added first experiments (small neural network using pca output)
parent
cc2ec24052
commit
8e80949a38
|
@ -0,0 +1,336 @@
|
||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"id": "initial_id",
|
||||||
|
"metadata": {
|
||||||
|
"jupyter": {
|
||||||
|
"is_executing": true
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import pandas as pd"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 25,
|
||||||
|
"id": "67503952-9074-4cdb-9d7e-d9142f7c319c",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div>\n",
|
||||||
|
"<style scoped>\n",
|
||||||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||||||
|
" vertical-align: middle;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe tbody tr th {\n",
|
||||||
|
" vertical-align: top;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe thead th {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" }\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||||||
|
" <thead>\n",
|
||||||
|
" <tr style=\"text-align: right;\">\n",
|
||||||
|
" <th></th>\n",
|
||||||
|
" <th>age</th>\n",
|
||||||
|
" <th>sex</th>\n",
|
||||||
|
" <th>cp</th>\n",
|
||||||
|
" <th>trestbps</th>\n",
|
||||||
|
" <th>chol</th>\n",
|
||||||
|
" <th>fbs</th>\n",
|
||||||
|
" <th>restecg</th>\n",
|
||||||
|
" <th>thalach</th>\n",
|
||||||
|
" <th>exang</th>\n",
|
||||||
|
" <th>oldpeak</th>\n",
|
||||||
|
" <th>slope</th>\n",
|
||||||
|
" <th>ca</th>\n",
|
||||||
|
" <th>thal</th>\n",
|
||||||
|
" <th>goal</th>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </thead>\n",
|
||||||
|
" <tbody>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>63</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>145</td>\n",
|
||||||
|
" <td>233</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" <td>150</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>2.3</td>\n",
|
||||||
|
" <td>3</td>\n",
|
||||||
|
" <td>0.0</td>\n",
|
||||||
|
" <td>6.0</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1</th>\n",
|
||||||
|
" <td>67</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>4</td>\n",
|
||||||
|
" <td>160</td>\n",
|
||||||
|
" <td>286</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" <td>108</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>1.5</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" <td>3.0</td>\n",
|
||||||
|
" <td>3.0</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>2</th>\n",
|
||||||
|
" <td>67</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>4</td>\n",
|
||||||
|
" <td>120</td>\n",
|
||||||
|
" <td>229</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" <td>129</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>2.6</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" <td>2.0</td>\n",
|
||||||
|
" <td>7.0</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>3</th>\n",
|
||||||
|
" <td>37</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>3</td>\n",
|
||||||
|
" <td>130</td>\n",
|
||||||
|
" <td>250</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>187</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>3.5</td>\n",
|
||||||
|
" <td>3</td>\n",
|
||||||
|
" <td>0.0</td>\n",
|
||||||
|
" <td>3.0</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>4</th>\n",
|
||||||
|
" <td>41</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" <td>130</td>\n",
|
||||||
|
" <td>204</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>2</td>\n",
|
||||||
|
" <td>172</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" <td>1.4</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>0.0</td>\n",
