From cc2ec240525dc1594895398632044721975d22d2 Mon Sep 17 00:00:00 2001 From: mahehsma Date: Wed, 8 May 2024 08:48:17 +0200 Subject: [PATCH] first commit --- Data Cleaning_05_04_2024.ipynb | 22424 +++++++++++++++++++++++++++++++ Exploration.ipynb | 504 + 2 files changed, 22928 insertions(+) create mode 100644 Data Cleaning_05_04_2024.ipynb create mode 100644 Exploration.ipynb diff --git a/Data Cleaning_05_04_2024.ipynb b/Data Cleaning_05_04_2024.ipynb new file mode 100644 index 0000000..2eb416f --- /dev/null +++ b/Data Cleaning_05_04_2024.ipynb @@ -0,0 +1,22424 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e18a679f", + "metadata": {}, + "source": [ + "## Import Python libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4922164f", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import ydata_profiling\n", + "#from pandas_profiling import ProfileReport\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "72caaa8b", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [] + }, + { + "cell_type": "markdown", + "id": "dfe3a57a", + "metadata": {}, + "source": [ + "## Load Data (Breast Cancer Dataset)\n", + "### Sample code number: Unique identifier for each tissue sample.\n", + "### Clump Thickness: Assessment of the thickness of tumor cell clusters (1 - 10).\n", + "Uniformity of Cell Size: Uniformity in the size of tumor cells (1 - 10).\n", + "Uniformity of Cell Shape: Uniformity in the shape of tumor cells (1 - 10).\n", + "Marginal Adhesion: Degree of adhesion of tumor cells to surrounding tissue (1 - 10).\n", + "Single Epithelial Cell Size: Size of individual tumor cells (1 - 10).\n", + "Bare Nuclei: Presence of nuclei without surrounding cytoplasm (1 - 10).\n", + "Bland Chromatin: Assessment of chromatin structure in tumor cells (1 - 10).\n", + "Normal Nucleoli: Presence of normal-looking nucleoli in tumor cells (1 - 10).\n", + "Mitoses: Frequency of mitotic cell divisions (1 - 10).\n", + "Class: Classification of tumor type (2 for benign, 4 for malignant)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bd9a55aa", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: './breast-cancer-wisconsin.data'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[5], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m url \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m./breast-cancer-wisconsin.data\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2\u001b[0m columns \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSample code number\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mClump Thickness\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUniformity of Cell Size\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUniformity of Cell Shape\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 3\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMarginal Adhesion\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSingle Epithelial Cell Size\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mBare Nuclei\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mBland Chromatin\u001b[39m\u001b[38;5;124m'\u001b[39m, \n\u001b[1;32m 4\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mNormal Nucleoli\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMitoses\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mClass\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[0;32m----> 5\u001b[0m df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(url, names\u001b[38;5;241m=\u001b[39mcolumns)\n", + "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/pandas/io/parsers/readers.py:912\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m 899\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m 900\u001b[0m dialect,\n\u001b[1;32m 901\u001b[0m delimiter,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 908\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[1;32m 909\u001b[0m )\n\u001b[1;32m 910\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m--> 912\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _read(filepath_or_buffer, kwds)\n", + "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/pandas/io/parsers/readers.py:577\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 574\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 576\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 577\u001b[0m parser \u001b[38;5;241m=\u001b[39m TextFileReader(filepath_or_buffer, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[1;32m 579\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[1;32m 580\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", + "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1407\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 1404\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 1406\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1407\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_engine(f, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mengine)\n", + "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1661\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m 1659\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[1;32m 1660\u001b[0m mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1661\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m get_handle(\n\u001b[1;32m 1662\u001b[0m f,\n\u001b[1;32m 1663\u001b[0m mode,\n\u001b[1;32m 1664\u001b[0m encoding\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mencoding\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[1;32m 1665\u001b[0m compression\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcompression\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[1;32m 1666\u001b[0m memory_map\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmemory_map\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m),\n\u001b[1;32m 1667\u001b[0m is_text\u001b[38;5;241m=\u001b[39mis_text,\n\u001b[1;32m 1668\u001b[0m errors\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mencoding_errors\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstrict\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 1669\u001b[0m storage_options\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstorage_options\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m),\n\u001b[1;32m 1670\u001b[0m )\n\u001b[1;32m 1671\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1672\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n", + "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/pandas/io/common.py:859\u001b[0m, in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 854\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 855\u001b[0m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[1;32m 856\u001b[0m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[1;32m 857\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[1;32m 858\u001b[0m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[0;32m--> 859\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(\n\u001b[1;32m 860\u001b[0m handle,\n\u001b[1;32m 861\u001b[0m ioargs\u001b[38;5;241m.\u001b[39mmode,\n\u001b[1;32m 862\u001b[0m encoding\u001b[38;5;241m=\u001b[39mioargs\u001b[38;5;241m.\u001b[39mencoding,\n\u001b[1;32m 863\u001b[0m errors\u001b[38;5;241m=\u001b[39merrors,\n\u001b[1;32m 864\u001b[0m newline\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 865\u001b[0m )\n\u001b[1;32m 866\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 867\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[1;32m 868\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: './breast-cancer-wisconsin.data'" + ] + } + ], + "source": [ + "url = \"./breast-cancer-wisconsin.data\"\n", + "columns = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',\n", + " 'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', \n", + " 'Normal Nucleoli', 'Mitoses', 'Class']\n", + "df = pd.read_csv(url, names=columns)" + ] + }, + { + "cell_type": "markdown", + "id": "3be5a2e3", + "metadata": {}, + "source": [ + "## Show data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "28791c54", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sample code numberClump ThicknessUniformity of Cell SizeUniformity of Cell ShapeMarginal AdhesionSingle Epithelial Cell SizeBare NucleiBland ChromatinNormal NucleoliMitosesClass
010000255111213112
1100294554457103212
210154253111223112
310162776881343712
410170234113213112
\n", + "
" + ], + "text/plain": [ + " Sample code number Clump Thickness Uniformity of Cell Size \\\n", + "0 1000025 5 1 \n", + "1 1002945 5 4 \n", + "2 1015425 3 1 \n", + "3 1016277 6 8 \n", + "4 1017023 4 1 \n", + "\n", + " Uniformity of Cell Shape Marginal Adhesion Single Epithelial Cell Size \\\n", + "0 1 1 2 \n", + "1 4 5 7 \n", + "2 1 1 2 \n", + "3 8 1 3 \n", + "4 1 3 2 \n", + "\n", + " Bare Nuclei Bland Chromatin Normal Nucleoli Mitoses Class \n", + "0 1 3 1 1 2 \n", + "1 10 3 2 1 2 \n", + "2 2 3 1 1 2 \n", + "3 4 3 7 1 2 \n", + "4 1 3 1 1 2 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "90314305", + "metadata": {}, + "source": [ + "## Generate Report with ydata_profiling" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2053a002", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: ipywidgets in /home/mahehsma/anaconda3/lib/python3.11/site-packages (8.0.4)\n", + "Requirement already satisfied: ipykernel>=4.5.1 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipywidgets) (6.25.0)\n", + "Requirement already satisfied: ipython>=6.1.0 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipywidgets) (8.15.0)\n", + "Requirement already satisfied: traitlets>=4.3.1 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipywidgets) (5.7.1)\n", + "Requirement already satisfied: widgetsnbextension~=4.0 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipywidgets) (4.0.5)\n", + "Requirement already satisfied: jupyterlab-widgets~=3.0 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipywidgets) (3.0.5)\n", + "Requirement already satisfied: comm>=0.1.1 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (0.1.2)\n", + "Requirement already satisfied: debugpy>=1.6.5 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (1.6.7)\n", + "Requirement already satisfied: jupyter-client>=6.1.12 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (7.4.9)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (5.3.0)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (0.1.6)\n", + "Requirement already satisfied: nest-asyncio in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (1.5.6)\n", + "Requirement already satisfied: packaging in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (23.1)\n", + "Requirement already satisfied: psutil in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (5.9.0)\n", + "Requirement already satisfied: pyzmq>=20 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (23.2.0)\n", + "Requirement already satisfied: tornado>=6.1 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipykernel>=4.5.1->ipywidgets) (6.3.2)\n", + "Requirement already satisfied: backcall in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipython>=6.1.0->ipywidgets) (0.2.0)\n", + "Requirement already satisfied: decorator in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipython>=6.1.0->ipywidgets) (5.1.1)\n", + "Requirement already satisfied: jedi>=0.16 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipython>=6.1.0->ipywidgets) (0.18.1)\n", + "Requirement already satisfied: pickleshare in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipython>=6.1.0->ipywidgets) (0.7.5)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipython>=6.1.0->ipywidgets) (3.0.36)\n", + "Requirement already satisfied: pygments>=2.4.0 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipython>=6.1.0->ipywidgets) (2.15.1)\n", + "Requirement already satisfied: stack-data in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipython>=6.1.0->ipywidgets) (0.2.0)\n", + "Requirement already satisfied: pexpect>4.3 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from ipython>=6.1.0->ipywidgets) (4.8.0)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.3)\n", + "Requirement already satisfied: entrypoints in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (0.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (2.8.2)\n", + "Requirement already satisfied: platformdirs>=2.5 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel>=4.5.1->ipywidgets) (3.10.0)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets) (0.2.5)\n", + "Requirement already satisfied: executing in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (0.8.3)\n", + "Requirement already satisfied: asttokens in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.0.5)\n", + "Requirement already satisfied: pure-eval in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (0.2.2)\n", + "Requirement already satisfied: six>=1.5 in /home/mahehsma/anaconda3/lib/python3.11/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (1.16.0)\n" + ] + }, + { + "ename": "NameError", + "evalue": "name 'df' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[10], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m get_ipython()\u001b[38;5;241m.\u001b[39msystem(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpip install ipywidgets\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mydata_profiling\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ProfileReport\n\u001b[0;32m----> 4\u001b[0m profile \u001b[38;5;241m=\u001b[39m ProfileReport(df, title\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mProfiling Report\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 6\u001b[0m profile\u001b[38;5;241m.\u001b[39mto_notebook_iframe()\n", + "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined" + ] + } + ], + "source": [ + "!pip install ipywidgets\n", + "from ydata_profiling import ProfileReport\n", + "\n", + "profile = ProfileReport(df, title=\"Profiling Report\")\n", + "\n", + "profile.to_notebook_iframe()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b642b1f3-4720-4028-805f-2a8e88958f41", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting ucimlrepo\n", + " Obtaining dependency information for ucimlrepo from https://files.pythonhosted.org/packages/22/47/9350b2eeeaef8c0fd3ec3505c8a0481b576845b3df0d71c76f989c23d3c6/ucimlrepo-0.0.6-py3-none-any.whl.metadata\n", + " Downloading ucimlrepo-0.0.6-py3-none-any.whl.metadata (5.3 kB)\n", + "Downloading ucimlrepo-0.0.6-py3-none-any.whl (8.0 kB)\n", + "Installing collected packages: ucimlrepo\n", + "Successfully installed ucimlrepo-0.0.6\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install ucimlrepo" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cf67e63c-778b-4bb0-b48b-d50bc5fd2cba", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'uci_id': 45, 'name': 'Heart Disease', 'repository_url': 'https://archive.ics.uci.edu/dataset/45/heart+disease', 'data_url': 'https://archive.ics.uci.edu/static/public/45/data.csv', 'abstract': '4 databases: Cleveland, Hungary, Switzerland, and the VA Long Beach', 'area': 'Health and Medicine', 'tasks': ['Classification'], 'characteristics': ['Multivariate'], 'num_instances': 303, 'num_features': 13, 'feature_types': ['Categorical', 'Integer', 'Real'], 'demographics': ['Age', 'Sex'], 'target_col': ['num'], 'index_col': None, 'has_missing_values': 'yes', 'missing_values_symbol': 'NaN', 'year_of_dataset_creation': 1989, 'last_updated': 'Fri Nov 03 2023', 'dataset_doi': '10.24432/C52P4X', 'creators': ['Andras Janosi', 'William Steinbrunn', 'Matthias Pfisterer', 'Robert Detrano'], 'intro_paper': {'title': 'International application of a new probability algorithm for the diagnosis of coronary artery disease.', 'authors': 'R. Detrano, A. Jánosi, W. Steinbrunn, M. Pfisterer, J. Schmid, S. Sandhu, K. Guppy, S. Lee, V. Froelicher', 'published_in': 'American Journal of Cardiology', 'year': 1989, 'url': 'https://www.semanticscholar.org/paper/a7d714f8f87bfc41351eb5ae1e5472f0ebbe0574', 'doi': None}, 'additional_info': {'summary': 'This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them. In particular, the Cleveland database is the only one that has been used by ML researchers to date. The \"goal\" field refers to the presence of heart disease in the patient. It is integer valued from 0 (no presence) to 4. Experiments with the Cleveland database have concentrated on simply attempting to distinguish presence (values 1,2,3,4) from absence (value 0). \\n \\nThe names and social security numbers of the patients were recently removed from the database, replaced with dummy values.