added kmeans clustering
parent
e2b6e45cc6
commit
45195943d7
|
@ -17,7 +17,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 21,
|
||||||
"id": "67503952-9074-4cdb-9d7e-d9142f7c319c",
|
"id": "67503952-9074-4cdb-9d7e-d9142f7c319c",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
|
@ -216,7 +216,7 @@
|
||||||
"[5 rows x 28 columns]"
|
"[5 rows x 28 columns]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 14,
|
"execution_count": 21,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
|
@ -271,7 +271,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 20,
|
"execution_count": 41,
|
||||||
"id": "38eb4f87-ca3c-4ecf-a8ca-29422822d933",
|
"id": "38eb4f87-ca3c-4ecf-a8ca-29422822d933",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
|
@ -282,7 +282,7 @@
|
||||||
"Training fold 0 for 20 epochs\n",
|
"Training fold 0 for 20 epochs\n",
|
||||||
"Train samples:\t267\n",
|
"Train samples:\t267\n",
|
||||||
"Test samples:\t30\n",
|
"Test samples:\t30\n",
|
||||||
"Accuracy of fold 0: 0.8666666666666667\n",
|
"Accuracy of fold 0: 0.9\n",
|
||||||
"Training fold 1 for 20 epochs\n",
|
"Training fold 1 for 20 epochs\n",
|
||||||
"Train samples:\t267\n",
|
"Train samples:\t267\n",
|
||||||
"Test samples:\t30\n",
|
"Test samples:\t30\n",
|
||||||
|
@ -294,11 +294,11 @@
|
||||||
"Training fold 3 for 20 epochs\n",
|
"Training fold 3 for 20 epochs\n",
|
||||||
"Train samples:\t267\n",
|
"Train samples:\t267\n",
|
||||||
"Test samples:\t30\n",
|
"Test samples:\t30\n",
|
||||||
"Accuracy of fold 3: 0.9333333333333333\n",
|
"Accuracy of fold 3: 0.9\n",
|
||||||
"Training fold 4 for 20 epochs\n",
|
"Training fold 4 for 20 epochs\n",
|
||||||
"Train samples:\t267\n",
|
"Train samples:\t267\n",
|
||||||
"Test samples:\t30\n",
|
"Test samples:\t30\n",
|
||||||
"Accuracy of fold 4: 0.8666666666666667\n",
|
"Accuracy of fold 4: 0.9\n",
|
||||||
"Training fold 5 for 20 epochs\n",
|
"Training fold 5 for 20 epochs\n",
|
||||||
"Train samples:\t267\n",
|
"Train samples:\t267\n",
|
||||||
"Test samples:\t30\n",
|
"Test samples:\t30\n",
|
||||||
|
@ -306,20 +306,20 @@
|
||||||
"Training fold 6 for 20 epochs\n",
|
"Training fold 6 for 20 epochs\n",
|
||||||
"Train samples:\t267\n",
|
"Train samples:\t267\n",
|
||||||
"Test samples:\t30\n",
|
"Test samples:\t30\n",
|
||||||
"Accuracy of fold 6: 0.8666666666666667\n",
|
"Accuracy of fold 6: 0.7666666666666667\n",
|
||||||
"Training fold 7 for 20 epochs\n",
|
"Training fold 7 for 20 epochs\n",
|
||||||
"Train samples:\t268\n",
|
"Train samples:\t268\n",
|
||||||
"Test samples:\t29\n",
|
"Test samples:\t29\n",
|
||||||
"Accuracy of fold 7: 0.896551724137931\n",
|
"Accuracy of fold 7: 0.8275862068965517\n",
|
||||||
"Training fold 8 for 20 epochs\n",
|
"Training fold 8 for 20 epochs\n",
|
||||||
"Train samples:\t268\n",
|
"Train samples:\t268\n",
|
||||||
"Test samples:\t29\n",
|
"Test samples:\t29\n",
|
||||||
"Accuracy of fold 8: 0.7931034482758621\n",
|
"Accuracy of fold 8: 0.7586206896551724\n",
|
||||||
"Training fold 9 for 20 epochs\n",
|
"Training fold 9 for 20 epochs\n",
|
||||||
"Train samples:\t268\n",
|
"Train samples:\t268\n",
|
||||||
"Test samples:\t29\n",
|
"Test samples:\t29\n",
|
||||||
"Accuracy of fold 9: 0.7931034482758621\n",
|
"Accuracy of fold 9: 0.7586206896551724\n",
|
||||||
"Avg accuracy 0.8582758620689654\n"
|
"Avg accuracy 0.837816091954023\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -371,6 +371,185 @@
|
||||||
"avg_accuracy = sum(accuracies) / len(accuracies)\n",
|
"avg_accuracy = sum(accuracies) / len(accuracies)\n",
|
||||||
"print(f'Avg accuracy {avg_accuracy}')"
|
"print(f'Avg accuracy {avg_accuracy}')"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 42,
|
||||||
|
"id": "95215693-47c9-4202-92f5-efbc65bc32c9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Training fold 0 for 20 epochs\n",
|
||||||
|
"Train samples:\t237\n",
|
||||||
|
"Test samples:\t60\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
|
||||||
|
" warnings.warn(\n",
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
||||||
|
" warnings.warn(\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1\n",
|
||||||
|
" 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1]\n",
|
||||||
|
