z-HdI&H4jfp_z!y0n? zw`J2Bb$bSZ}}#XTk5wdO(QRV(&Z_x-ATpQaq6`09p=xRIhi*y zVcT7d63EN64rmDD*Y;ld}Z?-zbU#^+N$Q(^)vTs;0GqjT#Yj-}Cz3Vt>wn)Gb z;TWN*Z_Gp`Co`+6cav&CMflhLbIAN4{hWQXiP=f{G{1HmW`L;_3 z)@vHvtNVJXkW5^j#GmI7NJz$f;;($v$iytwr)Iv3rIaT26L9W~B6mbTrj|XEqU?xL z^0~%%UdiLpR7L9>GI@+GRg-#@avGaPE=XKON+-`myyhKAa{uPNjlq?yuR0&TG(Vkh8ljN5c4duW27`WXnSA&*rmv$Z&1xW|OLI7xyjvtyY@=MFKN1={5Ik^zF}b-T&xi3#;7oQq7O zo&!H`)p}x3S~Fw2XD+#Tk^*IUVK6Fre;e~)n=7-=b11bV3gcU=$}|0o2lL~mtRY=) zY^G8kmDG#2_wzq$hmyOUG3NZeJ(QKaf?&6{9yKS%p1f7}f-KqZP06-IGuqSl^E=J& zQ$lwHudf@;*Hqd{1!pBOdeKwK7dJJiPtNhoTE8%|!DzT?@}ve4_HCFAdW@OWwh-cL!2)DNe zWXshe>hNksYK+q^GD9nkoHqS4`E-dE`4QJ-1_qxdgFm&Bx*Cnl)H8Wh*2(^a>X;8? zpyo(E8{4ePHw0VUsjH(w~VI}uPTt|LY@*cA4xH}o;XiADW2Ioxq-a= zD3pvHJeZm>^f6!iR3?)h9?ZKEw2yjy>j-nt%7;Q4rZOEbVwtCoHvE@LLn!HX$k*O@ zk2Lt;zzaW}gP)_WGpDx{Q~O3}QLZYMj3Ghs=d6?_WloIaRe`0H=43_EbCeWQFuIyr zQ?rG)2~>Iu@SU@-s4^AlvjEG^RZ zq-NdSvV)9LGft%BiJl81F7expJg}5gQDn+m-+KAMiIk<#f*+F+&!6%3Z2g)LRYrfC zJOBNF2}FRU1UbOgnz?ewgQUf-dF|Gx-t9U`Eh;CdE2EE5 zT7`O4_`ps0RGYCBC+0QZY0EfjN1rT;gTF=BB`EMdW_y_i_^zYg{9(ELfzCT9sfA1U^7Hyr54pP3?G4TKavk&eUn|Ne^Scdvy-7FtW!l4t@0+$# zJIB=3&pSDTEOBJWa|$PjWjAIVu=7u697uis;hk^M;?=ce{!=B!uX-l)X_Yp$J`z%G znnLF3ndwa7GJWRVfb9$?LmfMRA&C51(#`~~QXpj=hSn>;$zf){okKi^m-g~WMmnk zsxX3Ca{EKQ&jbO}*eS=PPkvFaS?bNd@urLsOi*Xiq8+HG67CG=y%wXnY%TS|RgDUs zb%TsqwU8gw=MkxO_8~QZ*i6Pu4`52y1M1!z$YgP5QgU&|l(mB_le_yKWi-&qWL6tZ z?Nz)}fA~Npxpuu2f7N3ha?5R3GD<(2FSG0cso-it+Lr{8v*}dooVPje+A|r(+MG{j z-8oN6#eJ%G?K6tsF_5kGG0kSM2N(JAvLvN4xV?V1g$Xm4I!`u!9m6CZPv$db>BRY# z+k7Vzgc(t5hJ4ihOroR-WAH7QiFnseJXBEQt1n%Sy;z&dG^@Gt+d>=b98Rm^^3xKS zYSRe5^Zcod*|fg=N3Ro@VH5PIeJl4d)^hd&-qqJss(uA!yW3n~U=>ekSFIC_oj*+dCA$P=&W;(^tbfpGd)qJ8P&pD>=N3DA8Kb`1Aazt;@+>Tp3=( z&Y4vE9{)N&xhkf$Nsm{vZYQr<`X&|s3JUsah4aF7PSw>e+(mNAt7|ob3-AZ^S@oZG zm{P&%lJ#3R4yTCIq2&FUjrDs5c`=Q-UusVd9!cHf%_4PgenmM>Yp{}-#`-8Om#VTm zh&QdjO+E|RLl`f7PwrbVi2q{MSHkP#Br=BDMxL0~$*0slka=w;^&6MYXLRq!)^})K zAyP9f_y%$tsKcG+q-A~tVbiF`A5KYA8QMmCH{UYyvL4CrzhyKv@LN9VHAs!JxV(`# zzVdpLRQ*6U zwjAQutW9S!C@m`N_$U5HjrmM`@)1f+Z9i!;>I~E8qdlq8GJtaOUdLRa7Lls8RpjT| z2!<0nnp7|UOdM=cAa-0$VN3@k@k0lXr3$jm`EskxNSo0!iI>;(sYSUcHT2b0B6?de zzr8tvKdF8P`OL_gKW+6{CNf|SrRS*5AG^AQkFS$w?yVifob5PBcq?vVs9Jvg$7?9n zXl%m-)J5R31(yl!9e}yhW>L50avZ6*Jqf=$g3B~WxABb<&8Qtl8hnF3PxyXo6!<2_ zcZd}_2grVJ?h$Qn6ZlR?)Tlnkj@9dDY$mf~HZv(%3iS(;UsI9W)=+uTe zS>#&eXd#OE>!R6(q(pFV9K~_6KgF zvOT>Sze^pAYO)G*^-cnRyTydKUJ0)n|qQR;+aLZ--#y!0HoHRK0>xjekDyeKO^gX zGN{y=G_sjzKhuC8WA`%?ViAxVs#_flqcsji{Hg0oa@at3qc z-X7-O`()DYl>>8bi8257{(*vuC{uFBqRx8Bozj$s#Vy7@>lT9;$dU1*3aJh!0kid; zJYzT3huL?