\\n\\nOne file has been \"processed\", that one containing the Cleveland database. All four unprocessed files also exist in this directory.\\n\\nTo see Test Costs (donated by Peter Turney), please see the folder \"Costs\" ', 'purpose': None, 'funded_by': None, 'instances_represent': None, 'recommended_data_splits': None, 'sensitive_data': None, 'preprocessing_description': None, 'variable_info': 'Only 14 attributes used:\\r\\n 1. #3 (age) \\r\\n 2. #4 (sex) \\r\\n 3. #9 (cp) \\r\\n 4. #10 (trestbps) \\r\\n 5. #12 (chol) \\r\\n 6. #16 (fbs) \\r\\n 7. #19 (restecg) \\r\\n 8. #32 (thalach) \\r\\n 9. #38 (exang) \\r\\n 10. #40 (oldpeak) \\r\\n 11. #41 (slope) \\r\\n 12. #44 (ca) \\r\\n 13. #51 (thal) \\r\\n 14. #58 (num) (the predicted attribute)\\r\\n\\r\\nComplete attribute documentation:\\r\\n 1 id: patient identification number\\r\\n 2 ccf: social security number (I replaced this with a dummy value of 0)\\r\\n 3 age: age in years\\r\\n 4 sex: sex (1 = male; 0 = female)\\r\\n 5 painloc: chest pain location (1 = substernal; 0 = otherwise)\\r\\n 6 painexer (1 = provoked by exertion; 0 = otherwise)\\r\\n 7 relrest (1 = relieved after rest; 0 = otherwise)\\r\\n 8 pncaden (sum of 5, 6, and 7)\\r\\n 9 cp: chest pain type\\r\\n -- Value 1: typical angina\\r\\n -- Value 2: atypical angina\\r\\n -- Value 3: non-anginal pain\\r\\n -- Value 4: asymptomatic\\r\\n 10 trestbps: resting blood pressure (in mm Hg on admission to the hospital)\\r\\n 11 htn\\r\\n 12 chol: serum cholestoral in mg/dl\\r\\n 13 smoke: I believe this is 1 = yes; 0 = no (is or is not a smoker)\\r\\n 14 cigs (cigarettes per day)\\r\\n 15 years (number of years as a smoker)\\r\\n 16 fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)\\r\\n 17 dm (1 = history of diabetes; 0 = no such history)\\r\\n 18 famhist: family history of coronary artery disease (1 = yes; 0 = no)\\r\\n 19 restecg: resting electrocardiographic results\\r\\n -- Value 0: normal\\r\\n -- Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)\\r\\n -- Value 2: showing probable or definite left ventricular hypertrophy by Estes\\' criteria\\r\\n 20 ekgmo (month of exercise ECG reading)\\r\\n 21 ekgday(day of exercise ECG reading)\\r\\n 22 ekgyr (year of exercise ECG reading)\\r\\n 23 dig (digitalis used furing exercise ECG: 1 = yes; 0 = no)\\r\\n 24 prop (Beta blocker used during exercise ECG: 1 = yes; 0 = no)\\r\\n 25 nitr (nitrates used during exercise ECG: 1 = yes; 0 = no)\\r\\n 26 pro (calcium channel blocker used during exercise ECG: 1 = yes; 0 = no)\\r\\n 27 diuretic (diuretic used used during exercise ECG: 1 = yes; 0 = no)\\r\\n 28 proto: exercise protocol\\r\\n 1 = Bruce \\r\\n 2 = Kottus\\r\\n 3 = McHenry\\r\\n 4 = fast Balke\\r\\n 5 = Balke\\r\\n 6 = Noughton \\r\\n 7 = bike 150 kpa min/min (Not sure if \"kpa min/min\" is what was written!)\\r\\n 8 = bike 125 kpa min/min \\r\\n 9 = bike 100 kpa min/min\\r\\n 10 = bike 75 kpa min/min\\r\\n 11 = bike 50 kpa min/min\\r\\n 12 = arm ergometer\\r\\n 29 thaldur: duration of exercise test in minutes\\r\\n 30 thaltime: time when ST measure depression was noted\\r\\n 31 met: mets achieved\\r\\n 32 thalach: maximum heart rate achieved\\r\\n 33 thalrest: resting heart rate\\r\\n 34 tpeakbps: peak exercise blood pressure (first of 2 parts)\\r\\n 35 tpeakbpd: peak exercise blood pressure (second of 2 parts)\\r\\n 36 dummy\\r\\n 37 trestbpd: resting blood pressure\\r\\n 38 exang: exercise induced angina (1 = yes; 0 = no)\\r\\n 39 xhypo: (1 = yes; 0 = no)\\r\\n 40 oldpeak = ST depression induced by exercise relative to rest\\r\\n 41 slope: the slope of the peak exercise ST segment\\r\\n -- Value 1: upsloping\\r\\n -- Value 2: flat\\r\\n -- Value 3: downsloping\\r\\n 42 rldv5: height at rest\\r\\n 43 rldv5e: height at peak exercise\\r\\n 44 ca: number of major vessels (0-3) colored by flourosopy\\r\\n 45 restckm: irrelevant\\r\\n 46 exerckm: irrelevant\\r\\n 47 restef: rest raidonuclid (sp?) ejection fraction\\r\\n 48 restwm: rest wall (sp?) motion abnormality\\r\\n 0 = none\\r\\n 1 = mild or moderate\\r\\n 2 = moderate or severe\\r\\n 3 = akinesis or dyskmem (sp?)\\r\\n 49 exeref: exercise radinalid (sp?) ejection fraction\\r\\n 50 exerwm: exercise wall (sp?) motion \\r\\n 51 thal: 3 = normal; 6 = fixed defect; 7 = reversable defect\\r\\n 52 thalsev: not used\\r\\n 53 thalpul: not used\\r\\n 54 earlobe: not used\\r\\n 55 cmo: month of cardiac cath (sp?) (perhaps \"call\")\\r\\n 56 cday: day of cardiac cath (sp?)\\r\\n 57 cyr: year of cardiac cath (sp?)\\r\\n 58 num: diagnosis of heart disease (angiographic disease status)\\r\\n -- Value 0: < 50% diameter narrowing\\r\\n -- Value 1: > 50% diameter narrowing\\r\\n (in any major vessel: attributes 59 through 68 are vessels)\\r\\n 59 lmt\\r\\n 60 ladprox\\r\\n 61 laddist\\r\\n 62 diag\\r\\n 63 cxmain\\r\\n 64 ramus\\r\\n 65 om1\\r\\n 66 om2\\r\\n 67 rcaprox\\r\\n 68 rcadist\\r\\n 69 lvx1: not used\\r\\n 70 lvx2: not used\\r\\n 71 lvx3: not used\\r\\n 72 lvx4: not used\\r\\n 73 lvf: not used\\r\\n 74 cathef: not used\\r\\n 75 junk: not used\\r\\n 76 name: last name of patient (I replaced this with the dummy string \"name\")', 'citation': None}}\n", + " name role type demographic \\\n", + "0 age Feature Integer Age \n", + "1 sex Feature Categorical Sex \n", + "2 cp Feature Categorical None \n", + "3 trestbps Feature Integer None \n", + "4 chol Feature Integer None \n", + "5 fbs Feature Categorical None \n", + "6 restecg Feature Categorical None \n", + "7 thalach Feature Integer None \n", + "8 exang Feature Categorical None \n", + "9 oldpeak Feature Integer None \n", + "10 slope Feature Categorical None \n", + "11 ca Feature Integer None \n", + "12 thal Feature Categorical None \n", + "13 num Target Integer None \n", + "\n", + " description units missing_values \n", + "0 None years no \n", + "1 None None no \n", + "2 None None no \n", + "3 resting blood pressure (on admission to the ho... mm Hg no \n", + "4 serum cholestoral mg/dl no \n", + "5 fasting blood sugar > 120 mg/dl None no \n", + "6 None None no \n", + "7 maximum heart rate achieved None no \n", + "8 exercise induced angina None no \n", + "9 ST depression induced by exercise relative to ... None no \n", + "10 None None no \n", + "11 number of major vessels (0-3) colored by flour... None yes \n", + "12 None None yes \n", + "13 diagnosis of heart disease None no \n" + ] + } + ], + "source": [ + "from ucimlrepo import fetch_ucirepo \n", + " \n", + "# fetch dataset \n", + "heart_disease = fetch_ucirepo(id=45) \n", + " \n", + "# data (as pandas dataframes) \n", + "X = heart_disease.data.features \n", + "y = heart_disease.data.targets \n", + " \n", + "# metadata \n", + "print(heart_disease.metadata) \n", + " \n", + "# variable information \n", + "print(heart_disease.variables) " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b885f94c-e6b6-41d9-a484-57dc5ba98ac6", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e3de4992aeec499aa299d79cde4a73ec", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Summarize dataset: 0%| | 0/5 [00:00" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "profile = ProfileReport(X, title=\"heart disease data report\")\n", + "\n", + "profile.to_notebook_iframe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a7b29ede-9e6e-4a0b-8803-827a579c2715", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Exploration.ipynb b/Exploration.ipynb new file mode 100644 index 0000000..77413ab --- /dev/null +++ b/Exploration.ipynb @@ -0,0 +1,504 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 120, + "id": "37d611da-6f56-46d8-905a-62026750150c", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from ucimlrepo import fetch_ucirepo\n", + "import pandas as pd\n", + "\n", + "# fetch dataset \n", + "heart_disease = fetch_ucirepo(id=45) \n", + " \n", + "# data (as pandas dataframes) \n", + "X = heart_disease.data.features \n", + "y = heart_disease.data.targets \n", + "\n", + "male=1\n", + "female=0" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "id": "ae26378f-c104-4664-a313-ed8d9edfed42", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathalgoal
063111452331215002.330.06.00
167141602860210811.523.03.02
267141202290212912.622.07.01
337131302500018703.530.03.00
441021302040217201.410.03.00
\n", + "
" + ], + "text/plain": [ + " age sex cp trestbps chol fbs restecg thalach exang oldpeak slope \\\n", + "0 63 1 1 145 233 1 2 150 0 2.3 3 \n", + "1 67 1 4 160 286 0 2 108 1 1.5 2 \n", + "2 67 1 4 120 229 0 2 129 1 2.6 2 \n", + "3 37 1 3 130 250 0 0 187 0 3.5 3 \n", + "4 41 0 2 130 204 0 2 172 0 1.4 1 \n", + "\n", + " ca thal goal \n", + "0 0.0 6.0 0 \n", + "1 3.0 3.0 2 \n", + "2 2.0 7.0 1 \n", + "3 0.0 3.0 0 \n", + "4 0.0 3.0 0 " + ] + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.concat([X, y], axis=1)\n", + "df = df.rename(columns={'num':'goal'})\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "id": "6b3e5424-4a7e-4e53-82b9-d78e38939834", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr7UlEQVR4nO3dfVxUdaLH8e+EMqIOKCAMs45IZu1umI/dXKoV8ilC3NLyqQe5mdtezXtJuRU9iXu7Uu4trdzsYc2H0sy6Wd3FhzBR82ob6mpqXVcNAl9ClCkDaoPhuX/0crYRULGZ5Qd+3q/Xeb085/zOOb9xd/DTmQdslmVZAgAAMMglTT0BAACAMxEoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKIDBnnvuOdlsNiUmJjb1VOpVXFwsm82mhQsX+rbl5OTIZrM16jzHjx9XTk6O1q9f36jj6rtW165dNWzYsEad51yWLl2qOXPm1LvPZrMpJycnoNcDQKAARnv11VclSXv27NFf/vKXJp7N+bnnnnu0ZcuWRh1z/PhxzZgxo9GBciHXuhBnC5QtW7bonnvuCfocgIsNgQIYauvWrdq5c6fS0tIkSfPnz2/iGZ2fzp07q3///kG9xvHjx/9h1zqX/v37q3Pnzk06B6AlIlAAQ50OkieffFJJSUlatmyZ7x/mHzt48KBuvfVWORwOdejQQbfffrsKCwvrvPQi/RA9w4cPV2RkpNq0aaPevXtr+fLl5zWfQ4cOadSoUXI4HIqIiNDo0aNVXl5eZ1x9L7usW7dOycnJioqKUlhYmLp06aKRI0fq+PHjKi4uVqdOnSRJM2bMkM1mk81mU0ZGht/5tm/frltvvVUdO3ZUt27dGrzWaStWrNBVV12lNm3a6NJLL9Vzzz3nt3/hwoWy2WwqLi72275+/XrZbDbf3Zzk5GTl5eXpyy+/9M3tx9es7yWe3bt36ze/+Y06duyoNm3aqFevXlq0aFG913njjTf0yCOPyOVyKTw8XIMGDdLevXvrfUzAxYRAAQx04sQJvfHGG7r66quVmJiou+++W1VVVXrrrbf8xh07dkwpKSkqKCjQU089peXLlys2NlajR4+uc86CggJde+21Onr0qF588UW999576tWrl0aPHl0nZOqbz6BBg/TBBx8oNzdXb731lpxOZ73XOVNxcbHS0tIUGhqqV199VatXr9aTTz6pdu3aqaamRnFxcVq9erUkacKECdqyZYu2bNmixx57zO88I0aM0GWXXaa33npLL7744lmvuWPHDmVmZur+++/XihUrlJSUpH/7t3/Tf/3Xf51zvmd64YUXdO2118rpdPrmdraXlfbu3aukpCTt2bNHzz33nN555x398pe/VEZGhmbNmlVn/MMPP6wvv/xSf/rTn/Tyyy9r3759Sk9PV21tbaPnCrQoFgDjLF682JJkvfjii5ZlWVZVVZXVvn176/rrr/cb98c//tGSZK1atcpv+7333mtJshYsWODb9vOf/9zq3bu3dfLkSb+xw4YNs+Li4qza2toG5zNv3jxLkvXee+/5bZ84cWKd60yfPt368Y+Wt99+25Jk7dixo8Hzf/3115Yka/r06XX2nT7f448/3uC+H4uPj7dsNlud6w0ePNgKDw+3jh07ZlmWZS1YsMCSZBUVFfmNKygosCRZBQUFvm1paWlWfHx8vXM/c95jxoyx7Ha7VVJS4jcuNTXVatu2rXX06FG/69x0001+45YvX25JsrZs2VLv9YCLBXdQAAPNnz9fYWFhGjNmjCSpffv2uu222/TRRx9p3759vnEbNmyQw+HQjTfe6Hf82LFj/db379+v//u//9Ptt98uSfr+++99y0033aSysrKzvqxQUFAgh8Oh4cOH+20fN27cOR9Lr169FBoaqt/+9rdatGiRvvjii3MeU5+RI0ee99grr7xSPXv29Ns2btw4eTwebd++/YKuf77WrVungQMHyu12+23PyMjQ8ePH69x9OfPv9KqrrpIkffnll0GdJ2A6AgUwzP79+7Vx40alpaXJsiwdPXpUR48e1a233irp75/skaTDhw8rNja2zjnO3PbVV19JkrKystS6dWu/ZdKkSZKkb775psE5NXQdp9N5zsfTrVs3rV27VjExMZo8ebK6deumbt266dlnnz3nsT8WFxd33mPrm9fpbYcPH27UdRvr8OHD9c7V5XLVe/2oqCi/dbvdLumHl9WAi1mrpp4AAH+vvvqqLMvS22+/rbfffrvO/kWLFumJJ55QSEiIoqKi9Mknn9QZc+abV6OjoyVJ2dnZGjFiRL3XveKKKxqc0/lepyHXX3+9rr/+etXW1mrr1q16/vnnlZmZqdjYWN9donNpzHer1Dev09tOB0GbNm0kSV6v12/c2ULtfERFRamsrKzO9kOHDkn6+/8WAM6OOyiAQWpra7Vo0SJ169ZNBQUFdZZp06aprKxMq1atkiQNGDBAVVVVvvXTli1b5rd+xRVXqHv37tq5c6f69etX7+JwOBqcV0pKiqqqqvT+++/7bV+6dGmjHl9ISIiuueYa/fGPf5Qk38stgb5rsGfPHu3cudNv29KlS+VwONSnTx9JP3yhmyR9+umnfuPOfIyn53e+cxs4cKDWrVvnC5LTFi9erLZt2zb5x6KB5oI7KIBBVq1apUOHDumpp55ScnJynf2JiYmaO3eu5s+fr2HDhmn8+PGaPXu27rjjDj3xxBO67LLLtGrVKq1Zs0aSdMklf/9vkJdeekmpqakaOnSoMjIy9LOf/UzffvutPv/8c23fvr3OJ4R+7K677tLs2bN111136T//8z/VvXt3rVy50neds3nxxRe1bt06paWlqUuXLvruu+98L1MNGjRIkuRwOBQfH6/33ntPAwcOVGRkpKKjo30R0Vgul0vDhw9XTk6O4uLi9Prrrys/P19PPfWU2rZtK0m6+uqrdcUVVygrK0vff/+9OnbsqBUrVmjTpk11ztejRw+98847mjdvnvr27atLLrlE/fr1q/fa06dP15///GelpKTo8ccfV2RkpJYsWaK8vDzNmjVLERERF/SYgItOU79LF8Df3XzzzVZoaKhVUVHR4JgxY8ZYrVq1ssrLyy3LsqySkhJrxIgRVvv27S2Hw2GNHDnSWrlyZb2futm5c6c1atQoKyYmxmrdurXldDqtG264wfdpobM5ePCgNXLkSL/rbN68+Zyf4tmyZYt1yy23WPHx8ZbdbreioqKsAQMGWO+//77f+deuXWv17t3bstvtliRr/Pjxfuf7+uuv68ypoU/xpKWlWW+//bZ15ZVXWqGhoVbXrl2tZ555ps7xf/vb36whQ4ZY4eHhVqdOnawpU6ZYeXl5dT7F8+2331q33nqr1aFDB8tms/ldU/V8+mjXrl1Wenq6FRERYYWGhlo9e/b0+zuyrL9/iuett97y215UVFTn7xS4GNksy7KaqI0ABMnMmTP16KOPqqSkhG85BdAs8RIP0MzNnTtXkvTzn/9cJ0+e1Lp16/Tcc8/pjjvuIE4ANFsECtDMtW3bVrNnz1ZxcbG8Xq+6dOmiBx98UI8++mhTTw0ALhgv8QAAAOPwMWMAAGAcAgUAABiHQAEAAMZplm+SPXXqlA4dOiSHw9Gor78GAABNx7IsVVVVyeVy+X2RZH2aZaAcOnSozm8KBQAAzUNpaek5vwahWQbK6d8ZUlpaqvDw8CaeDQAAOB8ej0dut/usv/vrtGYZKKdf1gkPDydQAABoZs7n7Rm8SRYAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMZp1dQTAICm0PWhvKaeAmC04ifTmvT63EEBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEaFSi5ubm6+uqr5XA4FBMTo5tvvll79+71G2NZlnJycuRyuRQWFqbk5GTt2bPHb4zX69WUKVMUHR2tdu3aafjw4Tp48OBPfzQAAKBFaFSgbNiwQZMnT9bHH3+s/Px8ff/99xoyZIiOHTvmGzNr1iw988wzmjt3rgoLC+V0OjV48GBVVVX5xmRmZmrFihVatmyZNm3apOrqag0bNky1tbWBe2QAAKDZslmWZV3owV9//bViYmK0YcMG/frXv5ZlWXK5XMrMzNSDDz4o6Ye7JbGxsXrqqad07733qrKyUp06ddJrr72m0aNHS5IOHTokt9utlStXaujQoee8rsfjUUREhCorKxUeHn6h0wdwEeOL2oCzC8YXtTXm3++f9B6UyspKSVJkZKQkqaioSOXl5RoyZIhvjN1u14ABA7R582ZJ0rZt23Ty5Em/MS6XS4mJib4xZ/J6vfJ4PH4LAABouS44UCzL0tSpU3XdddcpMTFRklReXi5Jio2N9RsbGxvr21deXq7Q0FB17NixwTFnys3NVUREhG9xu90XOm0AANAMXHCg3Hffffr000/1xhtv1Nlns9n81i3LqrPtTGcbk52drcrKSt9SWlp6odMGAADNwAUFypQpU/T++++roKBAnTt39m13Op2SVOdOSEVFhe+uitPpVE1NjY4cOdLgmDPZ7XaFh4f7LQAAoOVqVKBYlqX77rtP77zzjtatW6eEhAS//QkJCXI6ncrPz/dtq6mp0YYNG5SUlCRJ6tu3r1q3bu03pqysTLt37/aNAQAAF7dWjRk8efJkLV26VO+9954cDofvTklERITCwsJks9mUmZmpmTNnqnv37urevbtmzpyptm3baty4cb6xEyZM0LRp0xQVFaXIyEhlZWWpR48eGjRoUOAfIQAAaHYaFSjz5s2TJCUnJ/ttX7BggTIyMiRJDzzwgE6cOKFJkybpyJEjuuaaa/TBBx/I4XD4xs+ePVutWrXSqFGjdOLECQ0cOFALFy5USEjIT3s0AACgRfhJ34PSVPgeFAA/Fd+DApxds/4eFAAAgGAgUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgnEYHysaNG5Weni6XyyWbzaZ3333Xb7/NZqt3+cMf/uAbk5ycXGf/mDFjfvKDAQAALUOjA+XYsWPq2bOn5s6dW+/+srIyv+XVV1+VzWbTyJEj/cZNnDjRb9xLL710YY8AAAC0OK0ae0BqaqpSU1Mb3O90Ov3W33vvPaWkpOjSSy/12962bds6YwEAAKQgvwflq6++Ul5eniZMmFBn35IlSxQdHa0rr7xSWVlZqqqqavA8Xq9XHo/HbwEAAC1Xo++gNMaiRYvkcDg0YsQIv+233367EhIS5HQ6tXv3bmVnZ2vnzp3Kz8+v9zy5ubmaMWNGMKcKAAAMEtRAefXVV3X77berTZs2ftsnTpzo+3NiYqK6d++ufv36afv27erTp0+d82RnZ2vq1Km+dY/HI7fbHbyJAwCAJhW0QPnoo4+0d+9evfnmm+cc26dPH7Vu3Vr79u2rN1DsdrvsdnswpgkAAAwUtPegzJ8/X3379lXPnj3POXbPnj06efKk4uLigjUdAADQjDT6Dkp1dbX279/vWy8qKtKOHTsUGRmpLl26SPrhJZi33npLTz/9dJ3jDxw4oCVLluimm25SdHS0PvvsM02bNk29e/fWtdde+xMeCgAAaCkaHShbt25VSkqKb/30e0PGjx+vhQsXSpKWLVsmy7I0duzYOseHhobqww8/1LPPPqvq6mq53W6lpaVp+vTpCgkJucCHAQAAWhKbZVlWU0+isTwejyIiIlRZWanw8PCmng6AZqjrQ3lNPQXAaMVPpgX8nI3595vfxQMAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTqMDZePGjUpPT5fL5ZLNZtO7777rtz8jI