|
||||||
|
" <td>3.0</td>\n",
|
||||||
|
" <td>0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </tbody>\n",
|
||||||
|
"</table>\n",
|
||||||
|
"</div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
" age sex cp trestbps chol fbs restecg thalach exang oldpeak slope \\\n",
|
||||||
|
"0 63 1 1 145 233 1 2 150 0 2.3 3 \n",
|
||||||
|
"1 67 1 4 160 286 0 2 108 1 1.5 2 \n",
|
||||||
|
"2 67 1 4 120 229 0 2 129 1 2.6 2 \n",
|
||||||
|
"3 37 1 3 130 250 0 0 187 0 3.5 3 \n",
|
||||||
|
"4 41 0 2 130 204 0 2 172 0 1.4 1 \n",
|
||||||
|
"\n",
|
||||||
|
" ca thal goal \n",
|
||||||
|
"0 0.0 6.0 0 \n",
|
||||||
|
"1 3.0 3.0 2 \n",
|
||||||
|
"2 2.0 7.0 1 \n",
|
||||||
|
"3 0.0 3.0 0 \n",
|
||||||
|
"4 0.0 3.0 0 "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 25,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"df = pd.read_csv('./data/dataset_cleaned.csv')\n",
|
||||||
|
"df.dropna(inplace=True)\n",
|
||||||
|
"df.head()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 60,
|
||||||
|
"id": "8fa945ef-34d4-4e4c-a1cd-f1e1e6da79e7",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[0],\n",
|
||||||
|
" [1],\n",
|
||||||
|
" [1],\n",
|
||||||
|
" [0],\n",
|
||||||
|
" [0]], dtype=int64)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 60,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# extract all columns except 'goal' --> X\n",
|
||||||
|
"X = df.loc[:, df.columns != 'goal']\n",
|
||||||
|
"# extract only the column 'goal' --> y\n",
|
||||||
|
"y = df.loc[:, 'goal']\n",
|
||||||
|
"\n",
|
||||||
|
"# add new axis to y, new shape: (n, 1)\n",
|
||||||
|
"y = y.to_numpy()\n",
|
||||||
|
"y = y.reshape((len(y),1))\n",
|
||||||
|
"\n",
|
||||||
|
"# binarize y\n",
|
||||||
|
"y[y>0] = 1"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 91,
|
||||||
|
"id": "2bbee865-c000-43da-84d9-ce7e04874110",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def get_model(n_features):\n",
|
||||||
|
" model = tf.keras.models.Sequential([\n",
|
||||||
|
" tf.keras.layers.InputLayer(shape=(n_features,)),\n",
|
||||||
|
" tf.keras.layers.Dense(30, activation='relu'),\n",
|
||||||
|
" tf.keras.layers.Dense(30, activation='relu'),\n",
|
||||||
|
" tf.keras.layers.Dense(30, activation='relu'),\n",
|
||||||
|
" tf.keras.layers.Dense(1, activation='sigmoid')\n",
|
||||||
|
" ], name='test')\n",
|
||||||
|
" model.compile(optimizer=tf.keras.optimizers.Adam(), \n",
|
||||||
|
" loss=tf.keras.losses.BinaryCrossentropy())\n",
|
||||||
|
" return model"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 97,
|
||||||
|
"id": "38eb4f87-ca3c-4ecf-a8ca-29422822d933",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Training fold 0 for 5 epochs\n",
|
||||||
|
"Train samples:\t237\n",
|
||||||
|
"Test samples:\t60\n",
|
||||||
|
"Accuracy of fold 0: 0.6166666666666667\n",
|
||||||
|
"Training fold 1 for 5 epochs\n",
|
||||||
|
"Train samples:\t237\n",
|
||||||
|
"Test samples:\t60\n",
|
||||||
|
"Accuracy of fold 1: 0.75\n",
|
||||||
|
"Training fold 2 for 5 epochs\n",
|
||||||
|
"Train samples:\t238\n",
|
||||||
|
"Test samples:\t59\n",
|
||||||
|
"Accuracy of fold 2: 0.6949152542372882\n",
|
||||||
|
"Training fold 3 for 5 epochs\n",
|
||||||
|
"Train samples:\t238\n",
|
||||||
|
"Test samples:\t59\n",
|
||||||
|
"Accuracy of fold 3: 0.7457627118644068\n",
|
||||||
|
"Training fold 4 for 5 epochs\n",
|
||||||
|
"Train samples:\t238\n",
|
||||||
|
"Test samples:\t59\n",
|
||||||
|
"Accuracy of fold 4: 0.6610169491525424\n",
|
||||||
|