(mO1EUKzY5sNxpB{#%%rMMt(ZqPw=5(Goub6|77&o`a6EkjI6UIU7HR7GXV?KH_$JD;mhXO9wL?n1I~crkyt?iXUKnhLXGhbwjZtsHOm znIqJ8J43;ut?`upVLnw~&`O?-YN-#_I6^&87)0qk9?XxSACjX|UsKOwC-4OsRphM7 z3Tpay2TEbuezN+=A?mv65+b!>FhA_YbmH_FMc&cFF+@-`m+~mmBHIU?rL1CCQzyLk zkv_|YlM2)|>Y`}{^*Y;`{FpO|Z=7)QfARTP-Q&;reC&wZVE*^lVT+zjz(YANv4`nn z&;_$j<7cC*5Lx%vm{puQUXphb&FR;S8DwunKee7fn-}_`ulpQC5u@|?+N}-fr{+@3 zdg=v4K{Ei$y0nS=*lZ)FJUcOE7%K-D#Vdc!zUPRM$8}FMTdnuVcs+3(Ano&(LF=@VjWi$u#&7*SX=WA z?#vOB@lH-BVwrUYV;&_T?}n-)9?~DohMj(e1+O2C&WY&9jXQo18RGg53#gLCy(UUx zBW@{C8VaGkJrXveEb4&v(GQNvf9wO0r+40!18_melLRGXMy%BX*4n!a4-oy;N zJkXgRw_%f{q;XI4HD({Jz3}p_wP@R&HF(Ri8t%ULk*M%XI5*$#5Pt5P9XcYmjGLsK ziuekvaTRVnUeel#YR3V5cWMTn)#os(E4+_NmE~Y3on`PrM>COcA7|rx+YrQ9!x&o| zz5~NAI-#e03Q%5{4!Y?56=c(0dCXYB4;`jC29M>YAYPa$%CuofrA-xT^j_O+MRPt@ zAAJEC@#>RV!M#gJOwto<{_s5P#HnU1Uf~k1@@zAfI8hnX*o$JH8dULNyA|*RUlf_! z)QqbP2t#}iO~9o6o?&Wr&gjIoXVHm8x6q{*HLx4L7>A8iEl2!co-+Ho=L%A~J`+3fT?)gbUC|}0 zuiybzZCGflB)%{E1yUNd3#+=EkJr}3qxS^E@FkkxkONu6k-E7K*qQcdv+z}O@TR2c zn6~tC%tl24KRnRUY`*1uJS7W3ho6eXL!$MN=*ntTo=)aUHtxiSg)K%K*BBuW#;!$P zSytduCY$ln)0i;rg-B;tn)tSbhN#n=u$$LmHtSvWJn(k&1Z!j4-s>m%#eX8pyrukD|kpq|MZ7j$!`W ztGFf$Uzw)v%R-*1`(RT3AJJD4C0N9{c-$tl5=&6&hu)dvg0U0E;FpTMaGAh5#Cy{X z{At-bMB>|e?5^rieCg_m*oz@e*b3=gXw+*nY(&vSbZLY=dScuKe8bZyG)CzucJg^0 zQs7*PevbWUB3vhhzd5lNz3icbNIJNo5+Z*x;)^T(^!0dr{%#-QfyEiDzy5Wkc7h`| z?)oVFB4;wbXE`6)nQ#x!*V}+-N2Fm5*#mLeurFwGya~2gt`(JbVo_=HV9eb;34Ky` z9G@N^EW&y+HZXV#a!;}WeYC98R3k|amnRF+dCw(~`%ZJvN=r=}vl&;iRf-^q1(c8lw+p~;>4+5)eNj6e(R7MWd}ISIM> z0^q}(=i!d?uOZayQTV{PvG_pUVASdIXw1Z-FaFg;7LRXUgjjHQ;10v)AbAhMv8Rc* zF-6V3*rj_{kjs(#(5Qu<(Bv(p=#x(|XzsmTc%OL&sP!oo?9-f$$SLD_H$-m%E{Lqf7!*DFNHXF@tppcL$<52BU&yd(N`_RPox6lhC`{JlVGGaZ$4VCdo z<0jho#h%q-cG6Z0bI_TL1!oBHpfU!_wQR?>R4SrL zUIf;^E(E{zdMrBpQ#lsy-G~g@I09AIX+a+rKIh&KK8{V(AAmg~M8s^*PDBTF;PNM|!ik3o=(h#ixP41EBQDb;@mGEcxWb|HsBP8~ zTu03ZU-5Dk=7`Qho*E6sbQcw1&zq#s#7+V`{&Y98;C>=1e02i7>(XNCIXwtF)y|^y z^J+9_ULLmSQWRHyW-azcI1$m^AB`RJ>Wet#pvdmBMcgX6KDcuJBy>;YEi>7GNMyK< z48CN}Kzx7VK=eqo2|oCq6fUFl6ie<`gnS=(5DiY+jj!?_jSj{%vFX0W$e95b5IjT+ zeZC6e+!D}tHWYsG4rnEJhux%=q=KdbtReTq@Q{svrX=+5h%ObISawu{j zW-}Uo`GVO)XKDOXT^3?~I>zj9?GW_*)l94gOUL*}q;WO!1|GUk5ntBUh_?36LnJSx zqk`-^*lVxN$k{0$(IP1g z?T!SxuzWVA_T{r_in$ExaXrthf72oCf{ZP)eUs4a!