0M2m81v6d+/v98Yr9erKVOmKDo6Wu3atdPw4cN18ODBn/RAAABAy9HoQDl27Jh69uypuXPnNjjmxhtvVFlZmW9ZuXKl3/7MzEytWLFCy5Yt06ZNm1RdXa1hw4aptra28Y8AAAC0OK0ae0BqaqpSU1PPOsZut8vpdNa7r7KyUvPnz9drr72mQYMGSZJef/11ud1urV27VkOHDm3slAAAQAsTlPegrF+/XjExMbr88ss1ceJEVVRU+PZt27ZNJ0+e1JAhQ3zbXC6XEhMTtXnz5nrP5/V65fF4/BYAANByBTxQUlNTtWTJEq1bt05PP/20CgsLdcMNN8jr9UqSysvLFRoaqo4dO/odFxsbq/Ly8nrPmZubq4iICN/idrsDPW0AAGCQRr/Ecy6jR4/2/TkxMVH9+vVTfHy88vLyNGLEiAaPsyxLNput3n3Z2dmaOnWqb93j8RApAAC0YEH/mHFcXJzi4+O1b98+SZLT6VRNTY2OHDniN66iokKxsbH1nsNutys8PNxvAQAALVfQA+Xw4cMqLS1VXFycJKlv375q3bq18vPzfWPKysq0e/duJSUlBXs6AACgGWj0SzzV1dXav3+/b72oqEg7duxQZGSkIiMjlZOTo5EjRyouLk7FxcV6+OGHFR0drVtuuUWSFBERoQkTJmjatGmKiopSZGSksrKy1KNHD9+negAAwMWt0YGydetWpaSk+NZPvzdk/Pjxmjdvnnbt2qXFixfr6NGjiouLU0pKit588005HA7fMbNnz1arVq00atQonThxQgMHDtTChQsVEhISgIcEAACaO5tlWVZTT6KxPB6PIiIiVFlZyftRAFyQrg/lNfUUAKMVP5kW8HM25t9vfhcPAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDiNDpSNGzcqPT1dLpdLNptN7777rm/fyZMn9eCDD6pHjx5q166dXC6X7rrrLh06dMjvHMnJybLZbH7LmDFjfvKDAQAALUOjA+XYsWPq2bOn5s6dW2ff8ePHtX37dj322GPavn273nnnHf3tb3/T8OHD64ydOHGiysrKfMtLL710YY8AAAC0OK0ae0BqaqpSU1Pr3RcREaH8/Hy/bc8//7z+6Z/+SSUlJerSpYtve9u2beV0Oht7eQAAcBEI+ntQKisrZbPZ1KFDB7/tS5YsUXR0tK688kplZWWpqqqqwXN4vV55PB6/BQAAtFyNvoPSGN99950eeughjRs3TuHh4b7tt99+uxISEuR0OrV7925lZ2dr586dde6+nJabm6sZM2YEc6oAAMAgQQuUkydPasyYMTp16pReeOEFv30TJ070/TkxMVHdu3dXv379tH37dvXp06fOubKzszV16lTfusfjkdvtDtbUAQBAEwtKoJw8eVKjRo1SUVGR1q1b53f3pD59+vRR69attW/fvnoDxW63y263B2OqAADAQAEPlNNxsm/fPhUUFCgqKuqcx+zZs0cnT55UXFxcoKcDAACaoUYHSnV1tfbv3+9bLyoq0o4dOxQZGSmXy6Vbb71V27dv15///GfV1taqvLxckhQZGanQ0FAdOHBAS5Ys0U033aTo6Gh99tlnmjZtmnr37q1rr702cI8MAAA0W40OlK1btyolJcW3fvq9IePHj1dOTo7ef/99SVKvXr38jisoKFBycrJCQ0P14Ycf6tlnn1V1dbXcbrfS0tI0ffp0hYSE/ISHAgAAWopGB0pycrIsy2pw/9n2SZLb7daGDRsae1kAAHAR4XfxAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIzT6EDZuHGj0tPT5XK5ZLPZ9O677/rttyxLOTk5crlcCgsLU3Jysvbs2eM3xuv1asqUKYqOjla7du00fPhwHTx48Cc9EAAA0HI0OlCOHTumnj17au7cufXunzVrlp555hnNnTtXhYWFcjqdGjx4sKqqqnxjMjMztWLFCi1btkybNm1SdXW1hg0bptra2gt/JAAAoMVo1dgDUlNTlZqaWu8+y7I0Z84cPfLIIxoxYoQkadGiRYqNjdXSpUt17733qrKyUvPnz9drr72mQYMGSZJef/11ud1urV27VkOHDq1zXq/XK6/X61v3eDyNnTYAAGhGAvoelKKiIpWXl2vIkCG+bXa7XQMGDNDmzZslSdu2bdPJkyf9xrhcLiUmJvrGnCk3N1cRERG+xe12B3LaAADAMAENlPLycklSbGys3/bY2FjfvvLycoWGhqpjx44NjjlTdna2KisrfUtpaWkgpw0AAAzT6Jd4zofNZvNbtyyrzrYznW2M3W6X3W4P2PwAAIDZAnoHxel0SlKdOyEVFRW+uypOp1M1NTU6cuRIg2MAAMDFLaCBkpCQIKfTqfz8fN+2mpoabdiwQUlJSZKkvn37qnXr1n5jysrKtHv3bt8YAABwcWv0SzzV1dXav3+/b72oqEg7duxQZGSkunTposzMTM2cOVPdu3dX9+7dNXPmTLVt21bjxo2TJEVERGjChAmaNm2aoqKiFBkZqaysLPXo0cP3qR4AAHBxa3SgbN26VSkpKb71qVOnSpLGjx+vhQsX6oEHHtCJEyc0adIkHTlyRNdcc40++OADORwO3zGzZ89Wq1atNGrUKJ04cUIDBw7UwoULFRISEoCH9NN1fSivqacAGKv4ybSmngKAi4DNsiyrqSfRWB6PRxEREaqsrFR4eHjAz0+gAA1rKYHC8xw4u2A81xvz7ze/iwcAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQIeKF27dpXNZquzTJ48WZKUkZFRZ1///v0DPQ0AANCMtQr0CQsLC1VbW+tb3717twYPHqzbbrvNt+3GG2/UggULfOuhoaGBngYAAGjGAh4onTp18lt/8skn1a1bNw0YMMC3zW63y+l0BvrSAACghQjqe1Bqamr0+uuv6+6775bNZvNtX79+vWJiYnT55Zdr4sSJqqioOOt5vF6vPB6P3wIAAFquoAbKu+++q6NHjyojI8O3LTU1VUuWLNG6dev09NNPq7CwUDfccIO8Xm+D58nNzVVERIRvcbvdwZw2AABoYjbLsqxgnXzo0KEKDQ3V//zP/zQ4pqysTPHx8Vq2bJlGjBhR7xiv1+sXMB6PR263W5WVlQoPDw/4vLs+lBfwcwItRfGTaU09hYDgeQ6cXTCe6x6PRxEREef173fA34Ny2pdffqm1a9fqnXfeOeu4uLg4xcfHa9++fQ2OsdvtstvtgZ4iAAAwVNBe4lmwYIFiYmKUlnb2Ajt8+LBKS0sVFxcXrKkAAIBmJiiBcurUKS1YsEDjx49Xq1Z/v0lTXV2trKwsbdmyRcXFxVq/fr3S09MVHR2tW265JRhTAQAAzVBQXuJZu3atSkpKdPfdd/ttDwkJ0a5du7R48WIdPXpUcXFxSklJ0ZtvvimHwxGMqQAAgGYoKIEyZMgQ1ffe27CwMK1ZsyYYlwQAAC0Iv4sHAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJyAB0pOTo5sNpvf4nQ6ffsty1JOTo5cLpfCwsKUnJysPXv2BHoaAACgGQvKHZQrr7xSZWVlvmXXrl2+fbNmzdIzzzyjuXPnqrCwUE6nU4MHD1ZVVVUwpgIAAJqhoARKq1at5HQ6fUunTp0k/XD3ZM6cOXrkkUc0YsQIJSYmatGiRTp+/LiWLl0ajKkAAIBmKCiBsm/fPrlcLiUkJGjMmDH64osvJElFRUUqLy/XkCFDfGPtdrsGDBigzZs3N3g+r9crj8fjtwAAgJYr4IFyzTXXaPHixVqzZo1eeeUVlZeXKykpSYcPH1Z5ebkkKTY21u+Y2NhY37765ObmKiIiwre43e5ATxsAABgk4IGSmpqqkSNHqkePHho0aJDy8vIkSYsWLfKNsdlsfsdYllVn249lZ2ersrLSt5SWlgZ62gAAwCBB/5hxu3bt1KNHD+3bt8/3aZ4z75ZUVFTUuavyY3a7XeHh4X4LAABouYIeKF6vV59//rni4uKUkJAgp9Op/Px83/6amhpt2LBBSUlJwZ4KAABoJloF+oRZWVlKT09Xly5dVFFRoSeeeEIej0fjx4+XzWZTZmamZs6cqe7du6t79+6aOXOm2rZtq3HjxgV6KgAAoJkKeKAcPHhQY8eO1TfffKNOnTqpf//++vjjjxUfHy9JeuCBB3TixAlNmjRJR44c0TXXXKMPPvhADocj0FMBAADNVMADZdmyZWfdb7PZlJOTo5ycnEBfGgAAtBD8Lh4AAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQIeKLm5ubr66qvlcDgUExOjm2++WXv37vUbk5GRIZvN5rf0798/0FMBAADNVMADZcOGDZo8ebI+/vhj5efn6/vvv9eQIUN07Ngxv3E33nijysrKfMvKlSsDPRUAANBMtQr0CVevXu23vmDBAsXExGjbtm369a9/7dtut9vldDoDfXkAANACBP09KJWVlZKkyMhIv+3r169XTEyMLr/8ck2cOFEVFRUNnsPr9crj8fgtAACg5QpqoFiWpalTp+q6665TYmKib3tqaqqWLFmidevW6emnn1ZhYaFuuOEGeb3ees+Tm5uriIgI3+J2u4M5bQAA0MQC/hLPj91333369NNPtWnTJr/to0eP9v05MTFR/fr1U3x8vPLy8jRixIg658nOztbUqVN96x6Ph0gBAKAFC1qgTJkyRe+//742btyozp07n3VsXFyc4uPjtW/fvnr32+122e32YEwTAAAYKOCBYlmWpkyZohUrVmj9+vVKSEg45zGHDx9WaWmp4uLiAj0dAADQDAX8PSiTJ0/W66+/rqVLl8rhcKi8vFzl5eU6ceKEJKm6ulpZWVnasmWLiouLtX79eqWnpys6Olq33HJLoKcDAACaoYDfQZk3b54kKTk52W/7ggULlJGRoZCQEO3atUuLFy/W0aNHFRcXp5SUFL355ptyOByBng4AAGiGgvISz9mEhYVpzZo1gb4sAABoQfhdPAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACM06SB8sILLyghIUFt2rRR37599dFHHzXldAAAgCGaLFDefPNNZWZm6pFHHtFf//pXXX/99UpNTVVJSUlTTQkAABiiyQLlmWee0YQJE3TPPffoF7/4hebMmSO326158+Y11ZQAAIAhWjXFRWtqarRt2zY99NBDftuHDBmizZs31xnv9Xrl9Xp965WVlZIkj8cTlPmd8h4PynmBliBYz7t/NJ7nwNkF47l++pyWZZ1zbJMEyjfffKPa2lrFxsb6bY+NjVV5eXmd8bm5uZoxY0ad7W63O2hzBFC/iDlNPQMA/wjBfK5XVVUpIiLirGOaJFBOs9lsfuuWZdXZJknZ2dmaOnWqb/3UqVP69ttvFRUVVe94tBwej0dut1ulpaUKDw9v6ukACBKe6xcHy7JUVVUll8t1zrFNEijR0dEKCQmpc7ekoqKizl0VSbLb7bLb7X7bOnToEMwpwjDh4eH80AIuAjzXW75z3Tk5rUneJBsaGqq+ffsqPz/fb3t+fr6SkpKaYkoAAMAgTfYSz9SpU3XnnXeqX79++tWvfqWXX35ZJSUl+t3vftdUUwIAAIZoskAZPXq0Dh8+rN///vcqKytTYmKiVq5cqfj4+KaaEgxkt9s1ffr0Oi/xAWhZeK7jTDbrfD7rAwAA8A/E7+IBAADGIVAAAIBxCBQAAGAcAgUAABiHQEFAWJal3/72t4qMjJTNZtOOHTuaZB7FxcVNen0AgZWRkaGbb765qaeBJtCkX3WPlmP16tVauHCh1q9fr0svvVTR0dFNPSUAQDNGoCAgDhw4oLi4OL4JGAAQELzEg58sIyNDU6ZMUUlJiWw2m7p27SrLsjRr1ixdeumlCgsLU8+ePfX222/7jlm/fr1sNpvWrFmj3r17KywsTDfccIMqKiq0atUq/eIXv1B4eLjGjh2r48eP+45bvXq1rrvuOnXo0EFRUVEaNmyYDhw4cNb5ffbZZ7rpppvUvn17xcbG6s4779Q333wTtL8P4GKVnJysKVOmKDMzUx07dlRsbKxefvllHTt2TP/8z/8sh8Ohbt26adWqVZKk2tpaTZgwQQkJCQoLC9MVV1yhZ5999qzXONfPFrQcBAp+smeffVa///3v1blzZ5WVlamwsFCPPvqoFixYoHnz5mnPnj26//77dccdd2jDhg1+x+bk5Gju3LnavHmzSktLNWrUKM2ZM0dLly5VXl6e8vPz9fzzz/vGHzt2TFOnTlVhYaE+/PBDXXLJJbrlllt06tSpeudWVlamAQMGqFevXtq6datWr16tr776SqNGjQrq3wlwsVq0aJGio6P1ySefaMqUKfqXf/kX3XbbbUpKStL27ds1dOhQ3XnnnTp+/LhOnTqlzp07a/ny5frss8/0+OOP6+GHH9by5csbPP/5/mxBC2ABATB79mwrPj7esizLqq6uttq0aWNt3rzZb8yECROssWPHWpZlWQUFBZYka+3atb79ubm5liTrwIEDvm333nuvNXTo0AavW1FRYUmydu3aZVmWZRUVFVmSrL/+9a+WZVnWY489Zg0ZMsTvmNLSUkuStXfv3gt+vADqGjBggHXdddf51r///nurXbt21p133unbVlZWZkmytmzZUu85Jk2aZI0cOdK3Pn78eOs3v/mNZVnn97MFLQfvQUHAffbZZ/ruu+80ePBgv+01NTXq3bu337arrrrK9+fY2Fi1bdtWl156qd+2Tz75xLd+4MABPfbYY/r444/1zTff+O6clJSUKDExsc5ctm3bpoKCArVv377OvgMHDujyyy+/sAcJoF4/fk6HhIQoKipKPXr08G2LjY2VJFVUVEiSXnzxRf3pT3/Sl19+qRMnTqimpka9evWq99yN+dmC5o9AQcCdjoa8vDz97Gc/89t35i8Ca926te/PNpvNb/30th+/fJOeni63261XXnlFLpdLp06dUmJiompqahqcS3p6up566qk6++Li4hr3wACcU33P4TOf59IPz83ly5fr/vvv19NPP61f/epXcjgc+sMf/qC//OUv9Z67MT9b0PwRKAi4X/7yl7Lb7SopKdGAAQMCdt7Dhw/r888/10svvaTrr79ekrRp06azHtOnTx/993//t7p27apWrfi/O2CSjz76SElJSZo0aZJv29ne9B6sny0wEz+xEXAOh0NZWVm6//77derUKV133XXyeDzavHmz2rdvr/Hjx1/QeTt27KioqCi9/PLLiouLU0lJiR566KGzHjN58mS98sorGjt2rP793/9d0dHR2r9/v5YtW6ZXXnlFISEhFzQXAD/dZZddpsWLF2vNmjVKSEjQa6+9psLCQiUkJNQ7Plg/W2AmAgVB8R//8R+KiYlRbm6uvvjiC3Xo0EF9+vTRww8/fMHnvOSSS7Rs2TL967/+qxITE3XFFVfoueeeU3JycoPHuFwu/e///q8efPBBDR06VF6vV/Hx8brxxht1ySV8iA1oSr/73e+0Y8cOjR49WjabTWPHjtWkSZN8H0OuTzB+tsBMNsuyrKaeBAAAwI/xn5AAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACM8/9kmCBawMoUogAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "counts_male = len(X[X['sex'] == male])\n", + "counts_female = len(X[X['sex'] == female])\n", + "\n", + "plt.bar([male, female], [counts_male, counts_female])\n", + "plt.xticks([0, 1],['female', 'male'])\n", + "plt.title('Age distribution')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "48fd2655-1dcc-41f6-9938-ef6ea937d52e", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAt7klEQVR4nO3de1TVVf7/8dcp9AgKpKTnQKKSMlreJx1vY5AXyug2lmnWpGPOWNokWUsjK7FloM5kZk6YpYarzMrRcr6mQV+VLthXtDGN+pp9RaVRogu3UYPU/fujH2c8oSkEfs7G52Otz1p+9v5c3mcPq/Oa/bkclzHGCAAAwFIXOF0AAADAL0GYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBGogFCxbI5XKpS5cuTpdySvv27ZPL5dKLL77oa0tJSZHL5arRcY4cOaKUlBRt3ry5Rvud6lzt2rXTddddV6PjnMmKFSs0f/78U/a5XC6lpKTU6fkAEGaABmPp0qWSpLy8PP3P//yPw9WcnfHjx2vLli012ufIkSOaOXNmjcNMbc5VGz8XZrZs2aLx48fXew3A+YYwAzQA27Zt08cff6zExERJ0pIlSxyu6Oy0bt1affv2rddzHDly5Jyd60z69u2r1q1bO1oD0BARZoAGoCq8zJ49W/3799fKlSt9X+In+/LLL3XLLbcoNDRUF110kW6//Xbl5uZWu/wj/RiQbrjhBrVo0UJNmjRRz5499dprr51VPQcPHtStt96q0NBQhYeHa+TIkSosLKy23aku/WzcuFHx8fGKiIhQcHCw2rRpo5tvvllHjhzRvn371LJlS0nSzJkz5XK55HK5NHbsWL/jffTRR7rlllvUvHlztW/f/rTnqrJmzRp169ZNTZo00aWXXqoFCxb49b/44otyuVzat2+fX/vmzZvlcrl8s0Tx8fFat26d9u/f76vt5HOe6jLTJ598ohtvvFHNmzdXkyZN1KNHD2VkZJzyPK+88oqmT5+uqKgohYWFaciQIdq9e/cpPxNwPiHMAJY7evSoXnnlFfXu3VtdunTRuHHjVF5ertdff91vu8OHD+uqq67Spk2bNGfOHL322mvyeDwaOXJktWNu2rRJAwYMUElJiRYtWqQ333xTPXr00MiRI6uFnlPVM2TIEGVmZiotLU2vv/66vF7vKc/zU/v27VNiYqIaN26spUuXasOGDZo9e7aaNm2qyspKRUZGasOGDZKku+66S1u2bNGWLVv06KOP+h1n+PDh6tChg15//XUtWrToZ8+5Y8cOJSUl6f7779eaNWvUv39/TZ48WX/961/PWO9PPfvssxowYIC8Xq+vtp+7tLV79271799feXl5WrBggVavXq3LL79cY8eO1dy5c6tt//DDD2v//v164YUXtHjxYu3Zs0fXX3+9jh8/XuNagQbFALDa8uXLjSSzaNEiY4wx5eXlplmzZmbgwIF+2/3tb38zksz69ev92idMmGAkmWXLlvnaOnXqZHr27Gl++OEHv22vu+46ExkZaY4fP37aetLT040k8+abb/q1//GPf6x2nhkzZpiT/zO0atUqI8ns2LHjtMf/+uuvjSQzY8aMan1Vx3vsscdO23eytm3bGpfLVe18Q4cONWFhYebw4cPGGGOWLVtmJJn8/Hy/7TZt2mQkmU2bNvnaEhMTTdu2bU9Z+0/rHjVqlHG73ebAgQN+2w0bNsyEhISYkpISv/Nce+21ftu99tprRpLZsmXLKc8HnC+YmQEst2TJEgUHB2vUqFGSpGbNmmnEiBF67733tGfPHt922dnZCg0N1TXXXOO3/2233ea3/sUXX+h///d/dfvtt0uSjh075luuvfZaHTp06GcvbWzatEmhoaG64YYb/NpHjx59xs/So0cPNW7cWH/605+UkZGhvXv3nnGfU7n55pvPetvOnTure/fufm2jR49WWVmZPvroo1qd/2xt3LhRgwcPVnR0tF/72LFjdeTIkWqzOj8d027dukmS9u/fX691AoGOMANY7IsvvtC7776rxMREGWNUUlKikpIS3XLLLZL+84STJH377bfyeDzVjvHTtq+++kqS9OCDD6pRo0Z+y8SJEyVJ33zzzWlrOt15vF7vGT9P+/bt9c4776hVq1aaNGmS2rdvr/bt2+vpp58+474ni4yMPOttT1VXVdu3335bo/PW1LfffnvKWqOiok55/oiICL91t9st6cdLe8D5LMjpAgDU3tKlS2WM0apVq7Rq1apq/RkZGZo1a5YuvPBCRUREaOvWrdW2+emNuRdffLEkKTk5WcOHDz/leTt27Hjams72PKczcOBADRw4UMePH9e2bdv0zDPPKCkpSR6Pxzf7dCY1eXfNqeqqaqsKD02aNJEkVVRU+G33c6HubEREROjQoUPV2g8ePCjpP/9bAPh5zMwAljp+/LgyMjLUvn17bdq0qdrywAMP6NChQ1q/fr0kKS4uTuXl5b71KitXrvRb79ixo2JjY/Xxxx+rV69ep1xCQ0NPW9dVV12l8vJyrV271q99xYoVNfp8F154ofr06aO//e1vkuS75FPXsxF5eXn6+OOP/dpWrFih0NBQ/frXv5b048v1JGnnzp1+2/30M1bVd7a1DR48WBs3bvSFlyrLly9XSEiI44+SA7ZgZgaw1Pr163Xw4EHNmTNH8fHx1fq7dOmihQsXasmSJbruuus0ZswYPfXUU7rjjjs0a9YsdejQQevXr9fbb78tSbrggv/8f5vnnntOw4YN09VXX62xY8fqkksu0XfffafPPvtMH330UbUnpU5255136qmnntKdd96pJ554QrGxsXrrrbd85/k5ixYt0saNG5WYmKg2bdro+++/910qGzJkiCQpNDRUbdu21ZtvvqnBgwerRYsWuvjii32Bo6aioqJ0ww03KCUlRZGRkXrppZeUlZWlOXPmKCQkRJLUu3dvdezYUQ8++KCOHTum5s2ba82aNXr//ferHa9r165avXq10tPTdcUVV+iCCy5Qr169TnnuGTNm6L/+67901VVX6bHHHlOLFi308ssva926dZo7d67Cw8Nr9ZmA847TdyADqJ2bbrrJNG7c2BQVFZ12m1GjRpmgoCBTWFhojDHmwIEDZvjw4aZZs2YmNDTU3Hzzzeatt9465dNHH3/8sbn11ltNq1atTKNGjYzX6zWDBg3yPTX1c7788ktz8803+50nJyfnjE8zbdmyxfzud78zbdu2NW6320RERJi4uDizdu1av+O/8847pmfPnsbtdhtJZsyYMX7H+/rrr6vVdLqnmRITE82qVatM586dTePGjU27du3MvHnzqu3/+eefm4SEBBMWFmZatmxp/vznP5t169ZVe5rpu+++M7fccou56KKLjMvl8junTvEU1q5du8z1119vwsPDTePGjU337t39xsiY/zzN9Prrr/u15+fnVxtT4HzkMsYYh3IUgACQmpqqRx55RAcOHODttACsxGUm4DyycOFCSVKnTp30ww8/aOPGjVqwYIHuuOMOggwAaxFmgPNISEiInnrqKe3bt08VFRVq06aNpk2bpkceecTp0gCg1rjMBAAArMaj2QAAwGqEGQAAYDXCDAAAsFqDvwH4xIkTOnjwoEJDQ2v0inMAAOAcY4zKy8sVFRXl91LPU2nwYebgwYPVfpEWAADYoaCg4IyvjmjwYabqN2QKCgoUFhbmcDUAAOBslJWVKTo6+md/C65Kgw8zVZeWwsLCCDMAAFjmbG4R4QZgAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNWCnC4AAM437R5a53QJNbZvdqLTJQCnxcwMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXHw8y//vUv3XHHHYqIiFBISIh69Oih7du3+/qNMUpJSVFUVJSCg4MVHx+vvLw8BysGAACBxNEwU1xcrAEDBqhRo0Zav369Pv30Uz355JO66KKLfNvMnTtX8+bN08KFC5Wbmyuv16uhQ4eqvLzcucIBAEDACHLy5HPmzFF0dLSWLVvma2vXrp3v38YYzZ8/X9OnT9fw4cMlSRkZGfJ4PFqxYoUmTJhwrksGAAABxtGZmbVr16pXr14aMWKEWrVqpZ49e+r555/39efn56uwsFAJCQm+Nrfbrbi4OOXk5DhRMgAACDCOhpm9e/cqPT1dsbGxevvtt3X33Xfrvvvu0/LlyyVJhYWFkiSPx+O3n8fj8fX9VEVFhcrKyvwWAADQcDl6menEiRPq1auXUlNTJUk9e/ZUXl6e0tPTdeedd/q2c7lcfvsZY6q1VUlLS9PMmTPrr2gAAaXdQ+ucLgGAwxydmYmMjNTll1/u13bZZZfpwIEDkiSv1ytJ1WZhioqKqs3WVElOTlZpaalvKSgoqIfKAQBAoHA0zAwYMEC7d+/2a/v888/Vtm1bSVJMTIy8Xq+ysrJ8/ZWVlcrOzlb//v1PeUy3262wsDC/BQAANFyOXma6//771b9/f6WmpurWW2/V1q1btXjxYi1evFjSj5eXkpKSlJqaqtjYWMXGxio1NVUhISEaPXq0k6UDAIAA4WiY6d27t9asWaPk5GQ9/vjjiomJ0fz583X77bf7tpk6daqOHj2qiRMnqri4WH369FFmZqZCQ0MdrBwAAAQKlzHGOF1EfSorK1N4eLhKS0u55AQ0QNwAfG7sm53odAk4z9Tk+9vxnzMAAAD4JQgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsJqjYSYlJUUul8tv8Xq9vn5jjFJSUhQVFaXg4GDFx8crLy/PwYoBAECgcXxmpnPnzjp06JBv2bVrl69v7ty5mjdvnhYuXKjc3Fx5vV4NHTpU5eXlDlYMAAACieNhJigoSF6v17e0bNlS0o+zMvPnz9f06dM1fPhwdenSRRkZGTpy5IhWrFjhcNUAACBQOB5m9uzZo6ioKMXExGjUqFHau3evJCk/P1+FhYVKSEjwbet2uxUXF6ecnBynygUAAAEmyMmT9+nTR8uXL9evfvUrffXVV5o1a5b69++vvLw8FRYWSpI8Ho/fPh6PR/v37z/tMSsqKlRRUeFbLysrq5/iAQBAQHA0zAwbNsz3765du6pfv35q3769MjIy1LdvX0mSy+Xy28cYU63tZGlpaZo5c2b9FAwAAAKO45eZTta0aVN17dpVe/bs8T3VVDVDU6WoqKjabM3JkpOTVVpa6lsKCgrqtWYAAOCsgAozFRUV+uyzzxQZGamYmBh5vV5lZWX5+isrK5Wdna3+/fuf9hhut1thYWF+CwAAaLgcvcz04IMP6vrrr1ebNm1UVFSkWbNmqaysTGPGjJHL5VJSUpJSU1MVGxur2NhYpaamKiQkRKNHj3aybAAAEEAcDTNffvmlbrvtNn3zzTdq2bKl+vbtqw8//FBt27aVJE2dOlVHjx7VxIkTVVxcrD59+igzM1OhoaFOlg0AAAKIyxhjnC6iPpWVlSk8PFylpaVccgIaoHYPrXO6hPPCvtmJTpeA80xNvr8D6p4ZAACAmiLMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsFuR0AQCAwNfuoXVOl1Bj+2YnOl0CzhFmZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgtYAJM2lpaXK5XEpKSvK1GWOUkpKiqKgoBQcHKz4+Xnl5ec4VCQAAAk5AhJnc3FwtXrxY3bp182ufO3eu5s2bp4ULFyo3N1der1dDhw5VeXm5Q5UCAIBA43iY+fe//63bb79dzz//vJo3b+5rN8Zo/vz5mj59uoYPH64uXbooIyNDR44c0YoVKxysGAAABBLHw8ykSZOUmJioIUOG+LXn5+ersLBQCQkJvja32624uDjl5OSc6zIBAECACnLy5CtXrtRHH32k3Nzcan2FhYWSJI/H49fu8Xi0f//+0x6zoqJCFRUVvvWysrI6qhYAAAQix2ZmCgoKNHnyZL300ktq0qTJabdzuVx+68aYam0nS0tLU3h4uG+Jjo6us5oBAEDgcSzMbN++XUVFRbriiisUFBSkoKAgZWdna8GCBQoKCvLNyFTN0FQpKiqqNltzsuTkZJWWlvqWgoKCev0cAADAWY5dZho8eLB27drl1/aHP/xBnTp10rRp03TppZfK6/UqKytLPXv2lCRVVlYqOztbc+bMOe1x3W633G53vdYOAAACh2NhJjQ0VF26dPFra9q0qSIiInztSUlJSk1NVWxsrGJjY5WamqqQkBCNHj3aiZIBAEAAcvQG4DOZOnWqjh49qokTJ6q4uFh9+vRRZmamQkNDnS4NAAAECJcxxjhdRH0qKytTeHi4SktLFRYW5nQ5AOpYu4fWOV0CAtS+2YlOl4BfoCbf346/ZwYAAOCXIMwAAACrEWYAAIDVCDMAAMBqhBkAAGC1gH40G7CZjU/Z8PQHABsxMwMAAKxGmAEAAFarVZgpKCjQl19+6VvfunWrkpKStHjx4jorDAAA4GzUKsyMHj1amzZtkvTjr1oPHTpUW7du1cMPP6zHH3+8TgsEAAD4ObW6AfiTTz7Rb37zG0nSa6+9pi5duuiDDz5QZmam7r77bj322GN1WiSAc8PGm5YBoFYzMz/88IPcbrck6Z133tENN9wgSerUqZMOHTpUd9UBAACcQa3CTOfOnbVo0SK99957ysrK0jXXXCNJOnjwoCIiIuq0QAAAgJ9TqzAzZ84cPffcc4qPj9dtt92m7t27S5LWrl3ru/wEAABwLtTqnpn4+Hh98803KisrU/PmzX3tf/rTn9S0adM6Kw4AAOBMajUzM2jQIJWXl/sFGUlq0aKFRo4cWSeFAQAAnI1ahZnNmzersrKyWvv333+v99577xcXBQAAcLZqdJlp586dvn9/+umnKiws9K0fP35cGzZs0CWXXFJ31QEAAJxBjcJMjx495HK55HK5NGjQoGr9wcHBeuaZZ+qsOAAAgDOpUZjJz8+XMUaXXnqptm7dqpYtW/r6GjdurFatWunCCy+s8yIBAABOp0Zhpm3btpKkEydO1EsxAAAANVWrR7Ml6fPPP9fmzZtVVFRULdzwcwYAAOBcqVWYef7553XPPffo4osvltfrlcvl8vW5XC7CDAAAOGdqFWZmzZqlJ554QtOmTavregAAAGqkVu+ZKS4u1ogRI+q6FgAAgBqrVZgZMWKEMjMz67oWAACAGqvVZaYOHTro0Ucf1YcffqiuXbuqUaNGfv333XdfnRQHAABwJi5jjKnpTjExMac/oMulvXv3/qKi6lJZWZnCw8NVWlqqsLAwp8vBeaTdQ+ucLgE4r+2bneh0CfgFavL9XauZmfz8/FoVBgAAUNdqdc8MAABAoKjVzMy4ceN+tn/p0qW1KgYAAKCmahVmiouL/dZ/+OEHffLJJyopKTnlD1ACAADUl1qFmTVr1lRrO3HihCZOnKhLL730FxcF/BQ30wIATqfO7pm54IILdP/99+upp56qq0MCAACcUZ3eAPx///d/OnbsWF0eEgAA4