"Accuracy of fold 0: 0.5833333333333334\n",
|
||||||
|
"Training fold 1 for 20 epochs\n",
|
||||||
|
"Train samples:\t237\n",
|
||||||
|
"Test samples:\t60\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
|
||||||
|
" warnings.warn(\n",
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
||||||
|
" warnings.warn(\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1\n",
|
||||||
|
" 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1]\n",
|
||||||
|
"Accuracy of fold 1: 0.5\n",
|
||||||
|
"Training fold 2 for 20 epochs\n",
|
||||||
|
"Train samples:\t238\n",
|
||||||
|
"Test samples:\t59\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
|
||||||
|
" warnings.warn(\n",
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
||||||
|
" warnings.warn(\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0\n",
|
||||||
|
" 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0]\n",
|
||||||
|
"Accuracy of fold 2: 0.559322033898305\n",
|
||||||
|
"Training fold 3 for 20 epochs\n",
|
||||||
|
"Train samples:\t238\n",
|
||||||
|
"Test samples:\t59\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
|
||||||
|
" warnings.warn(\n",
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
||||||
|
" warnings.warn(\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1\n",
|
||||||
|
" 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1]\n",
|
||||||
|
"Accuracy of fold 3: 0.576271186440678\n",
|
||||||
|
"Training fold 4 for 20 epochs\n",
|
||||||
|
"Train samples:\t238\n",
|
||||||
|
"Test samples:\t59\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
|
||||||
|
" warnings.warn(\n",
|
||||||
|
"C:\\Users\\maxwi\\anaconda3\\Lib\\site-packages\\sklearn\\cluster\\_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.\n",
|
||||||
|
" warnings.warn(\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1\n",
|
||||||
|
" 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1]\n",
|
||||||
|
"Accuracy of fold 4: 0.5254237288135594\n",
|
||||||
|
"Avg accuracy 0.5488700564971751\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from sklearn.cluster import KMeans\n",
|
||||||
|
"\n",
|
||||||
|
"# number of components extracted from the pca\n",
|
||||||
|
"n_features = 10\n",
|
||||||
|
"\n",
|
||||||
|
"k_folds = 5\n",
|
||||||
|
"\n",
|
||||||
|
"# used to split the dataset into k folds\n",
|
||||||
|
"kf = KFold(n_splits=k_folds)\n",
|
||||||
|
"\n",
|
||||||
|
"accuracies = []\n",
|
||||||
|
"for i, (train_idx, test_idx) in enumerate(kf.split(X[numeric_columns])):\n",
|
||||||
|
" print(f'Training fold {i} for {epochs} epochs')\n",
|
||||||
|
"\n",
|
||||||
|
" # extract train and test data from the cleaned dataset\n",
|
||||||
|
" X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]\n",
|
||||||
|
" y_train, y_test = y[train_idx], y[test_idx]\n",
|
||||||
|
"\n",
|
||||||
|
" print(f'Train samples:\\t{len(X_train)}')\n",
|
||||||
|
" print(f'Test samples:\\t{len(X_test)}')\n",
|
||||||
|
"\n",
|
||||||
|
" # do pca based on the train data of the given fold to extract 'n_features'\n",
|
||||||
|
" #pca = decomposition.PCA(n_components=n_features)\n",
|
||||||
|
" #pca.fit(X_train)\n",
|
||||||
|
" #X_train = pca.transform(X_train)\n",
|
||||||
|
"\n",
|
||||||
|
" model = KMeans(n_clusters=2)\n",
|
||||||
|
" model.fit(X_train)\n",
|
||||||
|
"\n",
|
||||||
|
" #X_test = pca.transform(X_test)\n",
|
||||||
|
" y_pred = model.predict(X_test)\n",
|
||||||
|
" print(y_pred)\n",
|
||||||
|
" \n",
|
||||||
|
"\n",
|
||||||
|
" # calculate the accuracy of the train data for the current fold\n",
|
||||||
|
" accuracy1 = sum(y_pred == y_test)[0] / len(y_pred)\n",
|
||||||
|
" accuracy2 = sum(y_pred != y_test)[0] / len(y_pred)\n",
|
||||||
|
" accuracy = max(accuracy1, accuracy2)\n",
|
||||||
|
" accuracies.append(accuracy)\n",
|
||||||
|
" print(f'Accuracy of fold {i}: {accuracy}')\n",
|
||||||
|
"\n",
|
||||||
|
"# calculate the average accuracy over all folds\n",
|
||||||
|
"avg_accuracy = sum(accuracies) / len(accuracies)\n",
|
||||||
|
"print(f'Avg accuracy {avg_accuracy}')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "880302e4-82c1-47b9-9fe3-cb3567511639",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
|
Loading…
Reference in New Issue