@4Kjf)~57RyGOqk6wyipIC;y zd0&qCt-pu8YVt-wavo+Eu?OFCCINk4rGUQ{D5C3@48Y#pa>Tsatk4<5im=FjW3a+q z$yk((7XEhdZL@th7vgi~-$%!0h2i+|`-rsMNK|ppGwu;2A0N_Ehg!r==ay<|qXReQ z;e}tS@Yvi;%+sS5_dA?{k2hM49e(>6DbE>>S=rTN^S(A9yr&^p#r}LmYRLxl<%BP& zTzC<8v&ROke3>B{dNml0_Hx9Oj}ypC*Bb2bsSreOlq{x~Qefth2+-o^N?aJ*pxd=^cMOu_bxu%)Cag*`KHK|)hykPWS8kOl5im`b4>e(CK|?yStoSl@l)xiMzO z*p%#BrmLJAP^SnL^g>l8cUr?n~gq|qa(7+NU7plcovK~&xgFyY0% zNW_bI*pSQ5xy_uB=pdenndj}Tn5Dr1g!1k%Ymy}qZG8#c?rJ#pHGoBtLl{2tqCdud zmcuNz)*`m`&rs{td$IePTanmTX_(AF8DzmM8>HxLJ^E>GBzMff=~#TMBib?tMV-Bd zW7Bo#a-a9zfqkE#fGl>3!Q9c!T-|_TBsAU4?B<6$EIE^dZaX!Xn>w(A`zGWLb~3sJ z%h)gy9kaeao^PFr?Y`@c-CEHPyOAo|7qCbk=Uj_L;v1rI*YyXH70ZTT$+}gT(+Ydk z16>eT+@sl#aO@zd<|RC=k=faBZMt_3o1D1^@eh~6r@v`L6H!XWS^kNY*^I{Bc8*YsUtTMoEN~ zk{q!&-wtqFG5}&eTA6!2>l8M}O%A-&yE3?VZ?&%ZIR4 z4n^pZ%Zt#1RnswE58JXhv6|>4s;>uSK!TO!M!Od_!i7Z+@*HljAhh@GzgG~Fd-0X7HI>gg$9=6Hc z3u{@&MUzK_;1AcOVx~j{hHk!$MC_NtyoM#<7Sk0)*xrhz3@t`9xqXnD*k*M6-9U8N z^IB|fkSZD#HwioYa6R_WdXeeG$(nc>e=F)OGYntR)Q9_OryshpW+>O{kPEKZI10U} zAkTGKbwK#RjZqZaNu_~`U=h{>7+Y@To( za&3?$TCARjewpuu9&M1trtTPuR<*rArH?MaK8L28ZQ6Da3%uZnzM5K!RmdFRMr;{? zj=inHz4f3!4yQ<=$0Tda8qNhEQ+9P?pZdt+#};~HFIQ{gc5}X9-|9WEeiJRQ8zu;D z#}CAwy`GBPslJOZTWEre9v6vSxFw4h1)M_4I&iEQ8-U3e9YnPaM_^YJ@1dTu$M6q3 zSZ@4895dBhW3PE5%uME{VaELm&`BX?NU9Zus@@I5Wo#Z}OU@UeEA4!VZ-GYt z!u=FPky_kN0H%e5&LHxuS7qy&0HI;rKC^Qns~wlk6;?v#pr4Ksi9KtcICcjoFM znsH^cnRN6u<@`{a=PP(lw58Yys$}I!sg-uTb+3b%XGwAVgPT;z*SdEpCs0IXD()qB zw$EV_qcf@bGEqG1W21NTsZe~DKwPe;`0obYd+_`A{JI2(bJhO0i-`N>;_%ya zVm{hu{WhItPqwW4Z`1W`s^;hg{x+SM{gRO1ru(1H{dxa}`j005=l3(!hj#NG)~gGD zuKi4ff3saFqa88pWFCRckHu=8pAxTqbg{*$q4?X4#>DD}H?hI@#uAlR2I4l? z*5HlkSNyW=b!S&xSoRD^?{VoJ?=@`y{S4vZyd53(aqjJi({@}r5Rosnc+;uu1; z{WQ)T47Skg}`4p(XWjFJoW$)bD};)Q5^V`P{To}pZaU-;&P zuNo6cZiu;z=NH6dS}N^?)ZPyKP5(!@rFuBlyfuabgJu80y1Duf@rd=38294vkK^CI z=hRd0vqFC^y>x$aGw){|@z0Wp$J%Zz{<&qsUJ9V>r%6Z-;tcB1Mx!_-4v$>Aj(c`} zdVa#|M_%|3poo4M-POZ2*wtuRkiTE=qL&IMD}9jXaJoLC|6i_fiDjaDcYi-G?zZk}$TZpOYLfdR{O7kLG{g}8=$1&8PAw7HV$RM&{=hDe07?hPlgh zJ2h_Hk@qVeYyyJ9LT%d$cH+U^E!4x?HN@NPM>BH+!u%@n zDJvO4pQREBwvAn9!T(Ku$PbSH4g%JGfx&^HGXs1U1P1$e>QIQ+4;*#~=jUS6ZR6|z zk&iiE!GZ1U{UXrc9I7@*xAk5!mSKKw!5zJC2T40W|1hVclw{OGehf{hL}Y(k=vNs( zXF@V2?qNQDp00lbfp)O{3bQNz+1TQ>jnrS*l4>^N-^TdAF}BQ2T>k0c!u|lbOn;@f zLVOnb2l{xn)%BO^YPYviMf!h7b^U;s%P*SlXX;Ht@Q-ckFD3sQI#NRG5$GS}F4)6(B=o&2XyCjyt#Ms2d)TI65 z;XD%OVW#F1zLt3TEc6a__4M*^i~KKx;o;{K6wqche=#8o{Q}+H{9J#X(UubK<`>r1 zNQb#;n-pIDZjuD4$0CWj`Um<;9I~*sI!%m8Qqp!?YM{hdToUXf@eLOQ|8Utn{)P>| zK#4~e;^8Kd+X9K}5ZLAgbhNQB*v->NQlG1vhew#d#7?