GfV6jLTlClT/NaNMTp06JDWrVunMWPG1ElhAAAAZ6NWYeaf//yn3/oFF1ygli1b6sknnzzjk04AAAB1qVZhZtOmTXVdBwAAQK3UKsxU+frrr7V79265XC796le/UsuWLeuqLgAAgLNSqxuADx8+rHHjxikyMlJXXnmlBg4cqKioKN111106cuRIXdcIAABwWrUKM1OmTFF2drb+8Y9/qKSkRCUlJXrzzTeVnZ2tBx54oK5rBAAAOK1aXWb6+9//rlWrVik+Pt7Xdu211yo4OFi33nqr0tPT66o+AACAn1WrmZkjR47I4/FUa2/VqhWXmQAAwDlVqzDTr18/zZgxQ99//72v7ejRo5o5c6b69etXZ8UBAACcSa3CzPz585WTk6PWrVtr8ODBGjJkiKKjo/XBBx/o6aefPuvjpKenq1u3bgoLC1NYWJj69eun9evX+/qNMUpJSVFUVJSCg4MVHx+vvLy82pQMAAAaqFqFma5du2rPnj1KS0tTjx491K1bN82ePVtffPGFOnfufNbHad26tWbPnq1t27Zp27ZtGjRokG688UZfYJk7d67mzZunhQsXKjc3V16vV0OHDlV5eXltygYAAA2QyxhjarpTWlqaPB5Ptbf9Ll26VF9//bWmTZtW64JatGihv/zlLxo3bpyioqKUlJTkO15FRYU8Ho/mzJmjCRMmnNXxysrKFB4ertLSUoWFhdW6LjiLX80GUFP7Zic6XQJ+gZp8f9dqZua5555Tp06dqrV37txZixYtqs0hdfz4ca1cuVKHDx9Wv379lJ+fr8LCQiUkJPi2cbvdiouLU05OTq3OAQAAGp5aPZpdWFioyMjIau0tW7bUoUOHanSsXbt2qV+/fvr+++/VrFkzrVmzRpdffrkvsPz0qSmPx6P9+/ef9ngVFRWqqKjwrZeVldWoHgAAYJdazcxU3ez7Ux988IGioqJqdKyOHTtqx44d+vDDD3XPPfdozJgx+vTTT339LpfLb3tjTLW2k6WlpSk8PNy3REdH16geAABgl1rNzIwfP15JSUn64YcfNGjQIEnSf//3f2vq1Kk1fgNw48aN1aFDB0lSr169lJubq6efftp3n8xPZ4GKiopO+Y6bKsnJyZoyZYpvvaysjEADAEADVqswM3XqVH333XeaOHGiKisrJUlNmjTRtGnTlJyc/IsKMsaooqJCMTEx8nq9ysrKUs+ePSVJlZWVys7O1pw5c067v9vtltvt/kU1AAAAe9QqzLhcLs2ZM0ePPvqoPvvsMwUHBys2NrbGIeLhhx/WsGHDFB0drfLycq1cuVKbN2/Whg0b5HK5lJSUpNTUVMXGxio2NlapqakKCQnR6NGja1M2AABogGoVZqo0a9ZMvXv3rvX+X331lX7/+9/r0KFDCg8PV7du3bRhwwYNHTpU0o8zQEePHtXEiRNVXFysPn36KDMzU6Ghob+kbAAA0IDU6j0zNuE9Mw0D75kBUFO8Z8Zu9f6eGQAAgEBBmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVHA0zaWlp6t27t0JDQ9WqVSvddNNN2r17t982xhilpKQoKipKwcHBio+PV15enkMVAwCAQONomMnOztakSZP04YcfKisrS8eOHVNCQoIOHz7s22bu3LmaN2+eFi5cqNzcXHm9Xg0dOlTl5eUOVg4AAAJFkJMn37Bhg9/6smXL1KpVK23fvl1XXnmljDGaP3++pk+fruHDh0uSMjIy5PF4tGLFCk2YMMGJsgEAQAAJqHtmSktLJUktWrSQJOXn56uwsFAJCQm+bdxut+Li4pSTk+NIjQAAILA4OjNzMmOMpkyZot/+9rfq0qWLJKmwsFCS5PF4/Lb1eDzav3//KY9TUVGhiooK33pZWVk9VQwAAAJBwMzM3Hvvvdq5c6deeeWVan0ul8tv3RhTra1KWlqawsPDfUt0dHS91AsAAAJDQISZP//5z1q7dq02bdqk1q1b+9q9Xq+k/8zQVCkqKqo2W1MlOTlZpaWlvqWgoKD+CgcAAI5zNMwYY3Tvvfdq9erV2rhxo2JiYvz6Y2Ji5PV6lZWV5WurrKxUdna2+vfvf8pjut1uhYWF+S0AAKDhcvSemUmTJmnFihV68803FRoa6puBCQ8PV3BwsFwul5KSkpSamqrY2FjFxsYqNTVVISEhGj16tJOlAwCAAOFomElPT5ckxcfH+7UvW7ZMY8eOlSRNnTpVR48e1cSJE1VcXKw+ffooMzNToaGh57haAAAQiBwNM8aYM27jcrmUkpKilJSU+i8IAABYJyBuAAYAAKgtwgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFgtyOkCAACoD+0eWud0CTW2b3ai0yVYiZkZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqOhpl3331X119/vaKiouRyufTGG2/49RtjlJKSoqioKAUHBys+Pl55eXnOFAsAAAKSo2Hm8OHD6t69uxYuXHjK/rlz52revHlauHChcnNz5fV6NXToUJWXl5/jSgEAQKAKcvLkw4YN07Bhw07ZZ4zR/PnzNX36dA0fPlySlJGRIY/HoxUrVmjChAnnslQAABCgAvaemfz8fBUWFiohIcHX5na7FRcXp5ycHAcrAwAAgcTRmZmfU1hYKEnyeDx+7R6PR/v37z/tfhUVFaqoqPCtl5WV1U+BAAAgIARsmKnicrn81o0x1dpOlpaWppkzZ9Z3WVZr99A6p0sAAKDOBOxlJq/XK+k/MzRVioqKqs3WnCw5OVmlpaW+paCgoF7rBAAAzgrYMBMTEyOv16usrCxfW2VlpbKzs9W/f//T7ud2uxUWFua3AACAhsvRy0z//ve/9cUXX/jW8/PztWPHDrVo0UJt2rRRUlKSUlNTFRsbq9jYWKWmpiokJESjR492sGoAABBIHA0z27Zt01VXXeVbnzJliiRpzJgxevHFFzV16lQdPXpUEydOVHFxsfr06aPMzEyFhoY6VTIAAAgwLmOMcbqI+lRWVqbw8HCVlpZyyen/4wZgAAhM+2YnOl1CwKjJ93fA3jMDAABwNggzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrBTldAAAA+FG7h9Y5XUKN7Zud6HQJzMwAAAC7EWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNX4OYNfyMZXTwMA0JBYMTPz7LPPKiYmRk2aNNEVV1yh9957z+mSAABAgAj4MPPqq68qKSlJ06dP1z//+U8NHDhQw4YN04EDB5wuDQAABICADzPz5s3TXXfdpfHjx+uyyy7T/PnzFR0drfT0dKdLAwAAASCgw0xlZaW2b9+uhIQEv/aEhATl5OQ4VBUAAAgkAX0D8DfffKPjx4/L4/H4tXs8HhUWFp5yn4qKClVUVPjWS0tLJUllZWX1UuOJiiP1clwAAGxQX9+vVcc1xpxx24AOM1VcLpffujGmWluVtLQ0zZw5s1p7dHR0vdQGAMD5LHx+/R6/vLxc4eHhP7tNQIeZiy++WBdeeGG1WZiioqJqszVVkpOTNWXKFN/6iRMn9N133ykiIuK0Aag+lZWVKTo6WgUFBQoLCzvn5z9fMe7OYNydwbg7g3GvX8YYlZeXKyoq6ozbBnSYady4sa644gplZWXpd7/7na89KytLN9544yn3cbvdcrvdfm0XXXRRfZZ5VsLCwvhjdwDj7gzG3RmMuzMY9/pzphmZKgEdZiRpypQp+v3vf69evXqpX79+Wrx4sQ4cOKC7777b6dIAAEAACPgwM3LkSH377bd6/PHHdejQIXXp0kVvvfWW2rZt63RpAAAgAAR8mJGkiRMnauLEiU6XUStut1szZsyodukL9Ytxdwbj7gzG3RmMe+BwmbN55gkAACBABfRL8wAAAM6EMAMAAKxGmAEAAFYjzAAAAKsRZupAenq6unXr5ntxUr9+/bR+/XpfvzFGKSkpioqKUnBwsOLj45WXl+dgxQ1TWlqaXC6XkpKSfG2Mfd1LSUmRy+XyW7xer6+fMa8///rXv3THHXcoIiJCISEh6tGjh7Zv3+7rZ+zrXrt27ar9vbtcLk2aNEkSYx4oCDN1oHXr1po9e7a2bdumbdu2adCgQbrxxht9f9Bz587VvHnztHDhQuXm5srr9Wro0KEqLy93uPKGIzc3V4sXL1a3bt382hn7+tG5c2cdOnTIt+zatcvXx5jXj+LiYg0YMECNGjXS+vXr9emnn+rJJ5/0e8M5Y1/3cnNz/f7Ws7KyJEkjRoyQxJgHDIN60bx5c/PCCy+YEydOGK/Xa2bPnu3r+/777014eLhZtGiRgxU2HOXl5SY2NtZkZWWZuLg4M3nyZGOMYezryYwZM0z37t1P2ceY159p06aZ3/72t6ftZ+zPjcmTJ5v27dubEydOMOYBhJmZOnb8+HGtXLlShw8fVr9+/ZSfn6/CwkIlJCT4tnG73YqLi1NOTo6DlTYckyZNUmJiooYMGeLXztjXnz179igqKkoxMTEaNWqU9u7dK4kxr09r165Vr169NGLECLVq1Uo9e/bU888/7+tn7OtfZWWlXnrpJY0bN04ul4sxDyCEmTqya9cuNWvWTG63W3fffbfWrFmjyy+/3PeL3z/9lW+Px1Pt18BRcytXrtRHH32ktLS0an2Mff3o06ePli9frrffflvPP/+8CgsL1b9/f3377beMeT3au3ev0tPTFRsbq7ffflt333237rvvPi1fvlwSf+/nwhtvvKGSkhKNHTtWEmMeSKz4OQMbdOzYUTt27FBJSYn+/ve/a8yYMcrOzvb1u1wuv+2NMdXaUDMFBQWaPHmyMjMz1aRJk9Nux9jXrWHDhvn+3bVrV/Xr10/t27dXRkaG+vbtK4kxrw8nTpxQr169lJqaKknq2bOn8vLylJ6erjvvvNO3HWNff5YsWaJhw4YpKirKr50xdx4zM3WkcePG6tChg3r16qW0tDR1795dTz/9tO8pj5+m9KKiomppHjWzfft2FRUV6YorrlBQUJCCgoKUnZ2tBQsWKCgoyDe+jH39atq0qbp27ao9e/bw916PIiMjdfnll/u1XXbZZTpw4IAkMfb1bP/+/XrnnXc0fvx4XxtjHjgIM/XEGKOKigrFxMTI6/X67oCXfrzump2drf79+ztYof0GDx6sXbt2aceOHb6lV69euv3227Vjxw5deumljP05UFFRoc8++0yRkZH8vdejAQMGaPfu3X5tn3/+udq2bStJjH09W7ZsmVq1aqXExERfG2MeQJy8+7ihSE5ONu+++67Jz883O3fuNA8//LC54IILTGZmpjHGmNmzZ5vw8HCzevVqs2vXLnPbbbeZyMhIU1ZW5nDlDc/JTzMZw9jXhwceeMBs3rzZ7N2713z44YfmuuuuM6GhoWbfvn3GGMa8vmzdutUEBQWZJ554wuzZs8e8/PLLJiQkxLz00ku+bRj7+nH8+HHTpk0bM23atGp9jHlgIMzUgXHjxpm2bduaxo0bm5YtW5rBgwf7gowxPz4yOWPGDOP1eo3b7TZXXnml2bVrl4MVN1w/DTOMfd0bOXKkiYyMNI0aNTJRUVFm+PDhJi8vz9fPmNeff/zjH6ZLly7G7XabTp06mcWLF/v1M/b14+233zaSzO7du6v1MeaBwWWMMU7PDgEAANQW98wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAISDk5Obrwwgt1zTXXOF0KgADHG4ABBKTx48erWbNmeuGFF/Tpp5+qTZs2TpcEIEAxMwMg4Bw+fFivvfaa7rnnHl133XV68cUX/frXrl2r2NhYBQcH66qrrlJGRoZcLpdKSkp82+Tk5OjKK69UcHCwoqOjdd999+nw4cPn9oMAOCcIMwACzquvvqqOHTuqY8eOuuOOO7Rs2TJVTSLv27dPt9xyi2666Sbt2LFDEyZM0PTp0/3237Vrl66++moNHz5cO3fu1Kuvvqr3339f9957rxMfB0A94zITgIAzYMAA3XrrrZo8ebKOHTumyMhIvfLKKxoyZIgeeughrVu3Trt27fJt/8gjj+iJJ55QcXGxLrroIt15550KDg7Wc88959vm/fffV1xcnA4fPqwmTZo48bEA1BNmZgAElN27d2vr1q0aNWqUJCkoKEgjR47U0qVLff29e/f22+c3v/mN3/r27dv14osvqlmzZr7l6quv1okTJ5Sfn39uPgiAcybI6QIA4GRLlizRsWPHdMkll/jajDFq1KiRiouLZYyRy+Xy2+enE8wnTpzQhAkTdN9991U7PjcSAw0PYQZAwDh27JiWL1+uJ598UgkJCX59N998s15++WV16tRJb731ll/ftm3b/NZ//etfKy8vTx06dKj3mgE4j3tmAASMN954QyNHjlRRUZHCw8P9+qZPn6633npLq1evVseOHXX//ffrrrvu0o4dO/TAAw/oyy+/VElJicLDw7Vz50717dtXf/jDH/THP/5RTZs21WeffaasrCw988wzDn06APWFe2YABIwlS5ZoyJAh1YKM9OPMzI4dO1RcXKxVq1Zp9erV6tatm9LT031PM7ndbklSt27dlJ2drT179mjgwIHq2bOnHn30UUVGRp7TzwPg3GBmBoD1nnjiCS1atEgFBQVOlwLAAdwzA8A6zz77rHr37q2IiAh98MEH+stf/sI7ZIDzGGEGgHX27NmjWbNm6bvvvlObNm30wAMPKDk52emyADiEy0wAAMBq3AAMAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKz2/wBYmBveh7xO1gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(X['age'])\n", + "plt.xlabel('Age')\n", + "plt.ylabel('counts')\n", + "plt.title('Age distribution')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "b9174a9d-6c8a-4915-9580-48f23cbdd038", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9cklEQVR4nO3dd3hUZdrH8e+ZmjZJICGNUEIvAQFBFERQAQXBgh11RVBREInIIkV6icBKs2BZRVwX67usroqC0lRQQaQj0gklhJY6ydTz/jHMSCD0JGfK/bmuuWDOnJlzJ9N+ec5TFFVVVYQQQgghApRO6wKEEEIIIa6EhBkhhBBCBDQJM0IIIYQIaBJmhBBCCBHQJMwIIYQQIqBJmBFCCCFEQJMwI4QQQoiAJmFGCCGEEAFNwowQQgghApqEGSGCxJw5c1AUhfT0dK1LKdPevXtRFIX33nvPt23cuHEoinJJj2O1Whk3bhzLly+/pPuVdazatWvTo0ePS3qcC1mwYAGzZs0q8zZFURg3bly5Hk8IIWFGiKDx7rvvArBlyxZ++eUXjau5OI8//jirV6++pPtYrVbGjx9/yWHmco51Oc4XZlavXs3jjz9e4TUIEWokzAgRBNauXcuGDRu47bbbAHjnnXc0rujipKamcu2111boMaxWa6Ud60KuvfZaUlNTNa1BiGAkYUaIIOANLy+99BLt2rXjo48+8n2Jn+7AgQPcc889WCwWYmNjeeihh1izZs1Zp3/AE5Buv/12qlatSlhYGC1btuSTTz65qHoOHTrEfffdh8ViISYmhvvvv5/s7Oyz9ivr1M/SpUvp1KkTcXFxhIeHU7NmTe6++26sVit79+6lWrVqAIwfPx5FUVAUhT59+pR6vHXr1nHPPfdQpUoV6tate85jeS1cuJDmzZsTFhZGnTp1mDNnTqnb33vvPRRFYe/evaW2L1++HEVRfK1EnTp14quvvmLfvn2+2k4/ZlmnmTZv3swdd9xBlSpVCAsLo0WLFsyfP7/M43z44YeMGjWKlJQUoqOj6dy5M9u3by/zZxIilEiYESLAFRcX8+GHH9KmTRvS09Pp27cvBQUFfPrpp6X2Kyoq4sYbb2TZsmVMnTqVTz75hMTERO6///6zHnPZsmW0b9+e3Nxc3njjDT7//HNatGjB/ffff1boKauezp07s3jxYjIzM/n0009JSkoq8zhn2rt3L7fddhsmk4l3332Xb775hpdeeonIyEjsdjvJycl88803APTr14/Vq1ezevVqRo8eXepxevXqRb169fj000954403znvM9evXk5GRwXPPPcfChQtp164dgwcP5h//+McF6z3T66+/Tvv27UlKSvLVdr5TW9u3b6ddu3Zs2bKFOXPm8J///IcmTZrQp08fpk2bdtb+I0eOZN++ffzzn//krbfeYseOHfTs2ROXy3XJtQoRVFQhREB7//33VUB94403VFVV1YKCAjUqKkrt0KFDqf1ee+01FVAXLVpUanv//v1VQJ03b55vW6NGjdSWLVuqDoej1L49evRQk5OTVZfLdc565s6dqwLq559/Xmr7E088cdZxxo4dq57+MfTZZ5+pgLp+/fpzPv7Ro0dVQB07duxZt3kfb8yYMee87XS1atVSFUU563hdunRRo6Oj1aKiIlVVVXXevHkqoO7Zs6fUfsuWLVMBddmyZb5tt912m1qrVq0yaz+z7gceeEA1m83q/v37S+3XrVs3NSIiQs3NzS11nO7du5fa75NPPlEBdfXq1WUeT4hQIS0zQgS4d955h/DwcB544AEAoqKiuPfee/nhhx/YsWOHb78VK1ZgsVi49dZbS93/wQcfLHV9586d/PHHHzz00EMAOJ1O36V79+4cPnz4vKc2li1bhsVi4fbbby+1vXfv3hf8WVq0aIHJZOLJJ59k/vz57N69+4L3Kcvdd9990fs2bdqUq666qtS23r17k5+fz7p16y7r+Bdr6dKl3HzzzdSoUaPU9j59+mC1Ws9q1Tnzd9q8eXMA9u3bV6F1CuHvJMwIEcB27tzJypUrue2221BVldzcXHJzc7nnnnuAv0Y4ARw/fpzExMSzHuPMbUeOHAFg6NChGI3GUpcBAwYAcOzYsXPWdK7jJCUlXfDnqVu3Lt999x0JCQkMHDiQunXrUrduXWbPnn3B+54uOTn5ovctqy7vtuPHj1/ScS/V8ePHy6w1JSWlzOPHxcWVum42mwHPqT0hQplB6wKEEJfv3XffRVVVPvvsMz777LOzbp8/fz6TJk1Cr9cTFxfHr7/+etY+Z3bMjY+PB2DEiBH06tWrzOM2bNjwnDVd7HHOpUOHDnTo0AGXy8XatWt55ZVXyMjIIDEx0df6dCGXMndNWXV5t3nDQ1hYGAA2m63UfucLdRcjLi6Ow4cPn7X90KFDwF/PhRDi/KRlRogA5XK5mD9/PnXr1mXZsmVnXZ5//nkOHz7MokWLAOjYsSMFBQW+614fffRRqesNGzakfv36bNiwgdatW5d5sVgs56zrxhtvpKCggC+++KLU9gULFlzSz6fX62nbti2vvfYagO+UT3m3RmzZsoUNGzaU2rZgwQIsFgutWrUCPJPrAWzcuLHUfmf+jN76Lra2m2++maVLl/rCi9f7779PRESE5kPJhQgU0jIjRIBatGgRhw4dYurUqXTq1Oms29PT03n11Vd555136NGjB48++igzZ87k4YcfZtKkSdSrV49Fixbx7bffAqDT/fW3zZtvvkm3bt245ZZb6NOnD9WrV+fEiRNs27aNdevWnTVS6nR/+9vfmDlzJn/729+YPHky9evX5+uvv/Yd53zeeOMNli5dym233UbNmjUpKSnxnSrr3LkzABaLhVq1avH5559z8803U7VqVeLj432B41KlpKRw++23M27cOJKTk/nggw9YsmQJU6dOJSIiAoA2bdrQsGFDhg4ditPppEqVKixcuJAff/zxrMdr1qwZ//nPf5g7dy5XX301Op2O1q1bl3nssWPH8uWXX3LjjTcyZswYqlatyr///W+++uorpk2bRkxMzGX9TEKEHK17IAshLs+dd96pmkwmNScn55z7PPDAA6rBYFCzs7NVVVXV/fv3q7169VKjoqJUi8Wi3n333erXX39d5uijDRs2qPfdd5+akJCgGo1GNSkpSb3pppt8o6bO58CBA+rdd99d6jirVq264Gim1atXq3fddZdaq1Yt1Ww2q3FxcWrHjh3VL774otTjf/fdd2rLli1Vs9msAuqjjz5a6vGOHj16Vk3nGs102223qZ999pnatGlT1WQyqbVr11ZnzJhx1v3//PNPtWvXrmp0dLRarVo1ddCgQepXX3111mimEydOqPfcc48aGxurKopS6piUMQpr06ZNas+ePdWYmBjVZDKpV111Vanfkar+NZrp008/LbV9z549Z/1OhQhFiqqqqkY5SgjhB6ZMmcKLL77I/v37ZXZaIURAktNMQoSQV199FYBGjRrhcDhYunQpc+bM4eGHH5YgI4QIWBJmhAghERERzJw5k71792Kz2ahZsyYvvPACL774otalCSHEZZPTTEIIIYQIaDI0WwghhBABTcKMEEIIIQKahBkhhBBCBLSg7wDsdrs5dOgQFovlkqY4F0IIIYR2VFWloKCAlJSUUpN6liXow8yhQ4fOWpFWCCGEEIEhKyvrglNHBH2Y8a4hk5WVRXR0tMbVCCGEEOJi5OfnU6NGjfOuBecV9GHGe2opOjpawowQQggRYC6mi4h0ABZCCCFEQJMwI4QQQoiAJmFGCCGEEAFNwowQQgghApqEGSGEEEIENAkzQgghhAhoEmaEEEIIEdAkzAghhBAioEmYEUIIIURAkzAjhBBCiIAmYUYIIYQQAU3CjBBCCCECmoQZIYQQQgS0oF81W4SW5cuX8/PPP9OyZUtuueUWrcsRQghRCRRVVVWti6hI+fn5xMTEkJeXR3R0tNbliAqkqipdunTB6XQC8O2332I2mzWuSgghxOW4lO9vOc0kgkZJSYkvyAAUFhZqWI0QoryVlJSwdu1arFar1qUIPyNhRgSNoqKi814XQgS2mTNnMnToUDIzM7UuRfgZCTMiaEiYESK4ffvttwD88MMPGlci/I2EGRE08vPzz3tdCCFEcJIwI4KGhBkhhAhNEmZE0JAwI4QQoUnCjAgaJ0+ePO91IYQQwUnCjAgaJ06cOO91IYQQwUnCjAga3pYYV1gsIGFGCCFChYQZETSOHj0KgDsyHoBjx45pWY4QogKdPkGmEBJmRNDIyckBwBWVUOq6ECLwud3uUtdLSko0qkT4IwkzIii4XC5fS4wrKhHwjGYqLi7WsiwhRDk5M7xImBGnkzAjgsLx48dxOp2oioI7PAZVbwIgOztb48qEEOXhzD9MJMyI00mYEUHh4MGDAKgmCyg63GYLAIcOHdKyLCFEOTkzzMhik+J0moYZp9PJiy++SFpaGuHh4dSpU4cJEyaUOjeqqirjxo0jJSWF8PBwOnXqxJYtWzSsWvgjb5hxh3mWiXebo0ttF0IEtjPDjJxCFqfTNMxMnTqVN954g1dffZVt27Yxbdo0pk+fziuvvOLbZ9q0acyYMYNXX32VNWvWkJSURJcuXSgoKNCwcuFvsrKygL9CjDvMUmq7ECKwndkSIwvJitNpGmZWr17NHXfcwW233Ubt2rW555576Nq1K2vXrgU8rTKzZs1i1KhR9OrVi/T0dObPn4/VamXBggVali78zN69ewFwh8ee+rdKqe1CiMB2ZniR00zidJqGmeuvv57vv/+eP//8E4ANGzbw448/0r17dwD27NlDdnY2Xbt29d3HbDbTsWNHVq1aVeZj2mw28vPzS11E8Ds7zMT6tquqqk1RQohyc2aYkZYZcTqDlgd/4YUXyMvLo1GjRuj1elwuF5MnT+bBBx8E/hqJkpiYWOp+iYmJ7Nu3r8zHzMzMZPz48RVbuPArRUVFHDlyBACXN8yExaCiUFBQwPHjx4mPj9ewQiHElZIwI85H05aZjz/+mA8++IAFCxawbt065s+fzz/+8Q/mz59faj9FUUpdV1X1rG1eI0aMIC8vz3eRPhPBb+fOnQC4TZFgCPNs1Blwh8UA+Fr+hBCBS8KMOB9NW2b+/ve/M3z4cB544AEAmjVrxr59+8jMzOTRRx8lKSkJ8LTQJCcn++6Xk5NzVmuNl9lsxmw2V3zxwm94w4orIq7UdndkHPqSXHbs2EG7du20KE0IUU4KCwtLXZcwI06nacuM1WpFpytdgl6v9w3NTktLIykpiSVLlvhut9vtrFixQr6chI83zHjXZPJyRXiub9++vdJrEkKUL294CdN7vh/ODDcitGnaMtOzZ08mT55MzZo1adq0Kb///jszZsygb9++gOf0UkZGBlOmTKF+/frUr1+fKVOmEBERQe/evbUsXfgR77xDrshqpba7ojzXt27det5Tk0II/+cNM/Fhbg4U6aRlRpSiaZh55ZVXGD16NAMGDCAnJ4eUlBT69+/PmDFjfPsMGzaM4uJiBgwYwMmTJ2nbti2LFy/GYrFoWLnwF8ePH+fQoUOonB1m3BFxqIqe3NxcDh48SGpqqjZFCiGumLclxhNmpGVGlKZpmLFYLMyaNYtZs2adcx9FURg3bhzjxo2rtLpE4PC2yrjDq4DBVPpGnR5XZByGwhw2b94sYUaIAHZ6mDn9uhAgazOJALd+/Xrgr5Wyz+SKSiq1nxAiMHnDS1yYC0BmgRelSJgRAW3dunUAuKJTyrzdFZ3s208mzxMicHnDTLVwaZkRZ5MwIwLW8ePHPTP8As7opDL3cUUloio6cnJyZNFJIQKYtyUmIdzTMlNSUoLT6dSyJOFHJMyIgLVmzRrA09HXN1nemfQGXFEJAPz666+VVZoQohzZbDbsdjvwV58ZkNYZ8RcJMyJg/fzzzwA4Y2ucdz9njOf21atXV3hNQojy5w0tCioRBpXwU3PNSL8Z4SVhRgQkp9Ppa5lxxpx/lJIr1nP7+vXrKS4urvDahBDly7tgcKRRRad4/j19uxASZkRAWr9+PUVFRbgNYbjPmF/mTO6wWNzmKBwOhy8ACSECh7cFJtLgCTFREmbEGSTMiIC0YsUKAJxVasGFZvZVFJyxtQFYuXJlBVcmhChveXl5AEQZPaeXogxymkmUJmFGBByXy8UPP/wAgLNK7Yu6j6OqZ79Vq1Zhs9kqqDIhREXwhpkIg4rN9ddpptzcXA2rEv5EwowIOOvXryc3NxdVb8ZlSb7wHQB3ZDXcxkisVquMahIiwHjDzKYTJp5YEUfkqZYZ73YhJMyIgLN48WLgVGuL7iJfwoqCMy4NoNQq7EII/3fy5MlS1y2nWmbO3C5Cl4QZEVBKSkp8/V6ccfUu6b6OU/uvXr1azrULEUCOHz9e6nqM2V3mdhG6JMyIgLJy5UqKi4txmy2+yfAuljuiKq7wKjgcDr7//vsKqlAIUd6OHTtW6nqsyV3mdhG6JMyIgPK///0PAEd8/QuPYiqDI76B73FkrSYhAsOZLTASZsSZJMyIgLFnzx42bdqEiuILJaWoKrgcnss5goojvh6qomfXrl1s27atgisWQlwpp9PJkSNHSm2rGvZXB2Cr1apFWcLPSJgRAcPbKuOMrYFqijh7B7cTy7p/YVn3L3CfYwE6gxnnqWHan3/+eQVVKoQoLzk5ObhcLgzKX3+gRBpV35wzhw4d0qo04UckzIiAUFBQwKJFiwBwJDS6oseyJzQGYOnSpZw4ceKKaxNCVBxvWIkPc5Xa7l09++DBg5Vek/A/EmZEQPjqq68oLi7GFRaLK7r6FT2WOyoBV2Q1HA6HtM4I4ef27t0LQGKEu9T25FPX9+3bV9klCT8kYUb4PafTycKFCwFwJKVfVsffM9mT0gH473//KzMCC+HHduzYAUDNqNKnjr3XvbeL0CZhRvi9JUuWcOTIEdyGMBxxdcrlMZ1VauE2RZGXl8eXX35ZLo8phCh/f/75JwC1LKXDTO1T1723i9AmYUb4NafTyQcffACAPakZ6Azl88CKDntycwA+/PBDaZ0Rwg9ZrVbfaaQaUaX7zNSyeK4fOXJE+r4JCTPCvy1dupSDBw/iNpivuOPvmRzx9XEbIzl27BjffPNNuT62EOLKrV+/HrfbTUK4i6rm0n1mIgyq71TTunXrtChP+BEJM8JvORwO3nvvPc//E9NBbyzfA+j02JObAfCvf/2LkpKS8n18IcQVWbt2LQDpVR1l3t7s1HbvfiJ0SZgRfut///sfhw4dwm0Ix57YpEKO4ajWELcpimPHjvF///d/FXIMIcSlU1WVNWvWANC0StlhpulpYcbtdpe5jwgNEmaEX7Jarbz//vsA2Ku3KP9WGS+dHlvq1QAsWLCA3NzcijmOEOKS7Nixg6ysLIw61RdaztQgxkGEwc2xY8fYuHFjJVco/ImEGeGX/vWvf5Gbm4vbHI0jvmGFHstZtQ6u8KoUFRUxb968Cj2WEOLifPvttwC0ircTYSh7eRKTHtpUs5faX4QmCTPC7+zbt49PPvkEgJKa14Cugl+mioKtZlsAvvjiCxnqKYTGnE6nb2X765POP9Lw+mTP7cuXL6e4uLjCaxP+ScKM8CuqqjJnzhxcLhfOmBq4YmtWynFd0ck4qqahqiqzZs2S8+9CaOj7778nNzeXGJP7nJ1/verHOEkIc1FcXOxb8kSEHgkzwq98//33/Pbbb6iKnpJTrSWVxVbjGlSdka1bt/oWtRRCVC6Xy8W///1vAG6pUYz+At9SOgVurelpkfnoo49wOM4ffkRwkjAj/Mbx48eZM2cOAPaUq1DDoiv1+KopElv1VgC88cYbZGdnV+rxhRDwww8/sH//fiIMbm6ufnGTWd6QbCPG5CYnJ4clS5ZUcIXCH0mYEX5BVVVmzpxJfn4+roiq2JOaa1KHI7ExzqgEiouLmT59OqpadsdDIUT5czgcvk74XVNLCD9Hx98zmfTQ7VTrzPvvvy9zRoUgCTPCLyxZsoQff/wRVVEoSetQ8Z1+z0XRUZLWAVXR89tvv8mq2kJUos8++4x9+/ZhMbq5pcalBZKbq5dQ1ewiOzvbd5pKhA4JM0JzWVlZzJgxAwB7SkvcEXGa1qOGxWBLbQ3Aa6+9xs6dOzWtR4hQkJOTw/z58wF4oJ6VSOOltYqa9fBQfSvg6Ttz4MCBcq9R+C8JM0JTNpuN8ePHU1JSgtOS5Fv8UWuOxCY4Y2rgcDgYP348VqtV65KECFqqqjJ79mxKSkqoH+Og/QWGY59L62p2mlW143A4mDFjhoxKDCESZoSmXn/9dXbu3InbEEZJnU6g+MlL8tTpLrcxgqysLGbOnCn9Z4SoIF988QU//fQTekXl0YZF6JTLexxFgb81KMKkU1m3bh0ff/xx+RYq/JaffHOIUPTll1/6+qSUpHVANUVoXFFpqjGMkrqdUFFYsmQJn376qdYlCRF0du3axauvvgrA/XWt1IxyXdHjJUa4ebhBEQD//Oc/2bJlyxXXKPyfhBmhiY0bNzJr1iwAbNVb4YqtoW1B5+CyJGGreQ3gGa7966+/alyREMHDarUyYcIEHA4HV8XZL7nT77l0TLbRNsGGy+Vi4sSJFBQUlMvjCv8lYUZUusOHDzNmzBicTieOKmnYk6/SuqTzciQ0wR5fH7fbzfjx49m3b5/WJQkR8FwuF5MnT2bfvn3Emtw80bgQ5TJPL51JUeCxRkVUC/OMbho7dixOp7N8Hlz4JQkzolLl5uYybNgwcnNzcUVUpSTtesrtE6yiKAq2Wu1wRSVQVFTEsGHDOHr0qNZVCRHQ3njjDX766SeMOpVBzQqINpVvn7QIg8rgZgWE6T39Z2bMmCH93oKYhBlRaaxWKy+88AJZWVm4TVEU1+8KeqPWZV0cnZ7iejfjDovmyJEjDBs2TJquhbhMn3/+ua8P2pONC6kfUzGtJjUtLgY0LUBB5euvv+bDDz+skOMI7UmYEZXCbrczduxYtm/fjttgxtrgFr/r8HshqjEca4NbcBsj2LNnDyNHjpSZRoW4RMuXL2f27NkA3FPHSttEe4Uer0W8wzf/zFtvvSWLUQYpCTOiwtntdsaNG8eaNWtQdQaK63dFDY/RuqzLopotFDfoiqo3sWnTJgk0QlyCVatWMXHiRNxuNx2TS+hZq7hSjtu1Rgm31PAca/r06SxdurRSjisqj4QZUaG8QWbVqlWoyqlTNVHVtC7rirgjqmKt3wVVZ2TdunUSaIS4CGvXrmXs2DG4XC6uTbTxWKOiSu0u17uelU4pJbjdbiZNmsSPP/5YeQcXFU7CjKgwZwWZ+p1xxVTXuqxy4bYkelpoJNAIcUG///47o0aNwuFwcnU1G082LrzsifEul6JAn4ZFtE+ynRqZOI7Vq1dXbhGiwkiYERXCarUyYsSIoAwyXq4zAs3QoUOlU7AQZ/j555954YUXsNlsNI+zM6BpIQaNvnl0CjzeqJBrEmw4HE5Gjx7N8uXLtSlGlCtNw0zt2rVRFOWsy8CBAwHPeh3jxo0jJSWF8PBwOnXqJLM5BoDc3Fyee+45fvvtt1N9ZIIvyHi5LIlYT/Wh2bx5M88++6wM2xbilBUrVvDiiy9it9tpGW/n2fQCjBr/Ca3XwVNNCrk2wYbT6WTChAksXrxY26LEFdP0ZbVmzRoOHz7suyxZsgSAe++9F4Bp06YxY8YMXn31VdasWUNSUhJdunSRv3792OHDhxk0aNBfo5YadgvaIOPltiRibdQdtzGcPXv28Mwzz5CVlaV1WUJoavHixYwfPx6n00nbBBuD0gsw6bWuysOgg6eaFnJDsqcPTWZmJl988YXWZYkroGmYqVatGklJSb7Ll19+Sd26denYsSOqqjJr1ixGjRpFr169SE9PZ/78+VitVhYsWKBl2eIc/vjjDwYOHHhqHplIrI16BHxn34vljqiKtXEP3GbPPDQDBw5k48aNWpclhCY+++wzpkyZgtvtpkNSCU9reGrpXHQK9G1UROfUYlRVZcaMGfzrX/+SifUClN+8vOx2Ox988AF9+/ZFURT27NlDdnY2Xbt29e1jNpvp2LEjq1atOufj2Gw28vPzS11ExVu2bBnPPvssJ06cwBVeBWvjHgE7/PpyqWYL1sa34YqIJz8/nyFDhsicFiKkqKrK22+/7Vs4sktqMf0aX/4q2BVNp8Aj9a30rOWZh+add97hlVdewe12a1yZuFR+E2b++9//kpubS58+fQDIzs4GIDExsdR+iYmJvtvKkpmZSUxMjO9So4Z/LmAYLFRVZf78+YwfPx673Y4zpgbWxrehmiK1Lk0TqjEca6PuOKrUxul0MnXqVN588035cBRBz+l0Mn36dP79738DngnxHq5v9dsg46UocG/dYh6u71lp+z//+Q+TJk3C4XBoXJm4FH4TZt555x26detGSkpKqe3KGRMRqKp61rbTjRgxgry8PN9F+i5UHO+Kt/PmzQPAntiU4vo3g96kcWUa0xsoqXsjtlMLaH744YeMGjVK+nqJoFVSUsLYsWP5+uuvUVDp26iQ22sX+/2ya6frWqOEp5sUoFdUli5dyvDhwykqKtK6LHGR/CLM7Nu3j++++47HH3/cty0pKQngrFaYnJycs1prTmc2m4mOji51EeVv//79DBgwgGXLlqEqCiW122Or2RYUv3hJaU9RsKdeTXGdjqiKntWrV/PUU0+xe/durSsTolzl5uYyZMiQ0xaNLKRTik3rsi7LdUl2hjQvwKxX+e233xg8eDDHjx/XuixxEfzim2fevHkkJCRw2223+balpaWRlJTkG+EEnn41K1asoF27dlqUKU754YcfeOqpp9i7dy9uYzjFDbvjqNZQ67L8kjOuLtbGt+E2RXLw4EGeHjCA77//XuuyhCgX3tGLW7duJdLgZliLfFpXq9i1lipaszgHI1vmEW10s3PnTgYOHMj+/fu1LktcgOZhxu12M2/ePB599FEMBoNvu6IoZGRkMGXKFBYuXMjmzZvp06cPERER9O7dW8OKQ5fT6eTNN99k9OjRWK1WnFGJWJvegcty7pYyAe7IeKxN7sAZnYKtpISJEycye/Zs7PbA/tAXoW3Hjh2+0YtxZhcvXp1Pw9iKWf26sqVFuxjTOo/EcBfZ2dk888xAmePMz2keZr777jv2799P3759z7pt2LBhZGRkMGDAAFq3bs3BgwdZvHgxFotFg0pDW3Z2NoMHD+bDDz8ETvWPadgN1RhYK19rRTWGUdygq68fzcKFCxk4cCAHDhzQuDIhLt3atWt9oxdrRDkZ0zqP6pEurcsqVwnhbkZfnUedaAf5+QUMGTLkvCNphbYUNcgH1efn5xMTE0NeXp70n7lMK1euZNq0aRQWFqLqTZTUbo+zaprWZZ3N5cCy7l8AFLR6BPRGjQsqmz43i7A9K9E5bYSHhzNkyBC6dOmidVlCXJTvvvuOl156CafTSeNYB4ObFxBhqPivEZsLnlgRB8DbHY9jrqQJ+GwueHWzhQ3HTeh0OoYMGUKPHj0q5+Ah7lK+vzVvmRH+y2azMWvWLMaMGUNhYSGuyGoUNb3DP4NMAHHF1sDa9E6cliSKi4uZPHkyU6dOxWq1al2aEOf18ccfM2nSJN+svkNb5FdKkNGSWQ8ZzQp8swX/4x//4L333pPJ9fyMhBlRph07dtC/f3/++9//AmBPaoa10W2oZjnFVx5UUyTFDW/FltICgEWLFvHEE0+wbds2bQsTogyqqvLGG28wd+5cAG6pUczTTQs1X2epsuh10K9REbfX9vzB8d577zFr1ixcruA6tRbIQuSlKC6W2+3m448/5ukBAzyjlQzhWBt0xVajDejk5VKuFB326q2wNuyG2+gZ7TRw4EDef/99nM7g6EgpAp93MryPPvoIgPvrFtG7nv9PhlfeFAXuqVPMow0KUVD5/PPPZXI9PyLfTsLn6NGjDB06lLlz5+J0OHDE1sSafieumFStSwtqruhkitLvxFE1DbfbzbvvvktGRgaHDx/WujQR4mw2G+PGjfNNhtevUSG31SoJqMnwytvNqTYGNC1Er6gsW7aMkSNHUlxcrHVZIU/CjEBVVb7//nsee+wx1q1bh6rTU1KrHSX1bkY1hmtdXmgwmCmp04nitBtQdUY2b95M3759+eqrr+TcvNCE1Wpl+PDh/Pjjjxh1Ks82K6BjgE6GV97aJnom1zPpVNasWcPzzz8vM3xrTMJMiMvLy2PChAlMnDjR08k3Ip6iJnfiSGhESP/5pQVFwRlfj6L0O3FGJVJcXMz06dMZNWoUJ06c0Lo6EUIKCgr4+9//zu+//06YXmXoVflcXU1Op5yuWZyDES3ziTS42bp1K0OGDCE3N1frskKWhJkQ9ssvv9C3b1/PkgQo2FJahuRq1/5GNVsobtSNktQ2qIqOVatW8dhjj/HDDz9oXZoIAbm5uTz//PNs2bKFCIObF1rm07iK9OEqS90YJyNa5RNtdLNjxw4yMjJk+QONSJgJQVarlZdffpkXXniB48eP4wqLwdqkJ/bqLaWTr79QdDiSm2Ftcjuu8Crk5eUxevRoMjMzpTlbVJgTJ07w3HPP8eeff2IxuhnZMp+60RJkzqdmlIuRrfKoYnKzd+9enn32WXJycrQuK+TIN1eI2bhxI/369eN///sfAPbEJlib3oE7Ml7jykRZ3BFVsTa5HVtSc1QUvv32W/r27cvatWu1Lk0EmZMnTzJkyBD27NlDFZObka3yqWmRoccXIyXSzair84gPc3Hw4EEyMjIk0FQyCTMhwmazMXfuXAYPHszhw4dxmyKxNuyGrea1oDNc+AGEdnR67DVaY23UHbc52jfqbNasWTKKQpSLkydP8txzz7F3716qmD0tDcG2PEFFSwh3M6pVPglhLg4dOsRzzz3H0aNHtS4rZEiYCQHeCfA+/vhjVFXFEV+foqZ34YpO1ro0cQnclkSKmt6BPaExAP/97395/PHHZQE8cUVyc3MZMmSIJ8iY3IxomU9ihFvrsgJSXJib4a3yqXZaC40EmsohYSaIuVwu/v3vf/P000+fmgAvDGu9zpSkdQCDSevyxOXQG7HVug5rg1twGyM4ePAggwYN4t1335WJ9sQly8/P5/nnn2fPnj3EmtyMaJVHkgSZKxIf5gmE3lNOQ4YMkdGIlUDCTJA6dOgQgwcP5u2338bpdOKIrYU1/S5cVWpqXZooB66Y6hSl34Wjah3cbjfvv/8+AwYMYN++fVqXJgJEUVERL7zwArt27SLG5GZESwky5SU+3BNo4swusrKyGDp0KPn5+VqXFdQkzAQZVVX5+uuv6devH5s3b0bVGSlO60BJvZtkArxgYzBTUrcTxXU7oepN/PnnnzzxxBMsXLhQJtoT51VSUsLIkSPZtm0bUUY3L7TIJzlSgkx5qhbuZnjLfGJMbnbv3s2wYcMoKirSuqygJWEmiBQUFDBhwgSmTZtGcXExTkuSZwK2+PoyAV4Qc1atQ1H6XTijq2O325k9ezYjR46UCbxEmex2O6NHj2bDhg2E61X+flU+qVHS2bciJEZ4gmKU0c0ff/zBiBEjKCkp0bqsoCRhJkhs3LiRxx9/3DMBnqJgS21NccNbZZXrEKGaIilu0JWSmm1RFT2rV6+WIdziLE6nk0mTJrFmzRpMOpWhLfJJi5YgU5FSo1wMa5FPhMHNxo0bGTt2rCxOWQEkzAQ4l8vFvHnzyMjI4MiRI7jN0Vgb9cCe3BwUeXpDiqLgSGyKtUlPXGGxnDhx4q+FQ6VzcMhzu928/PLLrFy5EoOiktG8gPox8rqoDLUtLt9aTr/88gtTpkzB5ZIQWZ7k2y6AnThxgr///e/Mnz8ft9t9asj1HbijqmldmtCQO6Iq1qa3Y09oBMDHH38sk3iFOFVVmTt3LosWLUJBZUB6IelVpXWgMjWIdfJsswLfatszZsyQvm3lSMJMgNqwYQNPPPHEqVWuDRTX6egZcq03al2a8Ac6A7Za7SiudzOq3sTmzZt54oknWLNmjdaVCQ289957fPrppwA83riI1tXsGlcUmprHOXi6aSEKKl999RVz586VQFNOJMwEGFVV+fDDD3nuuec86yqFx2JtcjvOuLpalyb8kLNKLYqa3I4rIo68vDyGDRvGvHnzcLtl5Eqo+Pjjj5k/fz4AD9cvokOyTeOKQts1CXb6NfKMavrkk0947733tC0oSEiYCSA2m42JEyfy5ptvek4rxdXF2rgn7vBYrUsTfkwNi8ba+Dbs1Rqiqirz589n9OjRWK1WrUsTFeyLL75g7ty5ANxbp4iuNWQkjT+4IcXGw/U9gWb+/Pl8/PHHGlcU+CTMBIhjx44xePBgli5diqoolNRqR0naDXJaSVwcnQFb7fYUp92Aquj56aefeOaZZ8jOzta6MlFBFi1axMyZMwHoWctKz9oSZPxJ1xol3FvHE2jmzp3Lf/7zH40rCmwSZgLA9u3beeqpp/jjjz9QDWaKG9yKI6GRzB0jLpkzvh7WRt1wG8PZvXs3Tz31FJs2bdK6LFHOvvnmG6ZNm4aqqnRJLeaeOrIgqT/qWbuEnrU8LaRz5sxh4cKFGlcUuCTM+Llff/2VZwcP5tixY7jCYilq3FMWiBRXxB2VgLVxT1wRceTm5vLckCH88MMPWpclysk333zD1KlTUVWVztVLeLi+Vf7u8WP31CnmtpqesDl79mwJNJdJwowfW758OSNHjsRWUoIzujrWJj1Qw6K1LksEAdUchbVRdxyxNXE6HIwdO5ZFixZpXZa4QosWLfIFmZurl/BIgyIJMn5OUeC+utZSgUZOOV06CTN+6ssvv2TChAmeRSKrplFcvzPoZaVrUY70Rkrq3YQjvj5ut5upU6fy2WefaV2VuEyffPKJL8jcVL2Ev0mQCRhnBpo5c+Ywf/58GbZ9CQxaFyDO9t///pdZs2YBYK/WEFut62Q2X1ExFB0lta9H1ZswHdnCq6++isPh4MEHH9S6MnGRVFXlnXfe4YMPPgCgW41iHqgnp5YCjTfQmPQqC/dEMG/ePPLz8xk4cCA6nXz+X4j8hvzM999/z+zZswGwJzXDVqudBBlRsRQFW41rsFVvBcCbb77Jl19+qXFR4mK4XC5mzZrlCzL31imSIBPAFAXuSiv2Ddv+v//7P1566SVZjuQiyLekH/n555+ZMmUKqqpiT2iMLbW1jFi6GKobxVaAYiv0bVJshSi2AlBlcriLoijYU1pgS24OwIwZM1i+fLm2NYnzslqtvPjii3z++ecoqPRpWEjP2iXykREEutYooX/jAnSKyuLFixk2bBgFBQVal+XXJMz4ia1btzJ27FhcLheOqnWw1bxWgsxFUuxFRG38lKgtf40CiNqykKiNn6LYizSsLPDYq1+NvVpD3G43kyZN4vfff9e6JFGGI0eO8Mwzz7B69WqMOpWB6YXcVF1m9g0m7ZPtZDQrwKxXWbduHQMGDODAgQNal+W3JMz4gdzcXMaOHYvNZsMZk+qZDE+CjNCComCrdR2OKrVxOp1MmDCBo0ePal2VOM3WrVt56qmn2L17NzEmNyNb5nNNgqy1FIxaxDsY3SqPqmYXWVlZDBjwNOvXr9e6LL8kYUZjLpeLyZMnc/ToUdxh0RTX7QTS2UtoSdFRUucGXOFVOXnyJOPHj5dz9n5i0aJFZGRkcPLkSWpEORnbOo+6MfLcBLOaFhfjWudRx+IkP7+AoUOH8p///EdGOp1BvjU19sEHH7BmzRpUnZ7iujfJ8GvhH3QGiuvdhKo3snnzZt566y2tKwppNpuNadOmMXXqVOx2Oy3i7LzYKo/4MOkTFgpizSojW+VxTYINp9PJnDlzmDhxoqyvdhoJMxravXu3bzXbklrtcEdU1bgiIf6ihkV7TnkCn376KVu3btW4otB08OBBBg4cyNdff42Cyt1pVjKaFxAuE2uEFJMeBjYt5MF6RegUlaVLl/L000+zb98+rUvzCxJmNKKqKjNnzvSsfh1bC2d8fa1LEuIsziq1cMTV871e5XRT5Vq5ciVPPvkkO3fuxGJ08/cWBdyRVoxOutSFJEWBbjVLGNEynyomN/v27aN///4sWbJE69I0J2FGI9988w2bNm1C1Rmw1WyrdTlCnJOtRhtUvYkdO3bwxRdfaF1OSLBarUyfPp0xY8ZQVFRE/RgHE6/JI72qQ+vShB9oGOtk4jW5NKnioKSkhMmTJzNp0iQKCwsvfOcgJWFGA3a7nXfeeQcAW0pLVHOUxhUJcW6qMdwz5xEwb948OU9fwf744w+efPJJvvrqKxRUetQqZkTLfKqapX+M+Eu0SWVYi3x6pVnRKSrfffcd/fr1Y+PGjVqXpgkJMxr4/vvvOXbsGG5jBI7EJlqXI8QFOao1wG2OpqCggG+++UbrcoKSy+Xi3//+NwMHDuTAgQNUNbsY3jKf++paMcgntSiDToE704oZ1SqfamEujhw5QkZGBu+++27InRKWt0glU1WVjz/+GMATZHR6jSsS4iIoOuxJTQFPZ+BQ+6CsaAcOHGDw4MG8/fbbuFwu2lSzMemaPBpXkd+zuLD6MU4mXZNH+6QS3G4377//PgMHDmTv3r1al1ZpJMxUst9//529e/ei6gzYqzXUuhwhLpojrj5uQxiHDx/m559/1rqcoOB2u1m4cCGPP/44mzdvJkyv8nijQp5JLyTKKPOIiIsXblDp36SIAU0LiDS42b59O0888QQff/wxLpdL6/IqnISZSrZy5UoAHFXrgMGscTVCXAK9AWdcXQB++OEHjYsJfEeOHOHvf/87s2fPpqSkhMaxDiZfk8sNKTaZAFxctmsT7Uxpm0vzODsOh4O5c+eSkZHBwYMHtS6tQkmYqUSqqvLTTz8BniGvQgQa7+t29erVcqrpMqmqyqJFi+jb9zF+++03TDqVh+sX8ULLfKqFSydfceWqmFWeb15A30aFhOlVNm3aRL9+/fj888+DduZgmXapEu3cuZOjR4+i6gy4opO1LkeIS+aKSsBtMJOfn8/mzZtp0aKF1iUFlOPHj/Pyyy+zatUqAOpGO3iySSHJERJiRPlSFOiUYqNpFQf/3BbFtlyYOXMmP/zwA8OGDSMhIUHrEsuVtMxUIu8Mqq6oRNBJjhQBSNHhsniC+B9//KFxMYFl2bJlPPbYY6xatQqDonJf3SJGX50vQUZUqGrhbl5omc/D9Ysw6lTWrl3LY4/14ZtvvgmqVhrNw8zBgwd5+OGHiYuLIyIighYtWvDbb7/5bldVlXHjxpGSkkJ4eDidOnViy5YtGlZ8+fbs2QOAS5YtEAHMu+zG7t27Na4kMBQUFDBhwgTGjx9Pfn4+NaOcjG+TR49aJTKTr6gUOgW61ihhUptc6kY7KCqy8tJLL/Hiiy9y8uRJrcsrF5qGmZMnT9K+fXuMRiOLFi1i69atvPzyy8TGxvr2mTZtGjNmzODVV19lzZo1JCUl0aVLFwoKCrQr/DJ5P/zd4VU0rkSIy+d9/e7atUvjSvzf+vXr6du3L0uXLkWnqNxZ28q41nnUiAr+0SXC/yRHunmxVT731ilCr3j6cPbt25dffvlF69KumKbnOqZOnUqNGjWYN2+eb1vt2rV9/1dVlVmzZjFq1Ch69eoFwPz580lMTGTBggX079+/sku+ItnZ2QC4w6I1rkSIy+cOiwE8o3FE2ZxOJ/PmzWPBggWoqkpiuIunmxZQJ1pCzKVyueGETYf9tLNxx0p0mHRQ1exGr/n5hcCi10HP2iVcFe/gjS1RHDh5khdeeIG7776bJ598ErM5MEfZavoy+OKLL2jdujX33nsvCQkJtGzZkrffftt3+549e8jOzqZr166+bWazmY4dO/o60J3JZrORn59f6uIvioqKAFBlSLYIYKreBHjWD3K7pb/HmQ4cOMAzzzzDv//9b1RVpWNyCRPb5EqQuUwnbDqeX12FEb/81aI94pcqPL+6CidskmQuV80oF+Na59EltRiA//u//2PAgAG+7hCBRtNXwu7du5k7dy7169fn22+/5amnnuLZZ5/l/fffB/5qyUhMTCx1v8TERN9tZ8rMzCQmJsZ3qVGjRsX+EBfJ5XL5wgynvgyECESqwfP6dbvdFBcXa1yNf/npp5948skn+eOPP4g0uBmUXkC/xkWESX9/4YdMenikgZUhzfOxGN3s2rWLp556iu+//17r0i6ZpmHG7XbTqlUrpkyZQsuWLenfvz9PPPEEc+fOLbWfcsYMUqqqnrXNa8SIEeTl5fkuWVlZFVb/pXA4/lrtVpWRTCKQKX8twVFSUqJhIf7D7XYzf/58Ro0ahdVqpWGMg0nX5NEmwa51aUJcUIt4z4SN6VXs2Gw2Jk6cyJtvvhlQMwdrGmaSk5Np0qT0QouNGzdm//79ACQlJQGc1QqTk5NzVmuNl9lsJjo6utTFH5hMf7XGKG6ZbEwEMPWvD7hAPb9enqxWK2PGjPH1/eucWswLLfOJC5NTcCJwxJpVhrYo4LaantbWDz/8kOHDhwfMYBtNw0z79u3Zvn17qW1//vkntWp5ZhlNS0sjKSmJJUuW+G632+2sWLGCdu3aVWqtV0qn0/31wS9hRgSy016/YWFhGhaivaNHjzJgwAB+/PFHDIpnXaW/NZBVrkVg0ilwfz0rA5oWYNKprFmzhqeeeorDhw9rXdoFafqWe+655/j555+ZMmUKO3fuZMGCBbz11lsMHDgQ8JxeysjIYMqUKSxcuJDNmzfTp08fIiIi6N27t5alX5bw8HAAFJfjAnsK4b+8r1+j0YjBELqnTHNycsjIyGDv3r1UMbkZ1SqfG1JsWpclxBW7NtHOmKvziA9zcfDgQTIyMjh06JDWZZ2XpmGmTZs2LFy4kA8//JD09HQmTpzIrFmzeOihh3z7DBs2jIyMDAYMGEDr1q05ePAgixcvxmKxaFj55fFOH63YCzWuRIjLp7N5Xr/e08ChyBtkDh48SHyYi9FX51E3RlpcRfCoaXEx5uo8kiNcHDlyxO8Xq9S8MbRHjx5s2rSJkpIStm3bxhNPPFHqdkVRGDduHIcPH6akpIQVK1aQnp6uUbVXJiUlBQBdSWCcgxSiLDqb5/WbnBya64t5g8yhQ4eoFuZiZKt84mWBSBGEYs0qI1rmkRzhJCcnh8GDB3PgwAGtyyqT5mEmlHg//HW2PI0rEeLyKSWeuZtCMcw4HA5Gjx7NoUOHSPAGGenoK4JYrFllZKt8qkc6OXbsGC+++CI2m/+dTpUwU4nq1KkDgL7ouMaVCHH59NZjwF+v51Dy7rvvsn37diINbobLiCURImJMKi+0yCfG5Gbv3r1nTZ/iDyTMVKLGjRsDoLOeAHfgjN8XwkdV0Rd5woz39RwqfvvtNz766CMA+jYqklNLIqTEmlWebOzpL/ff//6XH3/8UeOKSpMwU4mqV69OdHQ0iuryBBohAoxSko/ismMymUKqZcZut5OZmYmqqtyYUiKT4YmQ1CzOQbcannlopk2b9tes9n5AwkwlUhSFZs2aAWDI9+9hbkKUxZDvGc3QpEmTkBqWvXLlSo4dO0YVs4ve9f3nA1yIynZvXSuJ4S7y8/P57rvvtC7HR8JMJbvmmmsA0Of5xzILQlwKQ55nJMO1116rcSWV64svvgDgxhQbZv0FdhYiiBl0cHOqZxmTL774AlVVNa7IQ8JMJWvbti0A+sKj4PS/HuFCnJPLiT7fMxOoN5SHgj179rBx40Z0ikrHFFmLSojrk2wYdSq7du1i27ZtWpcDSJipdElJSdSpUwcFFePJfVqXI8RFM+TtR1FdJCYmkpaWpnU5lWbdunUApFdxUMXsH3+FCqGlKKNKy3hPv7HffvtN42o8JMxo4OabbwbAcHyXxpUIcfEMx3cD0Llz53OuWh+MTpzwdNZPjJARiEJ4JYZ73g/e94fWJMxowBtm9AWHUezSmbA89ejRg/fff58ePXqgKAqK3ap1ScHBafP1l+ncubPGxVQu74d1jElaZYTw8r4fJMyEsKSkJJo3b44CGI/+qXU5QeW+++6jZs2a3Hfffaiqik7WwSoXxmM7UFQ39erVC6lTTAD5+Z4ZjyMNMq+MEF6RRs/7IS/PP2a0lzCjkTvuuAMA49E/ZAK9cvTJJ5+wf/9+PvnkExRFwW2K0rqkwKeqmHI8nfy8r9tQ4l0gNqdYhjEJ4eV9PyQmJmpciUfoTBThZ2644QaqVq3KiRMnMJzchzMudCYgq0hfffUVX375JYqioKoqqilC65ICnj7vADpbAVFRUSF3igmgfv36AOwtkI9LIby87wfv+0Nr0jKjEaPRyO233w6AKXsT+MlY/UDnnfPAX+Y+CAam7E0AdO/enfDwcI2rqXzeD+t9hXrc8rISAlWFvQWelpkGDRpoXI2HhBkN3XnnnYSFhaG3Hkef55/LqovQpi/IxlCQjcFg4J577tG6HE2kpaURHR2N1anj92NGrcsRQnNbTxo4adMTFhZGvXr1tC4HkDCjqdjYWO68804AzId+l9YZ4XdMh34HPK0y3r4jocZgMNCjRw8AFmeFXsuUEGdafMDzPrj11luJiPCPU/kSZjR2//33Yzab0RcdQ58rSxwI/6HPP4wh/zAGg4HevXtrXY6m7rzzTnQ6HdtyjewvlI7AInQdsepYf6qFslevXhpX8xcJMxqrUqUKd999NwBhB34Ftwz/FH5AdWPO+gXwzN2TlJSkcUHaSkhIoGPHjgB8sjNCGlFFyPp0dwQqCtdccw01a9bUuhwfCTN+4KGHHiI2NhZdSb5nqLYQGjMc34XeeoLIyEj69OmjdTl+oW/fvhiNRjaeMLHmqEnrcoSodBuPG/k1x4xOp+PJJ5/UupxSJMz4gcjISPr27QuA+eDvKA5ZzE5oyGXHfGAtAI888gixsbHa1uMnatSo4Tvd9u8/Iyl2hs6SDkLYXfD+9kgA7r77br/p+Ot1RWFm586dfPvttxQXFwMyHPZKdO/enbp166K4bJizftW6HBHCzAd+Q+copnr16n51Ttwf9O7dm+rVq3PSrmPBDv/o+ChEZfh0dwQ5JXri4+N57LHHtC7nLJcVZo4fP07nzp1p0KAB3bt35/DhwwA8/vjjPP/88+VaYKgwGAw8//zzKIqC8fhO9PmHtC5JhCBdYY5vtt8hQ4ZgMsnplNOZzWaGDh2KoiisOBzGqmz5/Yjgt+6okW9PjeQbMmSI34xgOt1lhZnnnnsOg8HA/v37S/1Q999/P9988025FRdqmjRp4psuPmzvKnA5Na5IhBS3i7C9PwFwyy23cPXVV2tckH9q2bIlf/vb3wCYtz2Kw0Vytl4Er2PFOt7e5lkW5t5776Vdu3YaV1S2y3oXLl68mKlTp5Kamlpqe/369dm3b1+5FBaqnnjiCeLj49HZ8jEfWKN1OSKEmA7+jr74JDExMTz99NNal+PX/va3v9GiRQtsLoVXN1sokb87KkWPHj14//336dGjB4qikGuTfksVye6C17ZEUeTU0bhxY7/r9Hu6ywozRUVFZTYzHTt2DLPZfMVFhbLIyEiGDx8OgClnG/q8gxpXJEKBvuCIb9mCoUOHSqffC9Dr9YwePZoqVaqQVWTgza0WWeqgEtx3333UrFmT++67D1VVOVYic/5UFFWFd/+IYle+kaioKMaMGYPR6L8zYF9WmLnhhht4//33fdcVRcHtdjN9+nRuvPHGcisuVLVu3Zq77roLgLA9P4BTRjeJCuRyELZnJQoqt9xyCx06dNC6ooAQFxfHxIkTMRoN/HbMxKe7/K8fQbD55JNP2L9/P5988gmKohAf5tK6pKD1v33hrDriGYY9btw4kpOTtS7pvC5rGdjp06fTqVMn1q5di91uZ9iwYWzZsoUTJ07w008/lXeNIal///6sXbuWrKwswvf8QHG9zqBIk6ooZ6pK2N6f0NkKSExMZNCgQVpXFFDS09MZNuwFJk+ezFf7w0mJdNEh2aZ1WUHrq6++4ssvv0RRFFRVJdYszWEVYU2Oic92e8L54MGDad26tcYVXdhltcw0adKEjRs3cs0119ClSxeKioro1asXv//+O3Xr1i3vGkNSWFiYr1nPkJuF8cgWrUsSQch47E+MJ3aj0+kYPXo0UVFRWpcUcLp06cLDDz8MwLt/RLLpuP82xQc67/QfMg1Ixfkz18AbWz2fA3fffbdvUIq/u6yWGYCkpCTGjx9fnrWIM9SvX59nnnmGmTNnYj6wBldUAu6o0FzsT5Q/nfUE5n0/A56O5+np6RpXFLj69u3LoUOHWLp0KXM2WxjRMo860XIKRASWA4V6Zmy04HArtGvXLqAGAlxWmNm4cWOZ2xVFISwsjJo1a0pH4HJy++23s379epYtW0b4zmVYm96OapSVe8UVctoI3/k9iuri2muv5f7779e6ooCm0+kYPnw4ubm5rFu3jpc3RDPm6jwSI2StNREYjpfo+McGC1anjqZNmzJmzBgMhstu76h0l1VpixYtUE713/A29ymn9ecwGo3cf//9vPnmm4SFhZVDmaFLURSGDh3Kzp07ycrKImzXMoob3gqKzG0hLpOqEr57ha+fzPDhw9Hp5PV0pUwmExMnTiQjI4MdO3YwbX00o67Op6pZAo3wb/l2henrLZyw6alVqxaZmZkB9919WZ9gCxcupH79+rz11lts2LCB9evX89Zbb9GwYUMWLFjAO++8w9KlS3nxxRfLu96QFBkZyaRJkwgPD8dQkI05S+afEZfPdOh3DHkHMJlMTJo0SYZhl6PIyEimTp1KSkoKR0v0TPvdQoFdOu4L/2V1KkxfH80hq4Fq1aoxbdo0oqOjtS7rkl1WmJk8eTKzZ8+mX79+NGvWjObNm9OvXz9mzpzJyy+/zEMPPcQrr7zCwoULy7vekFWrVi1GjhwJgOnIFgzHdmpckQhEhpN7MR9aD3jmk6lfv762BQWhqlWr8vLLLxMfH88hq4HpG6KxyqKUwg/ZXPDyBgv7Cg3Exsby8ssvk5iYqHVZl+WywsymTZuoVavWWdtr1arFpk2eibdatGjhW7NJlI8OHTrwyCOPAHiG0xbmaFyRCCQ66wnCdq8EPKMUunbtqnFFwSs5OZmXX36Z2NhY9hYYmLHBgk36Aws/YnfB7E0WduQZiYyMZPr06dSsWVPrsi7bZYWZRo0a8dJLL2G3233bHA4HL730Eo0aNQLg4MGDAZvw/Nljjz1G+/btUVSXpwOnvUjrkkQAUBzFhO/4DsXt5Oqrrw6oUQqBqlatWkyfPp3IyEj+zDMyc2M0dgk0wg843fDaFgubT5gICzMzderUgG+lvaww89prr/Hll1+SmppK586d6dKlC6mpqXz55ZfMnTsXgN27dzNgwIByLVZ4Rk2MGjWKtLQ0dKe+oGRBSnFebhdhO5eisxdSvXp1xo4dG1CjFAJZ/fr1mTZtGuHh4Ww9aWTOZgsO6Q8sNORyw9wtUfx+zITJZGLKlMygmJZBUS9z9qHCwkI++OAD/vzzT1RVpVGjRvTu3RuLxVLeNV6R/Px8YmJiyMvLC8hOTedy+PBhnnrqKfLy8nBUqU1J3RtDdoZgxVZA1MZPy7ytsPm9qGb/ek1WKlUlbO+PGI/tIDIyktdff73MU8SiYm3YsIFhw4Zhs9loFW/nmfQCDDKA7KIcLdbx/OoqZd728nUnqRYu6fBiuVV4c2sUq4+YMRoNTJo0mbZt22pd1jldyvf3Zb+doqKiuOGGG+jatSs33ngjycnJLFu2jC+++OJyH1JcguTkZCZOnIjBYMB4ci+mQ79rXZLwQ8bszRiP7fCtryJBRhtXXXUVkydPxmg0su6YiTe2RuGS72BRidwqvLMtktVHzOj1esaNG+/XQeZSXVZb8+7du7nrrrvYtGmTb42M0+eZcbnkxHBlaN68Oc8//zxTp07FfGg97rAYnHGynITw0OfuJ+yAZxj/M888Q5s2bTSuKLS1bt2aSZMm8eKLo/g1B/QK9G9SiC40G1RFJXKr8N72SH7IDvMtXdK+fXutyypXl9UyM3jwYNLS0jhy5AgRERFs3ryZFStW0Lp1a5YvX17OJYrz6datGw8++CAAYXt+RFd4VOOKhD/QWU8QvmsFAHfccYdvFXahrbZt2zJ+/AT0ej2rj5h5e1skbllmSFQgVYV//RnJ8kNhvj6XnTp10rqscndZYWb16tVMmDCBatWqodPp0Ov1XH/99WRmZvLss8+Wd43iAh5//HHatWt3aoTTdzLCKcT9NXLJQatWrRg0aFCpllOhrXbt2jF27Fh0Oh0/ZYcx7w8JNKJiqCos