"Avg accuracy 0.6936723163841808\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from sklearn.model_selection import KFold\n",
|
||||||
|
"from sklearn import decomposition\n",
|
||||||
|
"import tensorflow as tf\n",
|
||||||
|
"\n",
|
||||||
|
"# number of components extracted from the pca\n",
|
||||||
|
"n_features = 5 \n",
|
||||||
|
"\n",
|
||||||
|
"epochs = 5\n",
|
||||||
|
"\n",
|
||||||
|
"# used to split the dataset into k folds\n",
|
||||||
|
"kf = KFold(n_splits=5)\n",
|
||||||
|
"\n",
|
||||||
|
"accuracies = []\n",
|
||||||
|
"for i, (train_idx, test_idx) in enumerate(kf.split(X)):\n",
|
||||||
|
" print(f'Training fold {i} for {epochs} epochs')\n",
|
||||||
|
"\n",
|
||||||
|
" # extract train and test data from the cleaned dataset\n",
|
||||||
|
" X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]\n",
|
||||||
|
" y_train, y_test = y[train_idx], y[test_idx]\n",
|
||||||
|
"\n",
|
||||||
|
" print(f'Train samples:\\t{len(X_train)}')\n",
|
||||||
|
" print(f'Test samples:\\t{len(X_test)}')\n",
|
||||||
|
"\n",
|
||||||
|
" # do pca based on the train data of the given fold to extract 'n_features'\n",
|
||||||
|
" pca = decomposition.PCA(n_components=n_features)\n",
|
||||||
|
" pca.fit(X_train)\n",
|
||||||
|
" X_train = pca.transform(X_train)\n",
|
||||||
|
"\n",
|
||||||
|
" # train the model using the components extracted from pca\n",
|
||||||
|
" model = get_model(n_features)\n",
|
||||||
|
" model.fit(X_train, y_train, epochs=epochs, verbose=0)\n",
|
||||||
|
"\n",
|
||||||
|
" # transform test data using on the pca model trained on the train data\n",
|
||||||
|
" X_test = pca.transform(X_test)\n",
|
||||||
|
" y_pred = model.predict(X_test, verbose=0)\n",
|
||||||
|
" y_pred = y_pred > 0.5\n",
|
||||||
|
"\n",
|
||||||
|
" # calculate the accuracy of the train data for the current fold\n",
|
||||||
|
" accuracy = sum(y_pred == y_test)[0] / len(y_pred)\n",
|
||||||
|
" accuracies.append(accuracy)\n",
|
||||||
|
" print(f'Accuracy of fold {i}: {accuracy}')\n",
|
||||||
|
"\n",
|
||||||
|
"# calculate the average accuracy over all folds\n",
|
||||||
|
"avg_accuracy = sum(accuracies) / len(accuracies)\n",
|
||||||
|
"print(f'Avg accuracy {avg_accuracy}')"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.7"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
|
@ -2,7 +2,7 @@
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 120,
|
"execution_count": 3,
|
||||||
"id": "37d611da-6f56-46d8-905a-62026750150c",
|
"id": "37d611da-6f56-46d8-905a-62026750150c",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"tags": []
|
"tags": []
|
||||||
|
@ -25,7 +25,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 127,
|
"execution_count": 6,
|
||||||
"id": "ae26378f-c104-4664-a313-ed8d9edfed42",
|
"id": "ae26378f-c104-4664-a313-ed8d9edfed42",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"tags": []
|
"tags": []
|
||||||
|
@ -174,7 +174,7 @@
|
||||||
"4 0.0 3.0 0 "
|
"4 0.0 3.0 0 "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 127,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
|
@ -186,6 +186,16 @@
|
||||||
"df.head()"
|
"df.head()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"id": "feef6121-af85-4bd5-a04f-f2ff38b3c556",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# df.to_csv('./data/dataset_cleaned.csv', index=False)"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 128,
|
"execution_count": 128,
|
||||||
|
@ -496,7 +506,7 @@
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.11.5"
|
"version": "3.11.7"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
Loading…
Reference in New Issue