$36|NH3C#cPhklH7G;4?oq^Ym^BtA#w8$X{%X6^Mm!Do5;4DHufZxzxGSoGQ9r5 zxQ&x|n!%Bl5_cd(!g_FEP-G{!L^_J@KL}ktI#Ej8x-f|c)$Un`g!%uFo@<9UDM3}daNoc2#_@2MY2@VTz^>SP273|kGyi%@y43}$=SFo#BgqKHHN6*?6uCGt1WUBm_ zGE({#fAf4WZE1t!=%FKbc`uidY5VkQdlCus^zt+AVA9wdOPpvmK}AVhNs=Waqo5$u z^#|3D*pIL89amfVwo4jskIBf)@3@ie2opNOqAu+>vNCOdGBR2n>AgGZ?@Z@lKYqN7 zgi>0+H0&rQ)7Y*3PC=URSNI<#fr;bCPHXG1V@I#`JHna{oOMKH!X;0EZTIa@n=&%L z7>Eu6DNaqK1%4;|8Ga|qwHNg6z-2pr|7(79#_#Vm^H=u2xdb}nSE|PnI`AXyz7(H7 zz%EVve+XyTO|_Dhk^4of>vwOj?3Z>r;z5e-=~6xYMez4@dUSi-s%=S2a!L8u>6i!7 z`Z~{xcIyB8-#^m>(>lrT_v~0vk9Ju|<@|qNGJo~p|BnPZ>j9mP!l@nePg>WHHAG3I zeJ#=eYj03WSJe@3?BAX))x*=w{+=$P zBc8?kgAD&ki~URwXsNa{OmqnD_w+!GW;?x9&VSPG{>9e6NCKVpfOH-?b^?S+NBgE7 zp>!Tv{6W6j^?>Xz_UC2W>s84mt+z9d+jIZ=?koXWnQrYe>kyo*jQ$T2*)Ht~QawAU zqhRN_oMc6(jk34SV9ACOL2*b8n#DoGrapXJSs(IsJ;(RLKG?>p>sw~=0asHZr36yhKHaGQJ3a~Fye zwsQV02av8f3mJ7e4HxYFfKoHu;kpZF(d(fz;hk6h(CWSpTr7Htrn03lbJ#buaa9PM z5PuHMU{)fH%y-Df?Gj(KJDCf;W{6VvpAsxmaYO|-M!@@d6S*TVvrxlGb9CzIR&?NA zwLoR&bnbn@R@$Zabb8^n{+z%_2p6>!)A!f!7H2O#PP=Zmp}*vmA*I?}v`GFbx*4f~ zlA4R4`6DN|HT@{;C!Zw9G}{Wl4|^b(*JC*nRd}G?wL)HY0&@sR@5tQ1F8jS zFt>3n7f^5jhWP5CypSj~;RXp)ksCdAmnrnQzYcX(QA5*1(qKkW20S}jhi>`Yn?6~+ zo;&^iC>l_~hdy`)jB;K_n-U4!{j&@JcD>;19Z{XSO^y&)bQdM`vhJyyb; zk=pRwHXfoJyQ86sOVKF>Rip-TI89gv^Tol?@M#ge(vpR!ldIv7)l;}V{0vxi<{J0R z6u}mmN$BY3c}RAF6N(G5hZ)faxPxpQ@*Ug-lEwwlbpe519?ymR%XLW5BL~eek3sX+ zXQ5%QJmFW9MDB)73Un|&3wvIEL$7nnfRVEW$X8Ab{WE64>e9_z?yQGsZ__&ZqTXlm zbBD8>-|e+1`piOjsSCqdjVM8`n`d+To33%ohp(cK+{lF5UZ453a&uwt_d0ZjHt2ZC3-vnoL9orr0~UKa!5)Q#c(Ae%`3$P0<<6ggJ0=++qe0=^*1=Dp zi~b_mI-(REGB!fF4UG8cLlN9Ob}wD(bpf_03F)F^b#z0LCu+9~U4F3(AAA3{8j+f* zUQ)yL+vNW-xxcmx?E;dOZMO?jdms(}xE;{x@Weao{e(Z2tS26rOOMT{pdT3)azit8 zX{}vjxxp*D!du1XX?KC4SnOme=&^?pyf`zJUfPl>Fw85aXEiI+-OhD^>PABP@XHDs zZa6|`MVzD^&&Se_*2U3k#T#gseP?OS-TUco!|Lgh>X-a|i7&*;;X;}#b`#f6T1NlO zPw)Kv@_T-|*5Gz=O6~WbO1OV9^Dmb`XFpx4_hbhAebfK!=k=fAH>#uE{0;^3d-#nS z-OlGPeE&V$f5raICD0kaQgdA;H9#Hx|5ra}I(Fc;-3rRcbjI<&`7r$9?)}=I(Em}F z^f^;Hj6VzixPK8eq@C$r9V=VXE_C)cr0M@NVODk`z30YDTK0wkwEA?GUNu@){OQpt z*hp&7A#+uc%e*4))QgSi!I^Y)d|iLEpbAH`1)+kaepQ@P?-n}km0^ zh4Mt$Y*YX@G2LNw<~n$6VQ=&%#uVaKWpqvE4tnbYU+5Ru6^)-(%gx$U#sM1_cy@O= z9CKO=hEACP2kLF&n)@>M##5E>x&&OzV zd!7R<8aI`WxHt{sm|-Js;^kiG_C#+@kZpIiXQRDJM8zj4C{Zv@4Z?nuYd!k7wGb)g%d#Ibq1q zn`4W%w9;3U{7{yjIvrhWf-dbG3Nz=`(93QqK?C{IFyKHKy591hzmS;;KhIi(wwRsa zO14iB4^r@_Qx{j!rRiR<-u(*qTK6Qq;D(9#5;qCHeq;lWbkE_IHb=oR7iS7qor7rC z4J9<~{T?yv76e00#-U}Z2O+PjFFNY73odiYrdK?yMh=@6pcP?jU`4-ju9n82)!H2T z?(-QaxzZTMEVP0aiz88#${ucY^?1}*;S@JLZy<^oFNVV6bMP=7#|1l9qT$86;R=r( z@ax_^Fh)jCoO-H)CZ_?~`dTJjYQ7L9y(@!!*LXPLz%kmb)f)EK2!Qt&kAR^Ubzz_T z(dh7oK-83DATEDc0w>Pg4L!%mp<>f-f>jr6xsCBDXyJ#6h&caPuwwjo+U4L5ZqHE_ zcx-J8H}!HFx-sPreWoCQ8)$e!4%rmf%cpsgXf1huA>A{d}alA(Ly`d7lgGb%E~UJ6n9< z;R=*BrY}71o`&2?IL=T%4927^MfK~7U`-z-I74+lvWO1m=6pB_dw#Ws_{hx=S!|$t zOdJlc*EI86qJ7|1{R(jru7OTXt%c)+OHs&^QGz!??>KdfN{*3TB^avS4;h|*Nq^Zj z1t#3;L-&<)hVjL3>1S2_(fya9a7tM|eCE6ym3=fo+0Vj|<-J&#PmiYATkfdBoQ7_> za&Ua+Mo!Dg57y1HLrBuUeJNV-$&<(ESM?e|THuz%TO@W|J1NxM_q8~Z!5uCd5Qjp+XE3UgT76x4aP%Eq$DJNSX zfvz_^_bL{SzZWaEniC5v=M~aJ?h-Ki<~}s{%NZE9pb`#ownw*D?iF8;@PxM$t7uwQ z16~+ogO0vg4Ikc~!k5ttg0;^>&??XIC~RT^d`=$VMy&QnuBmP?Kz0aZFFMmzM%Oq? zgH^D+|6=aY37UiJPIG3er4YnGxYXDeevdkU?%f^&$Gq}JGTMOddZ`ze?3W2gDAsV> zCnRvwwW3gye-r&GLX2ivp5wMW?u{m#NkUImbwpyD3^=zRK;sXY!26!Es4;XH-M5D$ z%u`n3Zk0xhk31NKw(YnrE@?dkt7~s?Kt76&x-=3kkClbDCiI0VCrSkDfeV~{SUhYz zGzad_Sp#-++V8eRdOFv*8!F4_{H~g| zoSwRGKb#q~g8TYvCOr1R4b~?-qJxaj@lzfraYjcD!-)I)XtRjfNICW+t#7>$o>Q!b zt0t7fq7*egxAPQN+ixj!C|5w2uPmhp&yYviF;3`mWgH?+YdEu^BcRT^PxMEmD+rpj z8{SxAjPCc$M31|lq}u^FH_ zn(^W#-UM{M&=>JUs)B(x%8<#;t#HnZbok-+4w$%NFFkx(U*xrQ4ZY??A-(LyCjR-` zo}w?!qhVU%C}euho4b@@PalsCgDuM{;MTkwoD+MEJ~lrW4qqGuOEX8K{lU)YaS@Hu zjTNEA^G#gj`~c{%dN(w%nhZZDX``>a265%pRKe^oX3+W6OcZi=D|-Ff7QLFyaD`z) z`2Ff#@pbj*oRwQ5&4d}CO+8oAgC^KO*C0Q%T(Yh?Zc`?@q^60AHP@mnp)KTx1S41F zJec!zD}C*e5Y{Yc<@~fKa6R9yfV~s~kpI0G^xiR>(bBhf#b=AA2x3NTMmD>PXw%DA zxQttx@Pp4*+SKWcxUixCy_!;k*SxZp7m! z0_eAxe*VD&y`B(@4)n}I_pB74!idw5O{n4Cl?0$mx-ziacysR9+U}^a|3fa}@G>~& zVJ>%n@ji%$o`cNy-Ef>o38WK`3d)wY3hrihg^$mdbG~1vpl@e&p}KZ9;?8Ek6KUIF z(D^}Vr+6}LVVj1WGcM8-n~!h@na6aOmRN3Nw+&+Rs?qSVff83^GX=Ta-!4%7GLfsB zYljB)-7H8Pk7#E*9&C9OC`i_8;+_Ua!SF2t_~u)iy}QU2zZeHYKYO67XN|bD)3Ioy z%#rr0m1rjz3J;v$02R+f!acVR!|aA4xF@D7Tru4l z$*<$k66Z6t{RSFkB;evA*L5)bsR_b4b<~iP!L^1xrrl?L=aBjV*a)&=FYm?T2RE$I z-2VFoLBo?!_3BrGBS(87)vrTfxV$f2vS}BDnsU&>ZWp{hTMj-Rev^(qT_bX-)`VYl zyU}-^ABNEm?$A_y3S?YMxV6fqNPhSjbV)-Op2jZI!>GYIK+Ao@pK$uxbmcU9JnmFZMz; zgZI+K6MAu78q{H(I-p}-4TihIPjGqPZl1g^G9Zj^B1_mbFG8m1>p<&+oVh=)K?Y9^WsrM*fvyi)CpSFO@(8JIKgvc zj3n#cIP41!3Jx88%4Mz+A)O^*NPny;z16Lmn;B9L%lcsGeb+;@$@(#9e^3Hy{=O1@ zdv*Y!H>UtK zYwb*v_t zvvgWM!Is-0yAWw8>_Ic<5>U}`9lU=+$Q>-m7fi9453Q_ZQAERX)TFhEj!no#zHxI< zMBqxOmVbk`*sg*;MA;$REjzjAVg1qh?g1!Dv6bwzXpvPuY@X5PN5HDCm zPhzjY4L{^lmEx${(7C^ zU-jOizGEvx=XHcX*L#acNfWsAo*TutcSP|G2MnMu?lGdhv@_^+XAaO`N@me(R~@IT zQrFV=9>vo+eu#c>t&tY(8AwO(PZDH5IY4(G9zr|yIxc{Qb2zu4OuD$Z3vGA!GR?P3 zrc-#i;>UUk+=mOAf*75VBL4wKbe(-ZJw)O^|7_j2^M0z|TlcNQ+oAi{dyD^=Dg1XG z?Y!5gquE3P5Vc z|5f|rdUfDd`re{5j-`D375=>he(g{Engf;{P_?e_HOZ@!YPFr2BfLxRr)~9KRnsPL8$j3jHrR z|GE6*Z~cwApZTht&$|7dtzSN_y_bLas{b|G|4Db9ZM{?nd3KzYl*;0N%2$2R(Qelc zT(;x4%TLeN-?D1wP^W{@`JwGM(>mgR1^?a>km9$jqnlDsqwL2?`hQ*DJD=qcci>iP zgF55*U&qP+?V5jW+uJRXRE}+@zuWG6Ns`-hEPizO=Vvr7cW8vp7A^lrxj*|?MF)fJ z_)_>~Pk6QEZ*wly+j2zc(*#0)%@8j!_o(1A{aM;;b%=&GH{+DwD)nce$%S8VNSJHiL(wQTD zF6`w6^~LOJmt<;;b~@!5WXZS9Qx%yIY3z$HEH!oJ zaw;g;NEp^Qk92(5m)f{RhvE_!i()Ki2~MSKp?1tp=f6AdE~={R&NmKO!FRq^%J*wL z!>uf4@UU`z2L zcE3ZR$PXAb`zT4pBhm!=@l&+H?%a{Ndc-b|);&x{tN=^tTjD;4?*~kMWF3=tWG8=W*;>)`0fwUc0|xPLEO!j}R^Y8cpb)-a%zg$)QGFzrjzd%3{07pQd^pnL(Nw^%URO z?#A~%r73c^QKn8P?iR_saAd6>9;Qszc#>D1U!V%&14|OGH1*q=+bQ(W)bxS$ugnk!?dU``%gX3kRf%>J3jY@2;|)g{NK}OT2uav`mFbY;RG*g4pHYQ!u#Eri5sY8 z;uf=x5HZQ;@$TVT#EYueU};tl+^O~*ctLiJs3itW2J8s05K$ory&QAL1K* zl?lDsTfryuRrsAgvbg(8A41i61TISX2KtM?0o&{6fNJP&a6joXSTI|Yz&5Dk^Zf7O z*S;Mg#@&h{!nRE#dTQwr;V(3a5w{ERfNR;fxlSLVC(>5dgmQTQ~HYfnR{v}az z+z#AWHy1B?sYUEcS%|OAIRN+o!PI`oLHOC;;Kt5U z5FPmh-)NHu-i~O*UtrIO-S7~xqAH8n*(H%Es+~X#pts{5LtfyIo^>M>xRv;+pep<; zegxOx@56ew5QIVBmq2OdVmw8TB9cNr;*QU5fRLNvcsI|rpfxp?7&q7*_rdmnyT+>l z=wA)GJs1kkf6WE2cU;B;;*Wrgbtmzlh8M)>fr|(Yoj8KHW{tMF;WSHS(sGP{g z!;g){PrGc#-4$-(gKnkZkCoryC6QC{?&&3%vS2Y0`&bV2;d|ng|9AYoGasi9)B}&B zs<`}fFOW5(3qil`f_rzr4QxJyfdzSeKrh8Uz%wWgWM$Ui^%E-q)%XOo_9-L6(-H{F zrM5(ckqi;!n~BSMJK-<3B;)S=-Eqh5miQ`zZMg7D7`}qY!uE$RBtEUz0x63};8joJ z@y0w)TxE2BP;^Kcm&tVkT1l_**z3*U9F+qMBWX~SWDJbaT#(+y2wZ6#gX_Fp2gDBX zxW*?yI0Rh8k1v!ZX4_rFlluDMVeg0I`U%GPNj4H+WYHThiu1)?dL@J4^@Z5}swcR0 z_l?+=M@o2pmOWnevOk`n;s9#LDdM^X5ZJzE@%Z_J@h=x=0)r1Dz(mEVfV1lgdSAo9 zb+gfU)q&06^OFsD7KkO}TJ!NfiaiL6RoC!YM-uQO{_g-@?tyQ5WQm7Fbj6KwR^VF) zp9Cg)gRvd2nsA40Ihe`#kKot(tlcY?u6IiPGHLk7{jsL$?fR>;lb_I@{3rP?n&8d$ zQ?ldly;edR*|xBr)i$EsOB&*PAL>{g!{H(aI*01Nw}_o|Jx0_*3}6#(-=z{JDT<7H zUlv_omcrk<_!8@Q;2@hCL{jIH%lZAcKcjrz0e`qwy=a)TjA*^Ymr2szLIss%9oiIc zAX?g5O2MxiME`T+5H#ce!Z;i}xSn{vG@cMC3-P^Ax)Zts({Y~xB$+1YPSp6%!83~Z zxEjv`&u$uw4^SVDp#MW$(&rWFJos7o$LGgKhxT## zbDhJ{O;KTI&VJ13tw;&O7=RGQKXETm3#O{b!^ zM;+38$)13n?3fa-E-3>8|DP3cdsAw06yFmmPk!WHRvD)uy;6wY3jBwTqsn;boj zN1b$ZVtUtTu`TBwF!Nv6R?bpXWd}!eWf#9zW`(as!mO}Dq4=H(`#j?oW3z%!E?*co zx_(N&aIlIQW4G)Uv1EZMyRAAI?>Rh=*fX|}t$O&K6t5!4Y?fkDhi#}d9VJVJj=@Rz zQW*9Jy^^A`4VygK{wcsa8=-ia+2mJtyKbyW1YEXsh4 zr@{wVv2&iyrY_V}6A#wiX2gYuglvQi>vwM$d)lc=nEhZ?Wvuovs_Uk3O5yBH>cG6E z%o<~HhNV-6L1mlQe7941=1VHNf2*cM97^&y$QVg%W}%MQvvUrEM_ zU8lO=|9WWM1bOPjf*#aFcUk^4^-4(Z^)a7v_SU1;A6`wZ-290ukP}htYJX~0+yYAN#8?qK*G$BF zJeqkQd783xZX!xUN*Ps?QtF&hH_GANLQ1Q6HD&rO10*lcAVbR(*w;rBND&o6U99>* zI*$yd<|WBd*ZK{nHV6(dvMYPDn-lffgg8WXq1{-?Dg&F;q#|my)DtQBnzGo|EH>IS zl66rT%GVtJm1c{Y7KXfJRF=N4tXtTdFg{Q~ zjkzbsKUX9sYtd%LZ1`d}=5Pa3LV5_FuGM6|ZSTrtsg?>St~|wVvYF2MsdZuPHFh&= zrW|7xaj`JhHisQH=Q5MwyPg?<$+23wci7k&^VsGA<-(LNNtGdJ4bwF?Q`o%vHsd`l zpB0^0Oa#^2;lkqntVYWjhR|1Id{5tG5>DPHbkY@t)tj}*yGLdbS);xQdETkaoA0h{ z?#SuP{JX78v$8XzWLd+Wy%0;q0EQ6^BB`w(zpxi}USRLDSrnUJz*yL= zVq9yUGi$d*GiiRMc!cdcV*B_ghJy-B1?IvF!gX3Av;4vHN<36yW=v2 zfzOADUVQk%o;#4qs=bq^`uiub%Bo$+up#>v|)O-nRo zgp5eb>=oNAbAa6?fwJ{I1^#jC?^I01S_&-nX6-g@AsuRBg)@t;vbsUR9XKDDy3XRomNm~dzQ{+zsMaBs;VWD+ZxuBrKesq!a+TV<+U3q z!zDvl+ofvk=c`Gq$s$iyN5_w?O_|1C8pbk6b{Qp9QzaWm9}{j{=FRFS+fWhPXOd%$ zM65_XpQ)3N6*f(s!*1*LUFbJBgOpjQCA>WS8I?Vtfcj*m$!@})F%Hm(2|2lqSgDsp zMm0O)BS+MdyIP`IrB8BH`1S)##g+@yIED9A>xxa(txe9!=ho7!OkqaR`ol%v4;*@p>U0u*t}I(FfEeO ziMU9Z-OOUFzOH7hicgXC3x|`9SLQJ?18pmroC~byGDT6U<%LT9E;g)~zC|cm6p%Xi z7BLwbdx?+NUlY@Y^<OJkl-o+=e=WK%6Adwl%^YLIu*E39p zVGP@}q$jm#;|DTTZ7@?e#gcGnJu38j`jyFsT`L>b$x}u}y_v@H-u&+0T&Zk{A9Abo zi%^f+N?ytKAh{JXr1K+lX85Hd^8QIXe!lt`;a%-FjEmwcw&dn?HnEmr56muS!^iDs zC+}>a$|m2UlAkN{pL@~F*6KhisX>)|EZD@xpDbXUTNSC0E4hsNsLNo|8z1U~Y7r$= z59V9U3gmkaGG*QS3}f{sPhb=pMv@1fJr?S6JB9X9YLu@v$CivJA+5h2V?IWlCW$aP ziaO>>l^DKfX1LxbH^kziovLP{J8nZn`5_9#{e+?H+Ji;-nECFM(Pcym)l5jouw2~l zx- z^3SIZ;a`njPhDVI*$p{S6rt%zSQ+K98h-9fuw5#f>K4i#y!BCdXy(02<5Qcd<{^sw zU_~ANIlMo+E+&bcf8~nsN&j>r`<*fwwKqvv&}$BPVD)Eq(eg&Jo8dd*^!fX!+Y{1B zo=g^Hkvx>#V5~u{x^5%VybVN>4G`=s4P9#D6GQg!_ynU!`U4eu`ZVeAEmSysQaQPK zTsiT@@FO!l8i;!I(h{BNr7p@CQcG%!*HW72_mWprGRdWByM?(xmCbk%$K=_Lp`1r# z6S3!7m?sBcu`8Y&WT$TpWoJ}cu$Nb)ussX&sQG;tQ=7w;D7j_@cI|Vp=V7B4J}zN{C4F+o+~L6SS_*B zd#HIQ=22VHS20oEhlSmSoM*}%N0Ux{?3k`4v&n?UU~(f@$sYgmfH?H|i*W8ee@c@b zMrA&Wr1~_fP?{qYsh*OP%d>~H8fb4l(lSd_-69nBGcb}pZBxpVrlvxe?Hdo{4+iuPxnj2>ftlY zd2JnUJ4)h(+86WKo+0?oD;Ig?3PX9vhs6T_5xw#Ev+jVK*Vlk;fkQyq_p7*VY&kw* z%Tut>rWma7tHK^~aoF3t3qjHTf!LJz@z~Tp*D�ZrURQOJ6x@BJ4j{? zvEkb-!NS4afw-&z`)sO?6>D_Ch6iuMvMVj|gy9w-szedn^D3^#zz{cXeuND~iugEDBbfAUKlb5*639RC9*lPAYwo&nEN`f* z5x$4D!i&xx1|Jz2Flgm6@csT6USVjS>BnAAd9R&x%@t=?@;3Li0Y*XQn7!37bE_vD zz=l?W4FOTW<{brEZj@qsEcEg69vXO9%Rs=cWwGLf{=CpJhUV{VU4Yy~d8|H5fv4S% z!=@CDHa8Q`#U8En0;Bim1LOBm;9cB!Y|ErV%se9#dqbIEU2Tq=&%GYc8>py{O-L&N zU3IfCnP3Cn@hv*|<``vM*6s~ZNaR5Fi)~53lzGa#?T~P@M2In#tTir?00#X z*XQr#S?HeSsSMf%zTUaZOUfC=(`7Y5a*7N-Vz?1Lb^LhH;x+*I+p7@9eOvGy)4l-w zMsNIaA31Pm*ahCz@KfOK<`C>y*KydCj2XaZ3gFc|>u1gjRmP(p$Kl~G-T{4^3D`K5 zcresG1*8qI0+%XmcqPj`Fu#vD7Qek8u6J%S*h9|2d~ACXF;n*Ad#=~vRjG-1-X4G4 zXYOF))vV9>vpt)DO}|`x?wJg1@8N~`b;Gr|(nlqbx8DpjkH+!G`wd3lNv^|W!e)WF zGH!TQXcy4BZVfnnQ3aPJ-}5d;QRc?lEU$6eNAqx#SG>wmmf)O57B>E@GVejnLr|N< z0FV+7{KDsho$2Plh&IG$%lE^x-Wq~6B?e%#@?##4O~*{@tbodXH7soIS6=I~ChUwy zuzCH=d|rCDIl#X6W}pHsLA;_rc5_1+w()Bo7PMy`rcl|>TuDBc7ay(78@6*Zkg=bE z`ChT-*+eyf=`nd=+1%^EsU#g__t*_oyUxLn&h^62z0n1ht8>7&zDux4XEZ@~qg=pb zC}6%L5-?lSIY7hli7Avz;nfFC0lQSvz|FH&*pYsvSo6@Hz^q{$cCjae6$~HA^H?~Y zmw2j_w`=uHfC{$oR08(%oSrD)u9*tB+A%xOZ})V7ZM=w$KVyii9qfkRI}gFr8&M$D z@G1|S^8xqbrT~Ljf@NF2t@p-;SN4Tg`1QHSt<5O~Z`yd*b7J#9|+dj`Ec6If2S;eB9-@ zD?Z(HEePNF0sA<^hxY3ESIz=`P5|z8H2`%HTd?=a#<>6P0r>U$so+yD8jPw~jU9eygk3+N0{ZG@ z@Zzoy!``}o#)5WjGfVV}HMbm>1U{W)fbC5?a7yMCFZkScY?9tdYgQGkPtoiPG%t2!}HfnSiGw-pd&D6;wz-m!0zG$%qVk2i>1ry7MVmmiFV*{TK2G{iT%x~Jy<=x=EgDr;~@uSTO zxYf~Vn7Y$EkQP^py^uf6OM)g?jFJ&=*)?U5Y4{FgTP*_nB?tT8M%=)My}pIdySWu# zpFR^ed8UOsVAt_UbuV$j*+C$e^1#JwKVYk??ZDnG7=Alg6I5EL0@F#R_;*2zInv*c zLG48R6)ypw+f3r2Z)Sm3uZYj)qK~hx1cdd6G(oY z7K_Zu0Rh8v%J(|-_*b61$Acze zkx_*}JA4Cn{qtSk!4Dbu^XfGG;-X>rs8j{~?1eSpt=Vk6k5C&o?q>%M>VE~k4SRWt z{`)|)r!4OEIUL)2eHEs&U{7hIP*!`#hk9qsgpYiC9&9#ikL!{>6UmQW*{A77qrSGJ9i__8Mc0N(y*>y+>nL z7$aPFX*X~@i{iyMmEmUwjKj4zCgG(UZScaD-nhV5foN9hPHfR~0PZoGxZi9u?Cv`? zFgDs6w{$vqM?)CXq4!Q=A0|HsqlXi?zS3P#adsluz33o#eq4`tt!fwV z$(20bhSoRcW3T37Q?CW!`ETp6$#XcfJIc%O<7+bTI^H@wyt)bO)n5iC71$G1111oW zX$$ckpDzH%f!DCRaeVW!S(f;@(;8sKH#w~T*hnyK-2z_v-A!0_d?~)-;B{Ql8R0#q zi~uH|E`fcnj@TjP7rfghJIpt&Gv*mPU&1u(ro2$p-KAFuhPh&T7tQ*3oy4&EysVxycZc#j_~ z0ey>C;H4Ai;B#Fh@7XJMV~N%t#H8JG2*)HhJk(@9{$Q6M=(~RhZ`b)2P~7DTranLy zOS$3$x^2XG@4~N}7amQ(HHxp}KHZXVP%{I1 zIK=bva8uVOQSlRxxk<)o3hg@Et(Qu)LPkp1k84Z-8d0! z!M8bku_4i+<_853zr5HGxAJcWb1KBZMa~4Yns3H~?N{R~uEYVb{w5YGx0dJPx0yFM zx&a&>xB|Og<;~Nmti+50V$HWXmtb`+3Bd7`Ha_IU9dN<>I99q`8-$N6(-mG z`3vk>8U1|WUaOweqiz+f*>%Y8K3|p3JAay)v&i6=(~lz(obBxZTR0pm;emx$=Zg9 z4$vYE_iK`hG@qzF;YvI$)x&97dt#2dF98p?f~BgXaI-VU#7r}NY~({TJfJXxFt6NA zcoaquRfkvNhsw_VxA)OV=ZkcGP#XW^>x32^1JZe1I>-On$ouX3NSiaPZ>=l)WNHdk zaAz+6Xs$g!-TRUVIfU}{v3LA&n_uz+?vECzW10LbPb>sA?-g0M&5Om)QyN6;-i;Q& z&8^{cdoPP>HoO`FY; zZ8A;|SWlYWIY2ag+(oMDH9X!{5P?nKt`$+zOxuRr!CHEeI0SkN< o{;J?V`Ym*6$tc;il3y?E{LARmCU=u>qmYyQ?U#f)iEXj}4=-EYKmY&$ literal 0 HcmV?d00001