2BnB9wfDUBSF4cOHc/PNN2tdVoW4rDDjcrl8q+vGx8dz6NAhwDMUcfv27eVXnbgoer2eF198kTp16sgIp1DndhG283vfyKVx48bJyCU/dMMNNzB69Gh0Oh0rDofxwY4IZCFoUZ5UFT7bHc63WZ61/P7+978H9dxSlxVm0tPTfYtNtm3blmnTpvHTTz8xYcIE6tSpU64FiosTERHB5MmTiY2NRW89TtjeH5BPxxCjqpj3r8ZQmENkZCRTpkwJqhF8webGG29k+PDhKIrCdwfC+XiXBBpRfj7fG87/9kUA8Nxzz9G9e3eNK6pYlxVmXnzxRdxuT1f8SZMmsW/fPjp06MDXX3/NnDlzyrVAcfGSk5OZMMFzPt54Yg+m7E1alyQqkfHoH5iO/olOp2PMmDEycikAdO3alSFDhgDw9f5wFu4J17giEQwW7Q/jP3s8QWbAgAHccccdGldU8S4rzNxyyy306tULgDp16rB161aOHTtGTk4ON91000U/zrhx41AUpdQlKSnJd7uqqowbN46UlBTCw8Pp1KkTW7ZsuZySQ0bz5s19/ZbMB9aiz83SuCJRGfQF2Zj3/wzAE088EVRDLoNdz549eeaZZwD4794IFmcF1mrFwr+sOGTmw52RAPTr14/77rtP44oqR7lN21S1atXL6mTYtGlTDh8+7Lt413YCmDZtGjNmzODVV19lzZo1JCUl0aVLFwoKCsqr7KB0++2307NnTwDCd69AscnvK5gpdithO5ehqCo333wzDzzwgNYliUt0zz330LdvXwA+2BHJqmyTxhWJQPTbUSPv/uEJMg888IBvLb9QoPkclAaDgaSkJN+lWrVqgKdVZtasWYwaNYpevXqRnp7O/PnzsVqtLFiwQOOq/ZuiKDz77LM0btwYxWUnfOcycMvcP0FJdRO2ezk6ZzFpaWkMHTpURi4FqEceeYS7774bgLe3RbHhuFHjikQg2XbSwOtbLKgodO/enf79+2tdUqXSPMzs2LGDlJQU0tLSeOCBB9i9ezcAe/bsITs7u1Tva7PZTMeOHVm1apVW5QYMo9HI2LFjsURHo7cew5z1i9YliQpgOrAOQ0E2ERERTJgwgfBw6XMRqBRFYeDAgXTu3BmXqvDKJgt7C/RalyUCwMEiPbM3WXC4Fa6//nqGDBkScn/UaBpm2rZty/vvv8+3337L22+/TXZ2Nu3ateP48eNkZ2cDnLXydmJiou+2sthsNvLz80tdQlVSUhIvjhoFgCnnDwwn9mpbkChX+ryDmLM9owqHDRtGjRo1NK5IXCmdTsfw4cNp06YNdrfCrI0Wcm2h9aUkLk2BQ2HmRgtWp4709HRGjx4dktMxaBpmunXrxt13302zZs3o3LkzX331FQDz58/37XNmujxz6YQzZWZmEhMT47uE+gd827Zt6d27NwBhe3+SCfWChOIoIWzPSgDuvPPOoJzRM1QZDAbGjBlDzZo1OWHTM2tjNHY5SyzK4HTDK5ss5BTrSUpKYtKkSZjNZq3L0oTmp5lOFxkZSbNmzdixY4dvVNOZrTA5OTlntdacbsSIEeTl5fkuWVkymuexxx6jQYMGKC4bYXtk/pmAp6qY9/6IzlFMrVq1ePrpp7WuSJQzi8Vyap4gC7sLDLzzR5S8bcVZ/vVnJH/kGomIiCAzM5PY2FitS9KMX4UZm83Gtm3bSE5OJi0tjaSkJJYsWeK73W63s2LFCtq1a3fOxzCbzURHR5e6hDqj0ciLL76IOSwMQ/4hjDnbtC5JXAHD8Z0Yc/djMBg8z2uI/iUW7FJTU5kwYaJvHacfDsvzLP7ya46JZYc8yxSMGTOGtLQ0rUvSlKZhZujQoaxYsYI9e/bwyy+/cM8995Cfn8+jjz6KoihkZGQwZcoUFi5cyObNm+nTpw8RERG+0ybi4tWsWZOnn3oKAPOB31BshRpXVH5UUySFze+lsOlfiykWNr2Lwub3opoiNays/CmOYsL2/wp4Wtzq16+vcUWiIrVo0cI3ZPtfOyI5bPWrvz+FRo6V6HxDsHv37s21116rcUXa0/SdceDAAR588EEaNmxIr169MJlM/Pzzz76ZS4cNG0ZGRgYDBgygdevWHDx4kMWLF2OxWLQsO2DdfvvtpKeno7gdhO1bHTynmxQdqtmCao7ybVLNUahmCyjB9eFv3v8ListGvXr1uP/++7UuR1SCBx54gJYtW2JzKczdYsHp1roioSW3Cm9sicLq1NG4cWMee+wxrUvyC4qqBss3Wtny8/OJiYkhLy9PTjkBe/fu5fHHH8fpdFJc9yacVWtrXVL5cTmwrPsXAAWtHgF9cM3Toc87SMSf36LT6Zg7dy4NGzbUuiRRSY4ePUq/fv3Iz8/n/rpF3FarROuSKs3RYh3Pr65S5m0vX3eSauGhle6+P2Bm/p9RRERE8M9//pOUlBStS6owl/L9HVx/tooLql27tu80nfnAGplML1Cobt9cQb169ZIgE2KqVavGwIEDAfh8b4QM1w5RhQ6F/zu15tLjjz8e1EHmUkmYCUEPPvggcXFx6GwF0hk4QBiP7UBfnEt0dDSPPvqo1uUIDXTp0oXGjRtT4lL4dFeE1uUIDSzcE06hQ0ft2rW5/fbbtS7Hr0iYCUHh4eH069cPAPOh9eC0aVuQOD+XA9OBdQD87W9/kz5jIUqn0zFo0CAAfsgOY3+hzA4cSo5YdXx/0LMI6aBBg0JyYrzzkTATom655Rbq1KmD4rJjOrJV63LEeRiPbkfnLCYlJYU77rhD63KEhpo0aeKbIHGJrK4dUr47GIZbVWjTpg1XX3211uX4HQkzIUqv1/tWVDUd2QIuh8YViTK5XZiyNwPw0EMPYTQGV6dmcem8i1GuPmKm0CF9Z0JBiRPfPEP33HOPxtX4JwkzIeyGG24gNTUVxWXHePQPrcsRZTAe34nOYSU+Pr7UoqsidKWnp1OvXj3sboUVh2QivVCw6ogZq1NH9erVadOmjdbl+CUJMyFMr9fzwAMPAGA6si145p0JFqqK8cgWAO6//35plRGAZ7067+nGNTkSZkLBr6ee5549e6LTydd2WeS3EuK6dOlCVFQUOnsh+vyDWpcjTqMrOoq+OBez2Uy3bt20Lkf4keuuuw6APQV6CuRUU1CzueDPXE9n3/bt22tcjf+SMBPizGaz7/SF8eifGlcjTmc6uh2AG2+8kaioqAvsLUJJfHw8aWlpqChsPSEtdsHsj1wjTlUhMTGR1NRUrcvxWxJmBD169ADAkLsPnKEzs6hfczkwnNgD/PX8CHG61q1bA7AtV8JMMPvjpOf5bd26NYoirXDnImFGUKdOHerWrYuiqhhO7te6HAEY8g6guJ0kJyfTtGlTrcsRfqhevXoAZFtlvplgdvjU8+t9vkXZJMwIADp27AiA8eRebQsRABhOPQ8dO3aUv8ZEmbynHLJlJe2g5n1+a9SooXEl/k3eBQL4K8zo8w+By65xNSHO7cKQmwXgmyBNiDN5v9xO2PTYZIm1oORWIafY0zIj/WXOT8KMAKBWrVqeOWdUN4b8w1qXE9L0hUdQ3E6qVq0qC0qKc4qOjsZs9gzZzbcH70d5VbObl687SWbbk75tmW1P8vJ1J6lqDu4Vs4scCk7V0zIbHx+vcTX+LXjfAeKSeSdj0ufJEG0teX//bdq0kVNM4ry8o9yszuB9neh1UC3cTXzYX8ElPsxNtXA3+iD/BvM+r+Hh4bIW0wUE+UtBXApvmDHIfDOaMpwWZoQ4n8jISCC4w0wo8z6v3udZnJuEGeHTokULdDodOlsBiq1Q63JCk9OGvvgEAK1atdK4GOHvJMwEt2KXhJmLJWFG+ERERNCgQQPA029DVD59gef3XrNmTapWrapxNcLfefvMONwSZoKR93n1Ps/i3CTMiFKaN28OgL5AOgFrwVCQDcBVV12lcSUiEJhMJkDCTLDyPq/e51mcm4QZUYr3S1RfkKNxJaFJX+gJM82aNdO4EhEI/gozGhciKoT91JB7CTMXJmFGlOKdbVZfkitLG1Q2lxOd9TggYUZcHG9fimLpMxOUSqTPzEWTMCNKiY2NpVatWgDoC6V1pjLpi46iqCrx8fEkJSVpXY4IAKEwNDuUFZ1aEV0Wmr0wCTPiLN5WAW//DVE5vJ2umzVrJvPLiIvi/ZIrcspHeTCynnpeJcxcmLwDxFn+6gQsYaYyeTtdS+dfcbG8I95OlMhHeTA6bvM8r1WqVNG4Ev8n7wBxlhYtWgCgKzoOLoe2xYQKt8t3Wk/CjLhY3vV6DsvK2UHJuyK6LDJ5YRJmxFkSEhJITk5GQZXWmUqiLzqK4nYRHR3t67MkxIXUrFkTgKMlOpwyoimoqOpfYcb7PItzkzAjynT11VcDsrRBZfGux9S6dWt0OnlbiosTHx9PREQEblUhq1BaZ4LJkWIdJS4FvV5PSkqK1uX4PfnUFGW65pprAFl0srJ4Q6OsxyQuhaIotGzZEoANx2UukmCy/tTzedVVV2E0GjWuxv9JmBFlatWqFTqdDn1JHkpJvtblBDXFUYyu6BjwV4gU4mJdd911AGw4Ll94wWTDMc/zee2112pcSWCQMCPKFBUV5euIaji5T+Nqgpvh5D4UoGHDhsTFxWldjggwbdu2BWB3voHjMqopKBTYFf7I9YQZb1gV5yevfHFOnTp1AsB4co+2hQQ5wwnP79f7+xbiUlSrVo0WLVqgovBNVpjW5YhysORAGC5VoUGDBjKS6SJJmBHn1KFDB8+ppqJjcqqpgiiOYt+IMQkz4nL17t0bgOWHwihwyISLgazY6Qkz8NfzKi5Mwow4p6pVq9KqVSsAjMd2aFxNcDIe24GCSuPGjUlOTta6HBGg2rRpQ/369bG5FBZL60xAW3owjCKnjtTUVDp06KB1OQFDwow4rx49egBgPPYnqDKRRblSVYxH/wSgZ8+eGhcjApmiKDz00EMAfL0/nINFMkw7EB0t1vHfvRGAp1VGr5fn8WJJmBHn1b59e2JjY9E5ijHkZmldTlDRFxxGZ8snIiKCG2+8UetyRIDr2LEjbdu2xeFW+Oe2SNyq1hWJS6Gq8M4fkdhcCs2bN+fWW2/VuqSAImFGnJfRaKRbt26e/2dv0ria4GLK3gxAly5dCA8P17gaEegUReH5558nMjKCXflG6QwcYJYfMrP1pAmz2cywYcNk8sxLJL8tcUF33303RqMRQ2GOLG9QTnTW4xjyDqDT6bjvvvu0LkcEiYSEBAYMGAjAp7si+OOkQeOKxMXYlW/ggx2RADz++OO+NbfExZMwIy4oPj6eW265BQDT4Y0aVxMcvL/HTp06Ub16dY2rEcGke/fu3HjjjbhUhdmbLBy2yse8PztWrGPWRgsOt8K1115Lr169tC4pIMmrXFyUBx54AJ1OhyHvAPqCI1qXE9B01uO+uWVk6KUob4qiMHz4cJo0aUKRU8eMDdEyXNtPFTsVZmy0kGfXUbduXcaMGSOdfi+ThBlxUVJTU+nevTsA5qw1nt5q4rKYs9aiADfddBP16tXTuhwRhMxmM5MmTSIpKYkjxXpmbLBQ7JRA409sLpi9ycKBIgNxcXFkZmYSERGhdVkBS8KMuGh9+vQhLCwMfVGOLHFwmfR5BzHkH8RgMPD4449rXY4IYlWrViUzMxOLxcKufCNT11sokhYav1DihBkbotl60kh4eDiTJ08mISFB67ICmoQZcdHi4+N9nVXNWb+Cy6lxRQHG7cK8/xcA7rzzTlJSUjQuSAS7tLQ0ZsyYQXS0hd35Rqauj6ZQAo2mip3w8oZotuUaiYiI4B//+AeNGjXSuqyAJ2FGXJIHHniAhIQEdPZCTIfXa11OQDEd2Yy+JJfY2FgeffRRrcsRIaJ+/frMmDGTmJgY9hYYmPp7NHl2CTRaKHIo/GNDNNvzjERGRvLyyy/TtGlTrcsKChJmxCWJiIjg2WefBTzzpOiKT2pcUWBQbAWYDq0HYMCAAVgsFm0LEiGlXr16zJw5kypVqrCv0MCEtTEcLpKP/8p0tFjHhN+i2ZFnxGKxMGPGDBo3bqx1WUFDXs3ikl1//fW0b98eRXUTtvcnWebgQlSVsL2rUNwuWrZsSZcuXbSuSISgOnXqMGfOHFJSUjhaomfCbzFsz5V5aCrD7nw949fGcNhqoFq1asyePZuGDRtqXVZQ8Zswk5mZiaIoZGRk+Lapqsq4ceNISUkhPDycTp06sWXLFu2KFD7PPvssERER6AtzMGbLc3I+xqPbMeQfxGQyMWTIEBRFmviFNmrUqMFrr71G48aNKXLqmPp7ND8fMWldVlD7/ZiRKetiyHd4hl+//vrr1KlTR+uygo5fhJk1a9bw1ltv0bx581Lbp02bxowZM3j11VdZs2YNSUlJdOnShYKCAo0qFV6JiYk888wzAJgP/ianm85BKcn3dJYGnnzySWrUqKFxRSLUValShZkzZ3L99dfjVBVe32LhP7vDZS2ncqaq8NW+MGZttGB3K7Rp04Y5c+ZQrVo1rUsLSpqHmcLCQh566CHefvttqlSp4tuuqiqzZs1i1KhR9OrVi/T0dObPn4/VamXBggUaViy8unXrxrXXXus53bR7JbhdWpfkX1Q3YXtWoridXHXVVTKzp/AbYWFhjB8/nnvuuQeA/+6N4NXNUZTIAMVyYXfBm1uj+HhXJCoKPXr0IDMzk8jISK1LC1qah5mBAwdy22230blz51Lb9+zZQ3Z2Nl27dvVtM5vNdOzYkVWrVp3z8Ww2G/n5+aUuomIoisLf//53oqOj0VuPYz6wVuuS/Irp0HoMhTlEREQwfPhwWThO+BW9Xs8zzzzDsGHDMBgMrD1qZuK6GI4Wy+v0Spy0KUz5PZpVR8zodDqeffZZnn/+eQwG6Z9UkTR91X700UesW7eOzMzMs27LzvYsaJiYmFhqe2Jiou+2smRmZhITE+O7SLN+xYqLi2P48OEAmI5sQZ+bpXFF/kFfkI3p0AYAnn/+eZKTkzWuSIiyde/enVmzZlGlShWyCg2MWxvDVlmg8rLsyDMwdk0su/ONREdb+Mc//kGvXr2kn1wl0CzMZGVlMXjwYD744APCws69VP2ZLwJVVc/7whgxYgR5eXm+S1aWfLlWtHbt2vlOoYTt+QHFbtW4Io05SwjbtQIFlVtvvZWbb75Z64qEOK/09HTefPNNGjRoQIFDx7T10XybFSarllyC5YfMTFkXTa5dR+3atXnjjTdp1aqV1mWFDM3CzG+//UZOTg5XX301BoMBg8HAihUrmDNnDgaDwdcic2YrTE5OzlmtNaczm81ER0eXuoiK179/f+rWrYvOWULY7uWhO1xbVQnfvRKdo4jU1FTfnDxC+LuEhAReeeUVunTpgltV+PeOSN7aFoldusKdl9MN722P5N0/onCpCjfccAOvv/66zPBdyTQLMzfffDObNm1i/fr1vkvr1q156KGHWL9+PXXq1CEpKYklS5b47mO321mxYgXt2rXTqmxxDmazmfHjxxMREYGhIBvTgXVal6QJ0+GNGPIOYDKZfL8PIQKF2Wxm5MiRDBw4EJ1Ox0/ZYUxaF8PxEulHU5Y8u0Lm79EsPRiGoij069dP3vca0ewVarFYSE9PL3WJjIwkLi6O9PR035wzU6ZMYeHChWzevJk+ffoQERFB7969tSpbnEdqairDhg0DwJy9EX3ufo0rqlz6/MOYDnpCXEZGBnXr1tW4IiEunaIo3HvvvfzjH/8gOjqavQWefjQ78qQfzen25OsZuyaGHaeWJpgyZQqPPPKI9I/RiF/H7WHDhpGRkcGAAQNo3bo1Bw8eZPHixTIVvB/r1KmTr/9M+O6VKLbQmBNIsVsJ27XM10+me/fuWpckxBVp1aoVb775JnXr1iXPrmPKumhWHDJrXZZfWJ1tYtK6GE7Y9NSoUYM33niD6667TuuyQpqiqsHdxSs/P5+YmBjy8vKk/0wlcTgcPPvss2zbtg1XRBzWxreBrhL+qnM5sKz7FwAFrR4BvbHijwngdhO+/WsMhTnUrVuX11577byd2oUIJMXFxWRmZrJy5UoAuqQW07ueFX0l/ylsc8ETK+IAeLvjccz6yj0+gFuFz3ZH8OW+cACuvfZaXnzxRaKioiq/mBBwKd/fft0yIwKT0Whk/PjxxMTEeOaf2fez1iVVKPOBNZ75ZCIjGT9+vAQZEVTCw8MZN24cjz32GABLDoTz8kYLxc7QOp1ic8Ermyy+IPPggw8yefJkCTJ+QsKMqBAJCQmMHj0aRVEwHfsTw9E/tS6pQhhO7MZ0xLM21cgRI0hNTdW4IiHKn06n49FHH2XixImEhZnZfMLEpN+iQ6ZjcK5NYcq6GH47ZsJoNDBq1Cj69++PXq9B85AoU2i8EoUmWrduTd++fQEI27caXdFxjSsqX7riXML2/AR4/kq7/vrrNa5IiIrVoUMHZs+eQ9WqVckqMjB+bQx78oP7C/1AoWfF6z0FBqKjo5kxYyZdunTRuixxBgkzokI99NBDXHfddSiqi/Bd34PTpnVJ5cPlIGznUhS3g5YtW9KvXz+tKxKiUjRs2JC5c+eSlpZGrl3H5HUxbDheSf3TKtkfJw1M/C2G4zY9qampvP766zRr1kzrskQZJMyICqXT6Rg5ciTJycnobIWE71lJwE8rqqqE7f0JfUku8fHxjB49WtZdESElMTGRV155hTZt2mB3K8zaaOGXIyatyypXvx8zMn1DNMUuhebNm/Paa6/JaWQ/JmFGVDiLxcKECRMwGo0YcrMwZm/WuqQrYjy6HeOJ3eh0OsaOHUvVqlW1LkmIShcVFUVmZiY333wzLlXh9S1RLDsYHEO3V2WbmLPJgsOt0L59e6ZPn05MTIzWZYnzkDAjKkX9+vV9U/ubD6xFX3DuxUL9ma7oGOb9ntFZ/fv3lyZnEdIMBgMjR47k9ttvR0Vh3vYovt4f2KP5lh408+ZWz9IEXbp0Yfz48ZjNwRHSgpmEGVFpevToQefOnVFQCdu1HMVRonVJl8ZpJ3zXMhTVTfv27bnvvvu0rkgIzen1ep577jkeeughAD7aGcmiAA00yw6aeW97FCoKd955JyNGjJBTyAFCwoyoNIqiMGTIEGrWrInOYSVszw+B039GVQnb9xM6WwGJiYkMHz5cpi0X4hRFUXjiiSd8oxc/3BnJdwcCqzXjx8Mm3tseCcD999/P4MGD0enkKzJQyDMlKlVERARjxozx9J/Jy8J4ZKvWJV0Uw7EdGE/sQafTMWbMGFlSQ4gyPPLII74Wmvf/jGJlgCx/8GuOibe3eVpk7rrrLp566in5YyXASJgRla5evXoMHDgQ8Mye6+/zz+iKcwk71U+mX79+NG3aVOOKhPBPiqLw+OOPc8899wDwzh+R/HbUv4dtbz5hZO4WT5C57bbbGDRokASZACRhRmjijjvuoEOHDiiqm7DdK8Dt1LqksrldhO1egeJ2cvXVV/Pggw9qXZEQfk1RFAYOHEiPHj1QUZi7xeK3E+sdKNTzyiYLLlXh5ptvZsiQIXJqKUDJsyY0oSgKzz//PFWrVkVfkos5a63WJZXJdGg9eutxLBYLw4cPlw86IS6CoihkZGT45qGZudH/lj7IsyvM2GjxzSPzwgsvyPIEAcy/Xl0ipMTGxvLCCy8AYMrZij7voMYVlaYrzMF0eCMAzz//PNWqVdO4IiECh8FgYNy4cb6ZgmdstGBzaV2Vh8MNszZaOFaip3r16kycOBGTKbgm/Qs1EmaEptq2bcudd94JQNjeH8Hl0LYgL7eT8D0rUVDp2rUrnTp10roiIQJOZGQkmZmZVKlShaxCA/NPjRbS2oc7I9iVb8RisZCZmSkT4gUBCTNCc/379/csd2Avwpy1RutyADAf/B1dST5xcXEMGjRI63KECFhJSUmMHTsWnU7Hj9lh/HBY2xFOv+aY+O5AOACjRo2iZs2amtYjyoeEGaG58PBwhg0bBoDp6B/o8w9rWo+u8KhvyYXnn39ehmELcYVatGjBY489BsD87ZEcKNSmb0pOsY53tkUBnpXur732Wk3qEOVPwozwCy1btuT2228HIGzvT9qNblLdhO39EQWVzp07065dO23qECLIPPTQQ74OwW9sjcLprtzju1V4Y0sUxS6F9PR0Wek+yEiYEX6jf//+xMXFobPlYzq8SZMajEe2oi8+SXR0NM8884wmNQgRjHQ6HSNHjiQmJob9hQa+3BdeqcdffCCMnflGIiIiZKX7ICRhRviNyMhIX4AwHd6AUpJXqcdXbIWYD64DPMEqNja2Uo8vRLCrUqWKb8HZz/eGV9rppiNWHZ/tigDg6aefJjExsVKOKyqPhBnhVzp16kSbNm08k+mdmnW3spiz1qC4naSnp9OtW7dKPbYQoeKmm26iffv2uFSFf/4RibuCl2dTVZi3PQq7W6FVq1b06NGjYg8oNCFhRvgVRVEYPHgwBoMBQ95B9LlZlXJcfUE2xpOetZcyMjJkcjwhKoh3wdnIyEh25xv5sYJHN609amLrSSMmk4mhQ4fKUgVBSj6xhd9JTU2lV69eAJizfgV3BfcUVFXM+38B4LbbbqNevXoVezwhQlxcXByPPPIIAJ/ujqDYWTEBw+7yzCkDntFLKSkpFXIcoT0JM8IvPfLII8TExKAvycN49I8KPZbh+E701uNERkbSt2/fCj2WEMLj7rvvJjU1lTy7ji/2Vkxn4G+ywjlWoqdatWo88MADFXIM4R8kzAi/ZLFYfMHCdGh9xc0M7HZhPvg74Bk6WqVKlYo5jhCiFKPRyIABAwDPSKOTtvJtnSl0KL4RU/379yc8vHJHT4nKJWFG+K3u3buTkpKCzlmC6ciWCjmG8eh2dPZC4uLifKe2hBCV47rrriM9PR2HW+F/5TxUe9H+MEpcCnXr1uWmm24q18cW/kfCjPBbRqPxr9aZ7E3gtJXvAVwOT6sP8OijjxIWFla+jy+EOC9FUXzv8eUHw8ptZe18u8LiU0sWPPbYY9KhPwTIMyz82k033USdOnVQXA5MR7aef2edgYJWj1DQ6hHQXXhCLOPR7eicJaSkpNC9e/dyqlgIcSlatmzJVVddhVNV+KqcWme+zQrD5lJo0KAB7du3L5fHFP5NwozwazqdzjfqwXRkC7js595ZUUBv9FwuNPzS7fS09uDpKyOzgQqhDUVR+Nvf/gbAysNmCh1X1nemxAnfH/S0sj7yyCMyFDtESJgRfu+GG26gRo0aKC47ppxt5fKYxmM70DmKSUhIoGvXruXymEKIy9OqVSvq1q2L3a2w7OCVzTvzQ3YYVqeO6tWry9pqIUTCjPB7er2ehx9+GPCsnYTbdWUPqLp9rTIPPPAARqPxSksUQlwBRVG4//77AVhyIPyyF6F0q55TTAD33HMPer02q3OLyidhRgSEm266ifj4eHSOYgwndl/RYxly96OzFRIdHS3LFgjhJ2688UaqVq1Krl3H78dMl/UYW04YySnWExkZya233lrOFQp/JmFGBASj0chdd90FgCl7i2fBlct9rGzPMO/bb79d5p4Qwk8YjUbfHxcrDl3eqaYVp5ZG6NKli7y3Q4yEGREwevbsSVhYGPriE+gLj1zWY+isxzEUHkGv13PnnXeWb4FCiCviDTObThg5donDtPPtCr8d9bToyGKSoUfCjAgY0dHR3HzzzQAYc7Zf1mN473fDDTcQHx9fbrUJIa5camoqLVu2REVhVfaltc78fMSMS/UMx5b11UKPhBkRUHr27AmA4eReFEfJpd3Z5cB4fGepxxFC+JfOnTsD8EvOpfWb8e7fpUuXcq9J+D8JMyKgNGrUiAYNGqCoLgzHd13SfY0n9qC4nb6//oQQ/qdDhw7o9XqyCg0cKrq4r6jjJTp25BlRFIVOnTpVbIHCL0mYEQHHe17d28pysQyn9u/WrZtMpCWEn4qOjqZNmzYA/Jpzcaea1pzqK9OsWTOqVatWYbUJ/yVhRgScG2+8EYPBgN56HF3xyYu6j2IrwFCQjaIo0gwthJ/r0KEDAOuPX9wcUOuPGUvdT4QeCTMi4MTGxtK2bVsADMcu7lST8bhnbpqWLVuSkJBQYbUJIa6c9/29J99Avv38rajFTtie6wkz1157bYXXJvyThBkRkLydBI0n917UnDOGk3sBz+R7Qgj/Fh8fT7169VBR2HiB1pmtJ424VIWUlBRSU1MrqULhbyTMiIDUtm1bTCYTOlv+BU81KSX5nlNSOh3XX399JVUohLgS11xzDQBbTp4/zGw5YfLtL33hQpeEGRGQIiIifJ0Eva0u52I4uQ+Aq666itjY2AquTAhRHlq0aAH8dQrpXLbnGkrtL0KThBkRsLyd/Qy5Wefdz5CXVWp/IYT/S09PR6fTcaxEf87ZgAsdCllFnjBz1VVXVWZ5ws9oGmbmzp1L8+bNiY6OJjo6muuuu45Fixb5bldVlXHjxpGSkkJ4eDidOnViy5YtGlYs/Im3GVpvPY7isJa9k8vuW/rA26lQCOH/IiIiaNCgAQB/nmp9OdOOPM/2GjVqUKVKlUqrTfgfTcNMamoqL730EmvXrmXt2rXcdNNN3HHHHb7AMm3aNGbMmMGrr77KmjVrSEpKokuXLhQUFGhZtvATVatW9X3Y6fMOlrmPIe8QiqpSo0YNqlevXpnlCSGuUOPGjQHYU1B2mNmT79nepEmTSqtJ+CdNw0zPnj3p3r07DRo0oEGDBkyePJmoqCh+/vlnVFVl1qxZjBo1il69epGens78+fOxWq0sWLBAy7KFH/G2zhjyDpV5uz7fs93bv0YIETi8f6zsPVeYObW9YcOGlVaT8E9+02fG5XLx0UcfUVRUxHXXXceePXvIzs6ma9euvn3MZjMdO3Zk1apVGlYq/Il3WQJ9weEyh2jrC7JL7SeECBzekLKvwIC7jBkY9kqYEaeUHXcr0aZNm7juuusoKSkhKiqKhQsX0qRJE19gSUxMLLV/YmIi+/btO+fj2Ww2bDab73p+fn7FFC78QtOmTTEYDDgdVhRbAWpYtO82xVGMviQXRVGkc6AQAahmzZoYjUZKHI6zOgEX2BXy7J5tderU0aI84Uc0b5lp2LAh69ev5+eff+bpp5/m0UcfZevWrb7bz5w3QFXV884lkJmZSUxMjO9So0aNCqtdaC8sLIxGjRoB+Dr6eukLPNfr1KlDdHT0WfcVQvg3g8FAzZo1AThs1Ze67WCR53pycjLh4eGVXpvwL5qHGZPJRL169WjdujWZmZlcddVVzJ49m6SkJACys7NL7Z+Tk3NWa83pRowYQV5enu+SlXX+Ybsi8DVt2hQAfeHRUtv1RZ7r0jlQiMBVu3ZtAA4XlR1mvLeL0KZ5mDmTqqrYbDbS0tJISkpiyZIlvtvsdjsrVqygXbt257y/2Wz2DfX2XkRw84548IYXL92p697bhRCBp1atWsDZYcbbUuO9XYQ2TfvMjBw5km7dulGjRg0KCgr46KOPWL58Od988w2KopCRkcGUKVOoX78+9evXZ8qUKURERNC7d28tyxZ+xhtWdMUnwO0EnQFUFX3RMQDfaSghRODxTqlwtKR0mDlSrC91uwhtmoaZI0eO8Mgjj3D48GFiYmJo3rw533zzDV26dAFg2LBhFBcXM2DAAE6ePEnbtm1ZvHgxFotFy7KFn0lISCA6Opr8/Hx0JXm4I+JQbAUobidGo9F3zl0IEXh8Yaa4dJjJkTAjTqNpmHnnnXfOe7uiKIwbN45x48ZVTkEiICmKQp06dVi/fj066wncEXHoi08AkJaWhsGg+aA9IcRlSklJASDX8VevCLcKR4t1pW4Xoc3v+swIcTnq1q0LgN7qWUFbd+rftLQ0zWoSQlw5i8VCREQEABNbn+Ttjscpdio4VQWdTkd8fLzGFQp/IGFGBAXvqSRdSV6pf2WkgxCBTVEUEhISAChw6jHr4YTNc4qpWrVq0vIqAAkzIkikpqYCoLOVDjPe7UKIwOWdjuP4qYnzTtg8/3pDjhASZkRQ8E6OqNgKwO1GV5JfarsQInBVq1YNgJOnQsyJU6FGTjEJLwkzIijEx8djNBpRVBVd8QkUtwPwzA4qhAhscXFxwF9h5uSpZQy8IUcICTMiKOh0Ol+Ts3cZgypVqmA2m7UsSwhRDrwtMLmnQkzuqVBTtWpVzWoS/kXCjAga3vPq3jWazrfshRAicHhbZrwhxvuvd7sQEmZE0PA2OesLcwDpHChEsPC2wOTZPYsM5zuUUtuFkDAjgob3rzSdwwrIB50QwaJKlSoA5Nt1qCrknTrd5N0uhIQZETTODC8SZoQIDrGxsQA4VYUCh0KhQ8KMKE3CjAgaZ4YX+aATIjiYzWbfLMCHTq2erSgK0dHRWpYl/IiEGRE0zvxgi4mJ0agSIUR587bOHLJ6wkx0dDR6vf489xChRMKMCBpnhhn5q02I4OH948TbMuMNN0KAhBkRRM4cpinDNoUIHr4wc6plRlpexelkhS4RNOLi4hg6dCjbt28nLS1NljIQIoh4W1pzTjvNJISXhBkRVHr06EGPHj20LkMIUc4sFgsAOSUSZsTZ5DSTEEIIv3fmaSVvuBECJMwIIYQIAFFRUaWuS5gRp5MwI4QQwu9JmBHnI2FGCCGE3zszzJx5XYQ2CTNCCCH83pnhJTIyUqNKhD+SMCOEEMLveZczONd1EdokzAghhPB7Z7bESMuMOJ2EGSGEEH5PWmbE+UiYEUII4ffCw8PPe12ENgkzQggh/J7RaCx1XcKMOJ2EGSGEEH5PUZRS100mk0aVCH8kYUYIIUTAOTPciNAmYUYIIYQQAU3CjBBCCCECmoQZIYQQQgQ0CTNCCCGECGgSZoQQQggR0CTMCCGECAht2rQBoEmTJhpXIvyNQesChBBCiIsxbNgwVq5cSbt27bQuRfgZCTNCCCECQrVq1bj77ru1LkP4ITnNJIQQQoiAJmFGCCGEEAFNwowQQgghApqEGSGEEEIENAkzQgghhAhoEmaEEEIIEdAkzAghhBAioEmYEUIIIURAkzAjhBBCiICmaZjJzMykTZs2WCwWEhISuPPOO9m+fXupfVRVZdy4caSkpBAeHk6nTp3YsmWLRhULIYQQwt9oGmZWrFjBwIED+fnnn1myZAlOp5OuXbtSVFTk22fatGnMmDGDV199lTVr1pCUlESXLl0oKCjQsHIhhBBC+AtFVVVV6yK8jh49SkJCAitWrOCGG25AVVVSUlLIyMjghRdeAMBms5GYmMjUqVPp37//BR8zPz+fmJgY8vLyiI6OrugfQQghhBDl4FK+v/2qz0xeXh4AVatWBWDPnj1kZ2fTtWtX3z5ms5mOHTuyatWqMh/DZrORn59f6iKEEEKI4OU3q2arqsqQIUO4/vrrSU9PByA7OxuAxMTEUvsmJiayb9++Mh8nMzOT8ePHn7VdQo0QQggROLzf2xdzAslvwswzzzzDxo0b+fHHH8+6TVGUUtdVVT1rm9eIESMYMmSI7/rBgwdp0qQJNWrUKN+ChRBCCFHhCgoKiImJOe8+fhFmBg0axBdffMHKlStJTU31bU9KSgI8LTTJycm+7Tk5OWe11niZzWbMZrPvelRUFFlZWVgslnMGIBE88vPzqVGjBllZWdJHSoggI+/v0KKqKgUFBaSkpFxwX03DjKqqDBo0iIULF7J8+XLS0tJK3Z6WlkZSUhJLliyhZcuWANjtdlasWMHUqVMv6hg6na5UQBKhITo6Wj7shAhS8v4OHRdqkfHSNMwMHDiQBQsW8Pnnn2OxWHx9ZGJiYggPD0dRFDIyMpgyZQr169enfv36TJkyhYiICHr37q1l6UIIIYTwE5qGmblz5wLQqVOnUtvnzZtHnz59ABg2bBjFxcUMGDCAkydP0rZtWxYvXozFYqnkaoUQQgjhj/xqnhkhrpTNZiMzM5MRI0aU6jslhAh88v4W5yJhRgghhBABza8mzRNCCCGEuFQSZoQQQggR0CTMCCGEECKgSZgRIaFPnz7ceeedWpchREhQVZUnn3ySqlWroigK69ev16SOvXv3anp8UXn8YgZgIYQQweObb77hvffeY/ny5dSpU4f4+HitSxJBTsKMEEKIcrVr1y6Sk5Np166d1qWIECGnmYTf6dSpE4MGDSIjI4MqVaqQmJjIW2+9RVFREY899hgWi4W6deuyaNEiAFwuF/369SMtLY3w8HAaNmzI7Nmzz3sMVVWZNm0aderUITw8nKuuuorPPvusMn48IYJanz59GDRoEPv370dRFGrXrn3B99vy5ctRFIVvv/2Wli1bEh4ezk033UROTg6LFi2icePGREdH8+CDD2K1Wn33++abb7j++uuJjY0lLi6OHj16sGvXrvPWt3XrVrp3705UVBSJiYk88sgjHDt2rMJ+H6JySJgRfmn+/PnEx8fz66+/MmjQIJ5++mnuvfde2rVrx7p167jlllt45JFHsFqtuN1uUlNT+eSTT9i6dStjxoxh5MiRfPLJJ+d8/BdffJF58+Yxd+5ctmzZwnPPPcfDDz/MihUrKvGnFCL4zJ49mwkTJpCamsrhw4dZs2bNRb/fxo0bx6uvvsqqVavIysrivvvuY9asWSxYsICvvvqKJUuW8Morr/j2LyoqYsiQIaxZs4bvv/8enU7HXXfdhdvtLrO2w4cP07FjR1q0aMHatWv55ptvOHLkCPfdd1+F/k5EJVCF8DMdO3ZUr7/+et91p9OpRkZGqo888ohv2+HDh1VAXb16dZmPMWDAAPXuu+/2XX/00UfVO+64Q1VVVS0sLFTDwsLUVatWlbpPv3791AcffLAcfxIhQtPMmTPVWrVqqap6ce+3ZcuWqYD63Xff+W7PzMxUAXXXrl2+bf3791dvueWWcx43JydHBdRNmzapqqqqe/bsUQH1999/V1VVVUePHq127dq11H2ysrJUQN2+fftl/7xCe9JnRvil5s2b+/6v1+uJi4ujWbNmvm2JiYkA5OTkAPDGG2/wz3/+k3379lFcXIzdbqdFixZlPvbWrVspKSmhS5cupbbb7Xbf6uxCiPJxKe+309/3iYmJREREUKdOnVLbfv31V9/1Xbt2MXr0aH7++WeOHTvma5HZv38/6enpZ9Xy22+/sWzZMqKios66bdeuXTRo0ODyfkihOQkzwi8ZjcZS1xVFKbVNURQA3G43n3zyCc899xwvv/wy1113HRaLhenTp/PLL7+U+djeD7yvvvqK6tWrl7pN1nsRonxdyvvtzPd4WZ8Dp59C6tmzJzVq1ODtt98mJSUFt9tNeno6drv9nLX07NmTqVOnnnVbcnLypf1gwq9ImBEB74cffqBdu3YMGDDAt+18nQCbNGmC2Wxm//79dOzYsTJKFCJkVdT77fjx42zbto0333yTDh06APDjjz+e9z6tWrXi//7v/6hduzYGg3z9BRN5NkXAq1evHu+//z7ffvstaWlp/Otf/2LNmjWkpaWVub/FYmHo0KE899xzuN1urr/+evLz81m1ahVRUVE8+uijlfwTCBG8Kur9VqVKFeLi4njrrbdITk5m//79DB8+/Lz3GThwIG+//TYPPvggf//734mPj2fnzp189NFHvP322+j1+suqRWhPwowIeE899RTr16/n/vvvR1EUHnzwQQYMGOAbul2WiRMnkpCQQGZmJrt37yY2NpZWrVoxcuTISqxciNBQEe83nU7HRx99xLPPPkt6ejoNGzZkzpw5dOrU6Zz3SUlJ4aeffuKFF17glltuwWazUatWLW699VZ0OhncG8gUVVVVrYsQQgghhLhcEkWFEEIIEdAkzAghhBAioEmYEUIIIURAkzAjhBBCiIAmYUYIIYQQAU3CjBBCCCECmoQZIYQQQgQ0CTNCCCGECGgSZoQQQggR0CTMCCGEECKgSZgRQvilzz77jGbNmhEeHk5cXBydO3emqKgIgHnz5tG4cWPCwsJo1KgRr7/+uu9+ffv2pXnz5thsNgAcDgdXX301Dz30kCY/hxCi4kmYEUL4ncOHD/Pggw/St29ftm3bxvLly+nVqxeqqvL2228zatQoJk+ezLZt25gyZQqjR49m/vz5AMyZM4eioiLfCsqjR4/m2LFjpQKPECK4yEKTQgi/s27dOq6++mr27t1LrVq1St1Ws2ZNpk6dyoMPPujbNmnSJL7++mtWrVoFwOrVq+nYsSPDhw8nMzOT77//nhtuuKFSfwYhROWRMCOE8Dsul4tbbrmFX3/9lVtuuYWuXbtyzz334HQ6SUhIIDw8HJ3ur4Zlp9NJTEwMR44c8W0bOXIkmZmZvPDCC7z00kta/BhCiEpi0LoAIYQ4k16vZ8mSJaxatYrFixfzyiuvMGrUKP73v/8B8Pbbb9O2bduz7uPldrv56aef0Ov17Nixo1JrF0JUPukzI4TwS4qi0L59e8aPH8/vv/+OyWTip59+onr16uzevZt69eqVuqSlpfnuO336dLZt28aKFSv49ttvmTdvnoY/iRCioknLjBDC7/zyyy98//33dO3alYSEBH755ReOHj1K48aNGTduHM8++yzR0dF069YNm83G2rVrOXnyJEOGDGH9+vWMGTOGzz77jPbt2zN79mwGDx5Mx44dqVOnjtY/mhCiAkifGSGE39m2bRvPPfcc69atIz8/n1q1ajFo0CCeeeYZABYsWMD06dPZunUrkZGRNGvWjIyMDLp168bVV1/N9ddfz5tvvul7vF69enHkyBFWrlxZ6nSUECI4SJgRQgghRECTPjNCCCGECGgSZoQQQggR0CTMCCGEECKgSZgRQgghRECTMCOEEEKIgCZhRgghhBABTcKMEEIIIQKahBkhhBBCBDQJM0IIIYQIaBJmhBBCCBHQJMwIIYQQIqBJmBFCCCFEQPt/+79DcElFdfMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = sns.violinplot(X, x='sex', y='age')\n", + "ax.set_xticklabels(['male', 'female'])\n", + "plt.title('Age distribution')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "522ff499-cd7f-4417-ae7d-d637402505b8", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzIUlEQVR4nO3dfVxUdf7//+eoMFyIqKgMKCoWZolaaRnUhkpganbhWpbupmX7MUFb0jIpS3QNki3XNtOy3dTdMtvPpl1ZpqVSLbmSZpqpny7QsCS2VMArUHh///Dn/JzAKxyc8b2P++12bjfP+7zPOa8zZ4Cn73POjMMYYwQAAGCpBr4uAAAAoD4RdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2gHNk48aNuuuuuxQbG6ugoCA1btxYl19+uXJzc7V79253v/bt2+uGG27w2n63b98uh8Oh+fPne22bx8vPz1dWVpb27t1bL9sfMWKE2rdvXy/bPt7q1avlcDi0evXqs9r3Dz/8oKysLG3YsOGM1qttXw6HQ2PGjDmj7ZzK7Nmza30v1Pf7BPAlwg5wDrzwwgvq3r27CgoK9OCDD2rZsmVasmSJbr31Vj333HMaOXKkr0uss/z8fE2ZMqXews6jjz6qJUuW1Mu262PfP/zwg6ZMmXLGYedcHeeJwk5UVJQ++eQTDRgwoN5rAM61Rr4uALDdJ598otGjRyslJUWvv/66nE6ne1lKSorGjx+vZcuW+bBC/3TgwAGFhIToggsu8FkN52Lf/nCckuR0OnXVVVf5tAagvjCyA9Sz7OxsORwOzZ071yPoHBMYGKgbb7yxRvuyZct0+eWXKzg4WJ06ddKLL75Yo88XX3yhm266Sc2aNVNQUJAuvfRSLViw4LTq+uqrrzR06FC1atVKTqdTF198sZ599lmPPtXV1Zo2bZouuugiBQcHq2nTpuratauefvppSVJWVpYefPBBSVJsbKwcDkeNS0GvvvqqEhISFBoaqsaNG6tv37767LPPPPYzYsQINW7cWJs2bVJqaqrCwsKUnJzsXnaiyzt///vfdfHFFyskJETdunXT22+/fVrHvnXrVl1//fUKCQlRixYtdO+996q8vLxGv9r2/b//+7/q2bOnwsPDFRISog4dOujuu++WdPRS2BVXXCFJuuuuu9yvR1ZWVp2O85jnn39eHTt2lNPp1CWXXKJFixZ5LM/KypLD4aix3vz58+VwOLR9+3ZJRy+Rbt68WXl5ee7aju3zRJexPv74YyUnJyssLEwhISFKTEzU0qVLa93PqlWrNHr0aLVo0UIREREaNGiQfvjhh1qPCTiXGNkB6lFVVZVWrlyp7t27KyYm5rTX+/zzzzV+/HhNnDhRkZGR+stf/qKRI0fqwgsv1LXXXitJ2rZtmxITE9WqVSv9+c9/VkREhF566SWNGDFCP/74oyZMmHDC7X/55ZdKTExU27Zt9dRTT8nlcum9997Tfffdp59++kmTJ0+WJOXm5iorK0uTJk3Stddeq8OHD2vr1q3uS1b33HOPdu/erWeeeUaLFy9WVFSUJOmSSy6RdDToTZo0SXfddZcmTZqkyspK/fGPf9SvfvUrrV271t1PkiorK3XjjTdq1KhRmjhxoo4cOXLS12jp0qUqKCjQ1KlT1bhxY+Xm5uqWW27Rtm3b1KFDhxOu9+OPPyopKUkBAQGaPXu2IiMj9fLLL5/WvTGffPKJhgwZoiFDhigrK0tBQUHasWOHVq5cKUm6/PLLNW/ePPfxHrsk1KZNmzof55tvvqlVq1Zp6tSpCg0N1ezZs3XHHXeoUaNGGjx48ClrPt6SJUs0ePBghYeHa/bs2ZJUawA/Ji8vTykpKeratav++te/yul0avbs2Ro4cKBeeeUVDRkyxKP/PffcowEDBmjhwoUqKirSgw8+qN/85jfu1wfwGQOg3hQXFxtJ5vbbbz/tddq1a2eCgoLMjh073G0HDx40zZs3N6NGjXK33X777cbpdJrvvvvOY/1+/fqZkJAQs3fvXmOMMYWFhUaSmTdvnrtP3759TZs2bUxpaanHumPGjDFBQUFm9+7dxhhjbrjhBnPppZeetN4//vGPRpIpLCz0aP/uu+9Mo0aNzNixYz3ay8vLjcvlMrfddpu7bfjw4UaSefHFF2tsf/jw4aZdu3YebZJMZGSkKSsrc7cVFxebBg0amJycnJPW+9BDDxmHw2E2bNjg0Z6SkmIkmVWrVp1w308++aSR5H5ta1NQUFDj9T6b4wwODjbFxcXutiNHjphOnTqZCy+80N02efJkU9uv83nz5tU4N507dzZJSUk1+tb2PrnqqqtMq1atTHl5ucf+4+PjTZs2bUx1dbXHftLS0jy2mZubaySZXbt21dgfcC5xGQvwQ5deeqnatm3rng8KClLHjh21Y8cOd9vKlSuVnJxcY8RoxIgROnDggD755JNat33o0CF98MEHuuWWWxQSEqIjR464p/79++vQoUNas2aNJOnKK6/U559/rrS0NL333nsqKys77WN47733dOTIEd15550e+wgKClJSUpLHpa5jfv3rX5/29nv37q2wsDD3fGRkpFq1auXxGtVm1apV6ty5s7p16+bRPnTo0FPu89glqttuu03/+Mc/9P333592vcc7k+NMTk5WZGSke75hw4YaMmSIvv76a+3cubNO+z8d+/fv17///W8NHjxYjRs39tj/b3/7W+3cuVPbtm3zWOeXl2O7du0qSac8J0B9I+wA9ahFixYKCQlRYWHhGa0XERFRo83pdOrgwYPu+Z9//tl92eh40dHR7uW1+fnnn3XkyBE988wzCggI8Jj69+8vSfrpp58kSZmZmXryySe1Zs0a9evXTxEREUpOTtann356ymP48ccfJR0NCL/cz6uvvurexzEhISFq0qTJKbd7zOm8RrX5+eef5XK5arTX1vZL1157rV5//XV3iGvTpo3i4+P1yiuvnHbdZ3qcJ6v1ROfYG/bs2SNjzBm9x355To5dIjvVOQHqG/fsAPWoYcOGSk5O1rvvvqudO3d63LtxtiIiIrRr164a7cduCG3RokWt6zVr1sz9v/P09PRa+8TGxkqSGjVqpHHjxmncuHHau3ev3n//fT388MPq27evioqKFBIScsL6ju3/n//8p9q1a3fK46ntBtv6EBERoeLi4hrttbXV5qabbtJNN92kiooKrVmzRjk5ORo6dKjat2+vhISEU65/psd5slqPhYugoCBJUkVFhcc9OL8MlGeiWbNmatCgQZ3eY4C/YWQHqGeZmZkyxuh3v/udKisrayw/fPiw3nrrrTPebnJyslauXFnjaZe//e1vCgkJOeFjxCEhIerdu7c+++wzde3aVT169Kgx1TZq0rRpUw0ePFjp6enavXu3+wmfE/3vvW/fvmrUqJG++eabWvfRo0ePMz5mb+jdu7c2b96szz//3KN94cKFZ7Qdp9OppKQkTZ8+XZLcT5h5ezTjgw8+cI+SSUdven/11Vd1wQUXuMPzsSeqNm7c6LFube+r0xn9kqTQ0FD17NlTixcv9uhfXV2tl156SW3atFHHjh3rckjAOcfIDlDPEhISNGfOHKWlpal79+4aPXq0OnfurMOHD+uzzz7T3LlzFR8fr4EDB57RdidPnqy3335bvXv31mOPPabmzZvr5Zdf1tKlS5Wbm6vw8PATrvv000/rmmuu0a9+9SuNHj1a7du3V3l5ub7++mu99dZb7qdnBg4cqPj4ePXo0UMtW7bUjh07NHPmTLVr105xcXGSpC5duri3OXz4cAUEBOiiiy5S+/btNXXqVD3yyCP69ttvdf3116tZs2b68ccftXbtWoWGhmrKlCl1fFXrLiMjQy+++KIGDBigadOmuZ/G2rp16ynXfeyxx7Rz504lJyerTZs22rt3r55++mkFBAQoKSlJ0tHP5gkODtbLL7+siy++WI0bN1Z0dLT70s+ZatGihfr06aNHH33U/TTW1q1bPR4/79+/v5o3b66RI0dq6tSpatSokebPn6+ioqIa2+vSpYsWLVqkV199VR06dFBQUJD7HP5STk6OUlJS1Lt3bz3wwAMKDAzU7Nmz9cUXX+iVV145Z6NxwFnz9R3SwH+LDRs2mOHDh5u2bduawMBAExoaai677DLz2GOPmZKSEne/du3amQEDBtRYPykpqcZTNJs2bTIDBw404eHhJjAw0HTr1q3GU0C1PWVzrP3uu+82rVu3NgEBAaZly5YmMTHRTJs2zd3nqaeeMomJiaZFixYmMDDQtG3b1owcOdJs377dY1uZmZkmOjraNGjQoMYTTa+//rrp3bu3adKkiXE6naZdu3Zm8ODB5v3333f3GT58uAkNDa31dTvRU0rp6ek1+rZr184MHz681u0c78svvzQpKSkmKCjING/e3IwcOdK88cYbp3wa6+233zb9+vUzrVu3NoGBgaZVq1amf//+5qOPPvLY/iuvvGI6depkAgICjCQzefLkszrO2bNnmwsuuMAEBASYTp06mZdffrnG+mvXrjWJiYkmNDTUtG7d2kyePNn85S9/qfE01vbt201qaqoJCwszktz7PNH75KOPPjJ9+vQxoaGhJjg42Fx11VXmrbfe8uhz7GmsgoICj/ZVq1bVeE0BX3AYY4yPchYAAEC9454dAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACr8aGCOvqJoD/88IPCwsL4kCwAAM4TxhiVl5crOjpaDRqcePyGsKOj3/Pyy2+OBgAA54eioqKTfvcgYUdSWFiYpKMv1pl8GzEAAPCdsrIyxcTEuP+OnwhhR///txA3adKEsAMAwHnmVLegcIMyAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqNfF0A4C3tJy71dQlnbPsTA3xdAgBYj5EdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKv5NOx8+OGHGjhwoKKjo+VwOPT66697LDfGKCsrS9HR0QoODlavXr20efNmjz4VFRUaO3asWrRoodDQUN14443auXPnOTwKAADgz3wadvbv369u3bpp1qxZtS7Pzc3VjBkzNGvWLBUUFMjlciklJUXl5eXuPhkZGVqyZIkWLVqkjz/+WPv27dMNN9ygqqqqc3UYAADAjzXy5c779eunfv361brMGKOZM2fqkUce0aBBgyRJCxYsUGRkpBYuXKhRo0aptLRUf/3rX/X3v/9d1113nSTppZdeUkxMjN5//3317dv3nB0LAADwT357z05hYaGKi4uVmprqbnM6nUpKSlJ+fr4kad26dTp8+LBHn+joaMXHx7v7AACA/24+Hdk5meLiYklSZGSkR3tkZKR27Njh7hMYGKhmzZrV6HNs/dpUVFSooqLCPV9WVuatsgEAgJ/x25GdYxwOh8e8MaZG2y+dqk9OTo7Cw8PdU0xMjFdqBQAA/sdvw47L5ZKkGiM0JSUl7tEel8ulyspK7dmz54R9apOZmanS0lL3VFRU5OXqAQCAv/DbsBMbGyuXy6UVK1a42yorK5WXl6fExERJUvfu3RUQEODRZ9euXfriiy/cfWrjdDrVpEkTjwkAANjJp/fs7Nu3T19//bV7vrCwUBs2bFDz5s3Vtm1bZWRkKDs7W3FxcYqLi1N2drZCQkI0dOhQSVJ4eLhGjhyp8ePHKyIiQs2bN9cDDzygLl26uJ/OAgAA/918GnY+/fRT9e7d2z0/btw4SdLw4cM1f/58TZgwQQcPHlRaWpr27Nmjnj17avny5QoLC3Ov86c//UmNGjXSbbfdpoMHDyo5OVnz589Xw4YNz/nxAAAA/+MwxhhfF+FrZWVlCg8PV2lpKZe0zmPtJy71dQlnbPsTA3xdAgCct07377ff3rMDAADgDYQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDV/DrsHDlyRJMmTVJsbKyCg4PVoUMHTZ06VdXV1e4+xhhlZWUpOjpawcHB6tWrlzZv3uzDqgEAgD/x67Azffp0Pffcc5o1a5a2bNmi3Nxc/fGPf9Qzzzzj7pObm6sZM2Zo1qxZKigokMvlUkpKisrLy31YOQAA8Bd+HXY++eQT3XTTTRowYIDat2+vwYMHKzU1VZ9++qmko6M6M2fO1COPPKJBgwYpPj5eCxYs0IEDB7Rw4UIfVw8AAPyBX4eda665Rh988IH+7//+T5L0+eef6+OPP1b//v0lSYWFhSouLlZqaqp7HafTqaSkJOXn559wuxUVFSorK/OYAACAnRr5uoCTeeihh1RaWqpOnTqpYcOGqqqq0uOPP6477rhDklRcXCxJioyM9FgvMjJSO3bsOOF2c3JyNGXKlPorHAAA+A2/Htl59dVX9dJLL2nhwoVav369FixYoCeffFILFizw6OdwODzmjTE12o6XmZmp0tJS91RUVFQv9QMAAN/z65GdBx98UBMnTtTtt98uSerSpYt27NihnJwcDR8+XC6XS9LREZ6oqCj3eiUlJTVGe47ndDrldDrrt3gAAOAX/Hpk58CBA2rQwLPEhg0buh89j42Nlcvl0ooVK9zLKysrlZeXp8TExHNaKwAA8E9+PbIzcOBAPf7442rbtq06d+6szz77TDNmzNDdd98t6ejlq4yMDGVnZysuLk5xcXHKzs5WSEiIhg4d6uPqAQCAP/DrsPPMM8/o0UcfVVpamkpKShQdHa1Ro0bpsccec/eZMGGCDh48qLS0NO3Zs0c9e/bU8uXLFRYW5sPKAQCAv3AYY4yvi/C1srIyhYeHq7S0VE2aNPF1Oaij9hOX+rqEM7b9iQG+LgEAzlun+/fbr+/ZAQAAOFuEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFitka8LgH9qP3Gpr0sAAMArGNkBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFbjE5QBHzofP6l6+xMDfF0CAJwRRnYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsVqewU1RUpJ07d7rn165dq4yMDM2dO9drhQEAAHhDncLO0KFDtWrVKklScXGxUlJStHbtWj388MOaOnWqVwsEAAA4G3UKO1988YWuvPJKSdI//vEPxcfHKz8/XwsXLtT8+fO9WZ++//57/eY3v1FERIRCQkJ06aWXat26de7lxhhlZWUpOjpawcHB6tWrlzZv3uzVGgAAwPmrTmHn8OHDcjqdkqT3339fN954oySpU6dO2rVrl9eK27Nnj66++moFBATo3Xff1ZdffqmnnnpKTZs2dffJzc3VjBkzNGvWLBUUFMjlciklJUXl5eVeqwMAAJy/GtVlpc6dO+u5557TgAEDtGLFCv3hD3+QJP3www+KiIjwWnHTp09XTEyM5s2b525r3769+9/GGM2cOVOPPPKIBg0aJElasGCBIiMjtXDhQo0aNcprtQAAgPNTnUZ2pk+frueff169evXSHXfcoW7dukmS3nzzTfflLW9488031aNHD916661q1aqVLrvsMr3wwgvu5YWFhSouLlZqaqq7zel0KikpSfn5+SfcbkVFhcrKyjwmAABgpzqN7PTq1Us//fSTysrK1KxZM3f7//zP/yg0NNRrxX377beaM2eOxo0bp4cfflhr167VfffdJ6fTqTvvvFPFxcWSpMjISI/1IiMjtWPHjhNuNycnR1OmTPFanQAAwH/VaWSnT58+Ki8v9wg6ktS8eXMNGTLEK4VJUnV1tS6//HJlZ2frsssu06hRo/S73/1Oc+bM8ejncDg85o0xNdqOl5mZqdLSUvdUVFTktZoBAIB/qVPYWb16tSorK2u0Hzp0SB999NFZF3VMVFSULrnkEo+2iy++WN99950kyeVySZJ7hOeYkpKSGqM9x3M6nWrSpInHBAAA7HRGl7E2btzo/veXX37pETKqqqq0bNkytW7d2mvFXX311dq2bZtH2//93/+pXbt2kqTY2Fi5XC6tWLFCl112mSSpsrJSeXl5mj59utfqAAAA568zCjuXXnqpHA6HHA6H+vTpU2N5cHCwnnnmGa8Vd//99ysxMVHZ2dm67bbbtHbtWs2dO9f9Sc0Oh0MZGRnKzs5WXFyc4uLilJ2drZCQEA0dOtRrdQAAgPPXGYWdwsJCGWPUoUMHrV27Vi1btnQvCwwMVKtWrdSwYUOvFXfFFVdoyZIlyszM1NSpUxUbG6uZM2dq2LBh7j4TJkzQwYMHlZaWpj179qhnz55avny5wsLCvFYHAAA4fzmMMcbXRfhaWVmZwsPDVVpayv07/5/2E5f6ugT4qe1PDPB1CQAg6fT/ftfp0XPp6L0zq1evVklJiaqrqz2WPfbYY3XdLAAAgFfVKey88MILGj16tFq0aCGXy+XxmLfD4SDsAAAAv1GnsDNt2jQ9/vjjeuihh7xdDwAAgFfV6XN29uzZo1tvvdXbtQAAAHhdncLOrbfequXLl3u7FgAAAK+r02WsCy+8UI8++qjWrFmjLl26KCAgwGP5fffd55XiAAAAzladHj2PjY098QYdDn377bdnVdS5xqPnNfHoOU6ER88B+It6ffS8sLCwzoUBAACcS3W6ZwcAAOB8UaeRnbvvvvuky1988cU6FQMAAOBtdQo7e/bs8Zg/fPiwvvjiC+3du7fWLwgFAADwlTqFnSVLltRoq66uVlpamjp06HDWRQEAAHiL1+7ZadCgge6//3796U9/8tYmAQAAzppXb1D+5ptvdOTIEW9uEgAA4KzU6TLWuHHjPOaNMdq1a5eWLl2q4cOHe6UwAAAAb6hT2Pnss8885hs0aKCWLVvqqaeeOuWTWgAAAOdSncLOqlWrvF0HAABAvahT2DnmP//5j7Zt2yaHw6GOHTuqZcuW3qoLAADAK+p0g/L+/ft19913KyoqStdee61+9atfKTo6WiNHjtSBAwe8XSMAAECd1SnsjBs3Tnl5eXrrrbe0d+9e7d27V2+88Yby8vI0fvx4b9cIAABQZ3W6jPXaa6/pn//8p3r16uVu69+/v4KDg3Xbbbdpzpw53qoPAADgrNRpZOfAgQOKjIys0d6qVSsuYwEAAL9Sp7CTkJCgyZMn69ChQ+62gwcPasqUKUpISPBacQAAAGerTpexZs6cqX79+qlNmzbq1q2bHA6HNmzYIKfTqeXLl3u7RgAAgDqrU9jp0qWLvvrqK7300kvaunWrjDG6/fbbNWzYMAUHB3u7RgAAgDqrU9jJyclRZGSkfve733m0v/jii/rPf/6jhx56yCvFAQAAnK063bPz/PPPq1OnTjXaO3furOeee+6siwIAAPCWOoWd4uJiRUVF1Whv2bKldu3addZFAQAAeEudwk5MTIz+9a9/1Wj/17/+pejo6LMuCgAAwFvqdM/OPffco4yMDB0+fFh9+vSRJH3wwQeaMGECn6AMAAD8Sp3CzoQJE7R7926lpaWpsrJSkhQUFKSHHnpImZmZXi0QAADgbNQp7DgcDk2fPl2PPvqotmzZouDgYMXFxcnpdHq7PgAAgLNSp7BzTOPGjXXFFVd4qxYAAACvq9MNygAAAOcLwg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVzquwk5OTI4fDoYyMDHebMUZZWVmKjo5WcHCwevXqpc2bN/uuSAAA4FfOm7BTUFCguXPnqmvXrh7tubm5mjFjhmbNmqWCggK5XC6lpKSovLzcR5UCAAB/cl6EnX379mnYsGF64YUX1KxZM3e7MUYzZ87UI488okGDBik+Pl4LFizQgQMHtHDhQh9WDAAA/MV5EXbS09M1YMAAXXfddR7thYWFKi4uVmpqqrvN6XQqKSlJ+fn5J9xeRUWFysrKPCYAAGCnRr4u4FQWLVqk9evXq6CgoMay4uJiSVJkZKRHe2RkpHbs2HHCbebk5GjKlCneLRQAAPglvx7ZKSoq0u9//3u99NJLCgoKOmE/h8PhMW+MqdF2vMzMTJWWlrqnoqIir9UMAAD8i1+P7Kxbt04lJSXq3r27u62qqkoffvihZs2apW3btkk6OsITFRXl7lNSUlJjtOd4TqdTTqez/goHAAB+w69HdpKTk7Vp0yZt2LDBPfXo0UPDhg3Thg0b1KFDB7lcLq1YscK9TmVlpfLy8pSYmOjDygEAgL/w65GdsLAwxcfHe7SFhoYqIiLC3Z6RkaHs7GzFxcUpLi5O2dnZCgkJ0dChQ31RMgAA8DN+HXZOx4QJE3Tw4EGlpaVpz5496tmzp5YvX66wsDBflwYAAPyAwxhjfF2Er5WVlSk8PFylpaVq0qSJr8vxC+0nLvV1CfBT258Y4OsSAEDS6f/99ut7dgAAAM4WYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNXO+8/ZAXBunY8fS8Dj8sB/N0Z2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAq/l12MnJydEVV1yhsLAwtWrVSjfffLO2bdvm0ccYo6ysLEVHRys4OFi9evXS5s2bfVQxAADwN34ddvLy8pSenq41a9ZoxYoVOnLkiFJTU7V//353n9zcXM2YMUOzZs1SQUGBXC6XUlJSVF5e7sPKAQCAv2jk6wJOZtmyZR7z8+bNU6tWrbRu3Tpde+21MsZo5syZeuSRRzRo0CBJ0oIFCxQZGamFCxdq1KhRvigbAAD4Eb8e2fml0tJSSVLz5s0lSYWFhSouLlZqaqq7j9PpVFJSkvLz80+4nYqKCpWVlXlMAADATudN2DHGaNy4cbrmmmsUHx8vSSouLpYkRUZGevSNjIx0L6tNTk6OwsPD3VNMTEz9FQ4AAHzqvAk7Y8aM0caNG/XKK6/UWOZwODzmjTE12o6XmZmp0tJS91RUVOT1egEAgH/w63t2jhk7dqzefPNNffjhh2rTpo273eVySTo6whMVFeVuLykpqTHaczyn0ymn01l/BQMAAL/h1yM7xhiNGTNGixcv1sqVKxUbG+uxPDY2Vi6XSytWrHC3VVZWKi8vT4mJiee6XAAA4If8emQnPT1dCxcu1BtvvKGwsDD3fTjh4eEKDg6Ww+FQRkaGsrOzFRcXp7i4OGVnZyskJERDhw71cfUAAMAf+HXYmTNnjiSpV69eHu3z5s3TiBEjJEkTJkzQwYMHlZaWpj179qhnz55avny5wsLCznG1AADAH/l12DHGnLKPw+FQVlaWsrKy6r8gAABw3vHre3YAAADOFmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAVmvk6wJs137iUl+XAADAfzVGdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUa+boAAEBN7Scu9XUJZ2z7EwN8XQJQK0Z2AACA1Qg7AADAaoQdAABgNe7ZAWC98/H+FwDew8gOAACwGmEHAABYjbADAACsRtgBAABWsybszJ49W7GxsQoKClL37t310Ucf+bokAADgB6x4GuvVV19VRkaGZs+erauvvlrPP/+8+vXrpy+//FJt27b1dXkAAHjN+fh0oa8/XduKkZ0ZM2Zo5MiRuueee3TxxRdr5syZiomJ0Zw5c3xdGgAA8LHzPuxUVlZq3bp1Sk1N9WhPTU1Vfn6+j6oCAAD+4ry/jPXTTz+pqqpKkZGRHu2RkZEqLi6udZ2KigpVVFS450tLSyVJZWVlXq+vuuKA17cJAP6oPn6Hoqbz8e9Kfb03jm3XGHPSfud92DnG4XB4zBtjarQdk5OToylTptRoj4mJqZfaAOC/QfhMX1cAf1Xf743y8nKFh4efcPl5H3ZatGihhg0b1hjFKSkpqTHac0xmZqbGjRvnnq+urtbu3bsVERFxwoCEc6OsrEwxMTEqKipSkyZNfF0OjsO58V+cG//Eeal/xhiVl5crOjr6pP3O+7ATGBio7t27a8WKFbrlllvc7StWrNBNN91U6zpOp1NOp9OjrWnTpvVZJs5QkyZN+OXgpzg3/otz4584L/XrZCM6x5z3YUeSxo0bp9/+9rfq0aOHEhISNHfuXH333Xe69957fV0aAADwMSvCzpAhQ/Tzzz9r6tSp2rVrl+Lj4/XOO++oXbt2vi4NAAD4mBVhR5LS0tKUlpbm6zJwlpxOpyZPnlzjMiN8j3Pjvzg3/onz4j8c5lTPawEAAJzHzvsPFQQAADgZwg4AALAaYQcAAFiNsAMAAKxG2EG9ysnJ0RVXXKGwsDC1atVKN998s7Zt2+bRxxijrKwsRUdHKzg4WL169dLmzZs9+lRUVGjs2LFq0aKFQkNDdeONN2rnzp3n8lCsM2fOHHXt2tX9gWcJCQl699133cs5L/4jJydHDodDGRkZ7jbOj29kZWXJ4XB4TC6Xy72c8+KfCDuoV3l5eUpPT9eaNWu0YsUKHTlyRKmpqdq/f7+7T25urmbMmKFZs2apoKBALpdLKSkpKi8vd/fJyMjQkiVLtGjRIn388cfat2+fbrjhBlVVVfnisKzQpk0bPfHEE/r000/16aefqk+fPrrpppvcv5g5L/6hoKBAc+fOVdeuXT3aOT++07lzZ+3atcs9bdq0yb2M8+KnDHAOlZSUGEkmLy/PGGNMdXW1cblc5oknnnD3OXTokAkPDzfPPfecMcaYvXv3moCAALNo0SJ3n++//940aNDALFu27NwegOWaNWtm/vKXv3Be/ER5ebmJi4szK1asMElJSeb3v/+9MYafG1+aPHmy6datW63LOC/+i5EdnFOlpaWSpObNm0uSCgsLVVxcrNTUVHcfp9OppKQk5efnS5LWrVunw4cPe/SJjo5WfHy8uw/OTlVVlRYtWqT9+/crISGB8+In0tPTNWDAAF133XUe7Zwf3/rqq68UHR2t2NhY3X777fr2228lcV78mTWfoAz/Z4zRuHHjdM011yg+Pl6S3N9W/8tvqI+MjNSOHTvcfQIDA9WsWbMafX75bfc4M5s2bVJCQoIOHTqkxo0ba8mSJbrkkkvcv3Q5L76zaNEirV+/XgUFBTWW8XPjOz179tTf/vY3dezYUT/++KOmTZumxMREbd68mfPixwg7OGfGjBmjjRs36uOPP66xzOFweMwbY2q0/dLp9MHJXXTRRdqwYYP27t2r1157TcOHD1deXp57OefFN4qKivT73/9ey5cvV1BQ0An7cX7OvX79+rn/3aVLFyUkJOiCCy7QggULdNVVV0nivPgjLmPhnBg7dqzefPNNrVq1Sm3atHG3H3uK4Zf/oykpKXH/78jlcqmyslJ79uw5YR/UTWBgoC688EL16NFDOTk56tatm55++mnOi4+tW7dOJSUl6t69uxo1aqRGjRopLy9Pf/7zn9WoUSP368v58b3Q0FB16dJFX331FT83foywg3pljNGYMWO0ePFirVy5UrGxsR7LY2Nj5XK5tGLFCndbZWWl8vLylJiYKEnq3r27AgICPPrs2rVLX3zxhbsPvMMYo4qKCs6LjyUnJ2vTpk3asGGDe+rRo4eGDRumDRs2qEOHDpwfP1FRUaEtW7YoKiqKnxt/5qMbo/FfYvTo0SY8PNysXr3a7Nq1yz0dOHDA3eeJJ54w4eHhZvHixWbTpk3mjjvuMFFRUaasrMzd59577zVt2rQx77//vlm/fr3p06eP6datmzly5IgvDssKmZmZ5sMPPzSFhYVm48aN5uGHHzYNGjQwy5cvN8ZwXvzN8U9jGcP58ZXx48eb1atXm2+//dasWbPG3HDDDSYsLMxs377dGMN58VeEHdQrSbVO8+bNc/eprq42kydPNi6XyzidTnPttdeaTZs2eWzn4MGDZsyYMaZ58+YmODjY3HDDDea77747x0djl7vvvtu0a9fOBAYGmpYtW5rk5GR30DGG8+Jvfhl2OD++MWTIEBMVFWUCAgJMdHS0GTRokNm8ebN7OefFPzmMMcaXI0sAAAD1iXt2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAOKccDodef/31s9pGr169lJGR4ZV6vC0rK0uXXnqpr8sAcBzCDgCvKi4u1tixY9WhQwc5nU7FxMRo4MCB+uCDD3xdWq1Wr14th8OhvXv3emV7DzzwgN8eK/DfqpGvCwBgj+3bt+vqq69W06ZNlZubq65du+rw4cN67733lJ6erq1bt/q6xHpjjFFVVZUaN26sxo0b+7ocAMdhZAeA16SlpcnhcGjt2rUaPHiwOnbsqM6dO2vcuHFas2aNu99PP/2kW265RSEhIYqLi9Obb77psZ28vDxdeeWVcjqdioqK0sSJE3XkyJET7reyslITJkxQ69atFRoaqp49e2r16tXu5Tt27NDAgQPVrFkzhYaGqnPnznrnnXe0fft29e7dW5LUrFkzORwOjRgxQtLR8JKbm6sOHTooODhY3bp10z//+U/3No+NCL333nvq0aOHnE6nPvrooxqXsUaMGKGbb75ZTz75pKKiohQREaH09HQdPnz4LF5pAGeCsAPAK3bv3q1ly5YpPT1doaGhNZY3bdrU/e8pU6botttu08aNG9W/f38NGzZMu3fvliR9//336t+/v6644gp9/vnnmjNnjv76179q2rRpJ9z3XXfdpX/9619atGiRNm7cqFtvvVXXX3+9vvrqK0lSenq6Kioq9OGHH2rTpk2aPn26GjdurJiYGL322muSpG3btmnXrl16+umnJUmTJk3SvHnzNGfOHG3evFn333+/fvOb3ygvL89j3xMmTFBOTo62bNmirl271lrfqlWr9M0332jVqlVasGCB5s+fr/nz55/2awvgLPn2e0gB2OLf//63kWQWL1580n6SzKRJk9zz+/btMw6Hw7z77rvGGGMefvhhc9FFF5nq6mp3n2effdY0btzYVFVVGWM8vwH866+/Ng6Hw3z//fce+0lOTjaZmZnGGGO6dOlisrKyaq1n1apVRpLZs2ePR01BQUEmPz/fo+/IkSPNHXfc4bHe66+/7tFn8uTJplu3bu754cOHm3bt2pkjR46422699VYzZMiQE75GALyLe3YAeIUxRtLRp61O5fgRkNDQUIWFhamkpESStGXLFiUkJHhs5+qrr9a+ffu0c+dOtW3b1mNb69evlzFGHTt29GivqKhQRESEJOm+++7T6NGjtXz5cl133XX69a9/fcJRGEn68ssvdejQIaWkpHi0V1ZW6rLLLvNo69GjxymPt3PnzmrYsKF7PioqSps2bTrlegC8g7ADwCvi4uLkcDi0ZcsW3XzzzSftGxAQ4DHvcDhUXV0t6Who+mVgOlmQqq6uVsOGDbVu3TqPQCHJfaPwPffco759+2rp0qVavny5cnJy9NRTT2ns2LG11neslqVLl6p169Yey5xOp8d8bZfsfulkxwug/nHPDgCvaN68ufr27atnn31W+/fvr7H8dB/tvuSSS5Sfn+8OOJKUn5+vsLCwGsFDki677DJVVVWppKREF154ocfkcrnc/WJiYnTvvfdq8eLFGj9+vF544QVJUmBgoCSpqqrKowan06nvvvuuxjZjYmJO6zgA+A/CDgCvmT17tqqqqnTllVfqtdde01dffaUtW7boz3/+sxISEk5rG2lpaSoqKtLYsWO1detWvfHGG5o8ebLGjRunBg1q/srq2LGjhg0bpjvvvFOLFy9WYWGhCgoKNH36dL3zzjuSpIyMDL333nsqLCzU+vXrtXLlSl188cWSpHbt2snhcOjtt9/Wf/7zH+3bt09hYWF64IEHdP/992vBggX65ptv9Nlnn+nZZ5/VggULvPeCATgnuIwFwGtiY2O1fv16Pf744xo/frx27dqlli1bqnv37pozZ85pbaN169Z655139OCDD6pbt25q3ry5Ro4cqUmTJp1wnXnz5mnatGkaP368vv/+e0VERCghIUH9+/eXdHTUJj09XTt37lSTJk10/fXX609/+pN7f1OmTNHEiRN111136c4779T8+fP1hz/8Qa1atVJOTo6+/fZbNW3aVJdffrkefvjhs3+hAJxTDnP8WDEAAIBluIwFAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNX+H72RWtwEq6cBAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = plt.hist(X['chol'])\n", + "plt.xlabel('Cholesterin')\n", + "plt.ylabel('counts')\n", + "plt.title('Cholesterin distribution')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "f220fadf-33ec-4bf6-a225-a2c874f02088", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+BElEQVR4nO3de1yUZf7/8fcoOIACnpABRaUVD3ls0zxkghbkIbVsy7KDZvU10Vx1y2MptQZladSauvootTVrt1IzNRVLyY1MNF1PZa7hMcgyBDwByvX7ox+zjoAcQmduez0fj/vxcK77muv+zMXovL3u+2ZsxhgjAAAAi6ri7gIAAAB+C8IMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMIGnhwoWy2WwuW1BQkKKiorRy5coi/W02m+Li4q56nQcPHpTNZtPChQuv+rF/zy79eRe+Xw4ePFiuceLj47V8+fJyPae4Y0VFRalVq1blGqc0q1evLvE93bhxYw0ZMqRSjwdUJsIMcJEFCxboyy+/VEpKiubNm6eqVauqb9+++vjjj91dGjxInz599OWXXyokJKRcz6tImKnoscpr9erVeu6554rdt2zZMj377LNX9PjAb+Hl7gIAT9KqVSu1b9/e+bhnz56qVauW3n33XfXt29eNlV1dZ86ckZ+fn7vLKDNjjM6dOydfX9+rcrygoCAFBQVd0WOcPXtWPj4+V+VYpbnhhhvcenygNKzMAJfh4+OjatWqydvbu9S+u3fvVv/+/VWrVi35+PioXbt2WrRoUZF+hw8f1oMPPqh69erJbrerRYsWmjFjhgoKClz6/fDDD7r33nvl7++vwMBADRw4UBkZGWWqu/DURFJSkh555BHVrl1b1atXV9++ffX999+79C08ZfH555+rS5cu8vPz09ChQyVJ2dnZeuqppxQeHq5q1aqpfv36Gj16tE6fPu0yxvvvv6+OHTsqMDBQfn5+uu6665xjSFJBQYGmTZumZs2aydfXVzVr1lSbNm302muvOfsMGTJEjRs3LvJa4uLiZLPZXNpsNptGjhypuXPnqkWLFrLb7c653r9/vwYNGuQyv2+88UaZ5i07O1uPP/646tSpoxo1aqhnz5767rvvSpzfi0/9bN++XXfccYfzuKGhoerTp4+OHj3qrPn06dNatGiR81RmVFSUy3jr1q3T0KFDFRQUJD8/P+Xm5l72lNamTZvUqVMn+fr6qn79+nr22Wd14cIF5/6NGzfKZrNp48aNLs+79HTlkCFDnHN08anWwmMWd5qpLO/jwuO88sormjlzpsLDw1WjRg117txZmzdvLsNPBCgbVmaAi1y4cEHnz5+XMUY//vijXn75ZZ0+fVqDBg267PP27dunLl26qF69enr99ddVp04dLV68WEOGDNGPP/6ocePGSZJ++ukndenSRXl5efrrX/+qxo0ba+XKlXrqqad04MABzZ49W9Kv/yu/7bbb9MMPPyghIUFNmzbVqlWrNHDgwHK9nkcffVTR0dFasmSJjhw5omeeeUZRUVHauXOnatas6eyXnp6uBx98UOPGjVN8fLyqVKmiM2fOKDIyUkePHtWkSZPUpk0b7dmzR1OmTNGuXbu0fv162Ww2ffnllxo4cKAGDhyouLg4+fj46NChQ/rss8+c40+fPl1xcXF65pln1K1bN+Xn5+vbb7/VyZMny/V6LrZ8+XJt2rRJU6ZMkcPhUL169bR371516dJFDRs21IwZM+RwOLR27VqNGjVKP//8s6ZOnVrieMYY3XnnnUpJSdGUKVPUoUMHffHFF+rVq1eptZw+fVrR0dEKDw/XG2+8oeDgYGVkZGjDhg3KycmRJH355Zfq0aOHunfv7jxlExAQ4DLO0KFD1adPH/3jH//Q6dOnLxuiMzIydN9992nChAl6/vnntWrVKk2bNk2ZmZmaNWtWWabQ6dlnn9Xp06f1wQcf6Msvv3S2l3Rqq6zv40JvvPGGmjdvrsTEROfxevfurbS0NAUGBparVqBYBoBZsGCBkVRks9vtZvbs2UX6SzJTp051Pr7vvvuM3W43hw8fdunXq1cv4+fnZ06ePGmMMWbChAlGkvnqq69c+g0fPtzYbDazb98+Y4wxc+bMMZLMRx995NLv8ccfN5LMggULyvR67rrrLpf2L774wkgy06ZNc7ZFRkYaSebTTz916ZuQkGCqVKliUlNTXdo/+OADI8msXr3aGGPMK6+8YiQ5X2Nx7rjjDtOuXbvL1jx48GDTqFGjIu1Tp041l/5TJckEBgaaX375xaX99ttvNw0aNDBZWVku7SNHjjQ+Pj5F+l/sk08+MZLMa6+95tL+wgsvFPl5F85vWlqaMcaYrVu3Gklm+fLll32N1atXN4MHDy7SXjjeww8/XOK+wmMZ87+fWXHvjypVqphDhw4ZY4zZsGGDkWQ2bNjg0i8tLa3I+2jEiBFF5rlQo0aNXOou6/u48DitW7c258+fd/bbsmWLkWTefffdYo8HlBenmYCLvP3220pNTVVqaqo++eQTDR48WCNGjCj1f7qfffaZbr31VoWFhbm0DxkyRGfOnHH+b/ezzz7T9ddfr5tuuqlIP2OMczVjw4YN8vf3V79+/Vz6lbZCdKkHHnjA5XGXLl3UqFEjbdiwwaW9Vq1a6tGjh0vbypUr1apVK7Vr107nz593brfffrvLqYsOHTpIku69917961//0rFjx4rUcdNNN+k///mPYmNjtXbtWmVnZ5frdRSnR48eqlWrlvPxuXPn9Omnn+quu+6Sn5+fS829e/fWuXPnLntqo3BOLp2zssx5kyZNVKtWLY0fP15z587V3r17K/Sa7r777jL3Len9UVBQoM8//7xCxy+rsr6PC/Xp00dVq1Z1Pm7Tpo0k6dChQ1e0Tvx+EGaAi7Ro0ULt27dX+/bt1bNnT/39739XTEyMxo0bd9lTIidOnCh2ST40NNS5v7z9goODi/RzOBzlej3F9Xc4HM7jFCquph9//FE7d+6Ut7e3y+bv7y9jjH7++WdJUrdu3bR8+XKdP39eDz/8sBo0aKBWrVrp3XffdY41ceJEvfLKK9q8ebN69eqlOnXq6NZbb9XWrVvL9XouV/OJEyd0/vx5/e1vfytSc+/evSXJWXNxTpw4IS8vL9WpU8elvSxzHhgYqOTkZLVr106TJk1Sy5YtFRoaqqlTpyo/P7/Cr+lyLvf+uPTnW9nK+j4udOmc2u12Sb+eTgUqA9fMAKVo06aN1q5dq++++67I/0QL1alTR+np6UXaf/jhB0lS3bp1y91vy5YtRfqV9QLgy/XPyMhQkyZNXNouvcC2sBZfX1+99dZbxY5dWKsk9e/fX/3791dubq42b96shIQEDRo0SI0bN1bnzp3l5eWlsWPHauzYsTp58qTWr1+vSZMm6fbbb9eRI0fk5+cnHx8f5ebmFjlOSQHk0ppr1aqlqlWr6qGHHtKIESOKfU54eHix7dKvc37+/HmdOHHC5cO3rHPeunVrvffeezLGaOfOnVq4cKGef/55+fr6asKECWUao7ifQ0l+/PHHIm2FtRbW7+PjI0lF5vVyoa4syvo+Bq4WVmaAUuzYsUOSLnt77K233qrPPvvM+Y95obffflt+fn7q1KmTs9/evXv19ddfF+lns9nUvXt3SVL37t2Vk5OjFStWuPRbsmRJuWp/5513XB6npKTo0KFDzrtoLueOO+7QgQMHVKdOHedq1cVbcXce2e12RUZG6qWXXpL06x0+l6pZs6b+9Kc/acSIEfrll19c7pg5fvy4y4d0Xl6e1q5dW6bX6ufnp+7du2v79u1q06ZNsTVfukJwscK5v3TOyjvnNptNbdu21auvvqqaNWu6/KztdnulrUaU9P6oUqWKunXrJknOn9HOnTtd+l36vMLapLKtlpT1fQxcLazMABfZvXu3zp8/L+nXpfKlS5cqKSlJd91112X/Vz916lStXLlS3bt315QpU1S7dm298847WrVqlaZPn+68Y2PMmDF6++231adPHz3//PNq1KiRVq1apdmzZ2v48OFq2rSpJOnhhx/Wq6++qocfflgvvPCCIiIitHr16jJ/sBfaunWrHnvsMd1zzz06cuSIJk+erPr16ys2NrbU544ePVoffvihunXrpjFjxqhNmzYqKCjQ4cOHtW7dOv3lL39Rx44dNWXKFB09elS33nqrGjRooJMnT+q1116Tt7e3IiMjJUl9+/Z1/g6foKAgHTp0SImJiWrUqJEiIiIkSQMHDtSUKVN033336emnn9a5c+f0+uuvu9xqXJrXXntNXbt21S233KLhw4ercePGysnJ0X//+199/PHHRa7luFhMTIy6deumcePG6fTp02rfvr2++OIL/eMf/yj1uCtXrtTs2bN155136rrrrpMxRkuXLtXJkycVHR3t7Ne6dWtt3LhRH3/8sUJCQuTv769mzZqV+fVdrE6dOho+fLgOHz6spk2bavXq1Zo/f76GDx+uhg0bSvr1tNNtt92mhIQE1apVS40aNdKnn36qpUuXFhmvdevWkqSXXnpJvXr1UtWqVdWmTRtVq1atSN+yvo+Bq8atlx8DHqK4u5kCAwNNu3btzMyZM825c+dc+uuSu1uMMWbXrl2mb9++JjAw0FSrVs20bdu22LuODh06ZAYNGmTq1KljvL29TbNmzczLL79sLly44NLv6NGj5u677zY1atQw/v7+5u677zYpKSnluptp3bp15qGHHjI1a9Y0vr6+pnfv3mb//v0ufSMjI03Lli2LHefUqVPmmWeeMc2aNTPVqlUzgYGBpnXr1mbMmDEmIyPDGGPMypUrTa9evUz9+vVNtWrVTL169Uzv3r3Npk2bnOPMmDHDdOnSxdStW9dUq1bNNGzY0Dz66KPm4MGDLsdbvXq1adeunfH19TXXXXedmTVrVol3M40YMaLYmtPS0szQoUNN/fr1jbe3twkKCjJdunRxuYOrJCdPnjRDhw41NWvWNH5+fiY6Otp8++23pd7N9O2335r777/f/OEPfzC+vr4mMDDQ3HTTTWbhwoUu4+/YscPcfPPNxs/Pz0gykZGRLuNdeudYcccy5n8/s40bN5r27dsbu91uQkJCzKRJk0x+fr7L89PT082f/vQnU7t2bRMYGGgefPBB591XF7+PcnNzzWOPPWaCgoKMzWZzOealdzMZU7b3ceHdTC+//HKR11Xc3yGgomzGGHO1AxSAK2vhwoV65JFHlJqa6vIbjQHgWsQ1MwAAwNIIMwAAwNI4zQQAACyNlRkAAGBphBkAAGBphBkAAGBp1/wvzSsoKNAPP/wgf3//cv2qcAAA4D7GGOXk5Cg0NFRVqlx+7eWaDzM//PBDkW8yBgAA1nDkyBE1aNDgsn2u+TDj7+8v6dfJCAgIcHM1AACgLLKzsxUWFub8HL+caz7MFJ5aCggIIMwAAGAxZblEhAuAAQCApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApXm5uwDgWtV4wip3l1BuB1/s4+4SAKDcWJkBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACW5tYw07hxY9lstiLbiBEjJEnGGMXFxSk0NFS+vr6KiorSnj173FkyAADwMG4NM6mpqUpPT3duSUlJkqR77rlHkjR9+nTNnDlTs2bNUmpqqhwOh6Kjo5WTk+POsgEAgAdxa5gJCgqSw+FwbitXrtQf/vAHRUZGyhijxMRETZ48WQMGDFCrVq20aNEinTlzRkuWLHFn2QAAwIN4zDUzeXl5Wrx4sYYOHSqbzaa0tDRlZGQoJibG2cdutysyMlIpKSlurBQAAHgSL3cXUGj58uU6efKkhgwZIknKyMiQJAUHB7v0Cw4O1qFDh0ocJzc3V7m5uc7H2dnZlV8sAADwGB6zMvPmm2+qV69eCg0NdWm32Wwuj40xRdoulpCQoMDAQOcWFhZ2ReoFAACewSPCzKFDh7R+/Xo99thjzjaHwyHpfys0hY4fP15kteZiEydOVFZWlnM7cuTIlSkaAAB4BI8IMwsWLFC9evXUp08fZ1t4eLgcDofzDifp1+tqkpOT1aVLlxLHstvtCggIcNkAAMC1y+3XzBQUFGjBggUaPHiwvLz+V47NZtPo0aMVHx+viIgIRUREKD4+Xn5+fho0aJAbKwYAAJ7E7WFm/fr1Onz4sIYOHVpk37hx43T27FnFxsYqMzNTHTt21Lp16+Tv7++GSgEAgCeyGWOMu4u4krKzsxUYGKisrCxOOeGqajxhlbtLKLeDL/YpvRMAXAXl+fz2iGtmAAAAKoowAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALM3tvwEYKAsr/gI6AMDVwcoMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNLeHmWPHjunBBx9UnTp15Ofnp3bt2mnbtm3O/cYYxcXFKTQ0VL6+voqKitKePXvcWDEAAPAkbg0zmZmZuvnmm+Xt7a1PPvlEe/fu1YwZM1SzZk1nn+nTp2vmzJmaNWuWUlNT5XA4FB0drZycHPcVDgAAPIaXOw/+0ksvKSwsTAsWLHC2NW7c2PlnY4wSExM1efJkDRgwQJK0aNEiBQcHa8mSJRo2bNjVLhkAAHgYt67MrFixQu3bt9c999yjevXq6YYbbtD8+fOd+9PS0pSRkaGYmBhnm91uV2RkpFJSUoodMzc3V9nZ2S4bAAC4drk1zHz//feaM2eOIiIitHbtWj3xxBMaNWqU3n77bUlSRkaGJCk4ONjlecHBwc59l0pISFBgYKBzCwsLu7IvAgAAuJVbw0xBQYH++Mc/Kj4+XjfccIOGDRumxx9/XHPmzHHpZ7PZXB4bY4q0FZo4caKysrKc25EjR65Y/QAAwP3cGmZCQkJ0/fXXu7S1aNFChw8fliQ5HA5JKrIKc/z48SKrNYXsdrsCAgJcNgAAcO1ya5i5+eabtW/fPpe27777To0aNZIkhYeHy+FwKCkpybk/Ly9PycnJ6tKly1WtFQAAeCa33s00ZswYdenSRfHx8br33nu1ZcsWzZs3T/PmzZP06+ml0aNHKz4+XhEREYqIiFB8fLz8/Pw0aNAgd5YOAAA8hFvDTIcOHbRs2TJNnDhRzz//vMLDw5WYmKgHHnjA2WfcuHE6e/asYmNjlZmZqY4dO2rdunXy9/d3Y+UAAMBT2Iwxxt1FXEnZ2dkKDAxUVlYW189YWOMJq9xdwu/CwRf7uLsEAJBUvs9vt3+dAQAAwG9BmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJbm1m/NBuBZrPiFnnw5JgBWZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKW5NczExcXJZrO5bA6Hw7nfGKO4uDiFhobK19dXUVFR2rNnjxsrBgAAnsbtKzMtW7ZUenq6c9u1a5dz3/Tp0zVz5kzNmjVLqampcjgcio6OVk5OjhsrBgAAnsTtYcbLy0sOh8O5BQUFSfp1VSYxMVGTJ0/WgAED1KpVKy1atEhnzpzRkiVL3Fw1AADwFG4PM/v371doaKjCw8N133336fvvv5ckpaWlKSMjQzExMc6+drtdkZGRSklJKXG83NxcZWdnu2wAAODa5dYw07FjR7399ttau3at5s+fr4yMDHXp0kUnTpxQRkaGJCk4ONjlOcHBwc59xUlISFBgYKBzCwsLu6KvAQAAuJdbw0yvXr109913q3Xr1rrtttu0atUqSdKiRYucfWw2m8tzjDFF2i42ceJEZWVlObcjR45cmeIBAIBHcPtppotVr15drVu31v79+513NV26CnP8+PEiqzUXs9vtCggIcNkAAMC1y6PCTG5urr755huFhIQoPDxcDodDSUlJzv15eXlKTk5Wly5d3FglAADwJF7uPPhTTz2lvn37qmHDhjp+/LimTZum7OxsDR48WDabTaNHj1Z8fLwiIiIUERGh+Ph4+fn5adCgQe4sGwAAeBC3hpmjR4/q/vvv188//6ygoCB16tRJmzdvVqNGjSRJ48aN09mzZxUbG6vMzEx17NhR69atk7+/vzvLBgAAHsRmjDHuLuJKys7OVmBgoLKysrh+xsIaT1jl7hLgoQ6+2MfdJQC4Asrz+e1R18wAAACUF2EGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYGmEGAABYWoXCzJEjR3T06FHn4y1btmj06NGaN29epRUGAABQFhUKM4MGDdKGDRskSRkZGYqOjtaWLVs0adIkPf/885VaIAAAwOVUKMzs3r1bN910kyTpX//6l1q1aqWUlBQtWbJECxcurMz6AAAALqtCYSY/P192u12StH79evXr10+S1Lx5c6Wnp1dedQAAAKWoUJhp2bKl5s6dq02bNikpKUk9e/aUJP3www+qU6dOpRYIAABwORUKMy+99JL+/ve/KyoqSvfff7/atm0rSVqxYoXz9BMAAMDV4FWRJ0VFRennn39Wdna2atWq5Wz/v//7P1WvXr3SisOV0XjCKneXAABApanQykyPHj2Uk5PjEmQkqXbt2ho4cGClFAYAAFAWFQozGzduVF5eXpH2c+fOadOmTb+5KAAAgLIq12mmnTt3Ov+8d+9eZWRkOB9fuHBBa9asUf369SuvOgAAgFKUK8y0a9dONptNNptNPXr0KLLf19dXf/vb3yqtOAAAgNKU6zRTWlqaDhw4IGOMtmzZorS0NOd27NgxZWdna+jQoRUqJCEhQTabTaNHj3a2GWMUFxen0NBQ+fr6KioqSnv27KnQ+AAA4NpUrpWZRo0aSZIKCgoqtYjU1FTNmzdPbdq0cWmfPn26Zs6cqYULF6pp06aaNm2aoqOjtW/fPvn7+1dqDQAAwJoqdGu2JH333XfauHGjjh8/XiTcTJkypczjnDp1Sg888IDmz5+vadOmOduNMUpMTNTkyZM1YMAASdKiRYsUHBysJUuWaNiwYRUtHQAAXEMqFGbmz5+v4cOHq27dunI4HLLZbM59NputXGFmxIgR6tOnj2677TaXMJOWlqaMjAzFxMQ42+x2uyIjI5WSklJimMnNzVVubq7zcXZ2dnleGgAAsJgKhZlp06bphRde0Pjx43/Twd977z19/fXXSk1NLbKv8E6p4OBgl/bg4GAdOnSoxDETEhL03HPP/aa6AACAdVTo98xkZmbqnnvu+U0HPnLkiP785z9r8eLF8vHxKbHfxas+0q+nny5tu9jEiROVlZXl3I4cOfKb6gQAAJ6tQmHmnnvu0bp1637Tgbdt26bjx4/rxhtvlJeXl7y8vJScnKzXX39dXl5ezhWZi3+XjSQdP368yGrNxex2uwICAlw2AABw7arQaaYmTZro2Wef1ebNm9W6dWt5e3u77B81alSpY9x6663atWuXS9sjjzyi5s2ba/z48bruuuvkcDiUlJSkG264QZKUl5en5ORkvfTSSxUpGwAAXIMqFGbmzZunGjVqKDk5WcnJyS77bDZbmcKMv7+/WrVq5dJWvXp11alTx9k+evRoxcfHKyIiQhEREYqPj5efn58GDRpUkbIBAMA1qEJhJi0trbLrKNa4ceN09uxZxcbGKjMzUx07dtS6dev4HTMAAMDJZowx7i7iSsrOzlZgYKCysrK4fub/azxhlbtLACrNwRf7uLsEAFdAeT6/K7QyU9pXFrz11lsVGRYAAKDcKhRmMjMzXR7n5+dr9+7dOnnyZLFfQAkAAHClVCjMLFu2rEhbQUGBYmNjdd111/3mogAAAMqqQr9nptiBqlTRmDFj9Oqrr1bWkAAAAKWqtDAjSQcOHND58+crc0gAAIDLqtBpprFjx7o8NsYoPT1dq1at0uDBgyulMAAAgLKoUJjZvn27y+MqVaooKChIM2bMKPVOJwAAgMpUoTCzYcOGyq4DAACgQioUZgr99NNP2rdvn2w2m5o2baqgoKDKqgsAAKBMKnQB8OnTpzV06FCFhISoW7duuuWWWxQaGqpHH31UZ86cqewaAQAASlShMDN27FglJyfr448/1smTJ3Xy5El99NFHSk5O1l/+8pfKrhEAAKBEFTrN9OGHH+qDDz5QVFSUs613797y9fXVvffeqzlz5lRWfQAAAJdVoZWZM2fOKDg4uEh7vXr1OM0EAACuqgqFmc6dO2vq1Kk6d+6cs+3s2bN67rnn1Llz50orDgAAoDQVOs2UmJioXr16qUGDBmrbtq1sNpt27Nghu92udevWVXaNAAAAJapQmGndurX279+vxYsX69tvv5UxRvfdd58eeOAB+fr6VnaNAAAAJapQmElISFBwcLAef/xxl/a33npLP/30k8aPH18pxQEAAJSmQtfM/P3vf1fz5s2LtLds2VJz5879zUUBAACUVYXCTEZGhkJCQoq0BwUFKT09/TcXBQAAUFYVCjNhYWH64osvirR/8cUXCg0N/c1FAQAAlFWFrpl57LHHNHr0aOXn56tHjx6SpE8//VTjxo3jNwADAICrqkJhZty4cfrll18UGxurvLw8SZKPj4/Gjx+viRMnVmqBAAAAl1OhMGOz2fTSSy/p2Wef1TfffCNfX19FRETIbrdXdn0AAACXVaEwU6hGjRrq0KFDZdUCAABQbhW6ABgAAMBTEGYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAICluTXMzJkzR23atFFAQIACAgLUuXNnffLJJ879xhjFxcUpNDRUvr6+ioqK0p49e9xYMQAA8DRuDTMNGjTQiy++qK1bt2rr1q3q0aOH+vfv7wws06dP18yZMzVr1iylpqbK4XAoOjpaOTk57iwbAAB4ELeGmb59+6p3795q2rSpmjZtqhdeeEE1atTQ5s2bZYxRYmKiJk+erAEDBqhVq1ZatGiRzpw5oyVLlrizbAAA4EE85pqZCxcu6L333tPp06fVuXNnpaWlKSMjQzExMc4+drtdkZGRSklJKXGc3NxcZWdnu2wAAODa5fYws2vXLtWoUUN2u11PPPGEli1bpuuvv14ZGRmSpODgYJf+wcHBzn3FSUhIUGBgoHMLCwu7ovUDAAD3cnuYadasmXbs2KHNmzdr+PDhGjx4sPbu3evcb7PZXPobY4q0XWzixInKyspybkeOHLlitQMAAPfzcncB1apVU5MmTSRJ7du3V2pqql577TWNHz9ekpSRkaGQkBBn/+PHjxdZrbmY3W6X3W6/skUDAACP4faVmUsZY5Sbm6vw8HA5HA4lJSU59+Xl5Sk5OVldunRxY4UAAMCTuHVlZtKkSerVq5fCwsKUk5Oj9957Txs3btSaNWtks9k0evRoxcfHKyIiQhEREYqPj5efn58GDRrkzrIBAIAHcWuY+fHHH/XQQw8pPT1dgYGBatOmjdasWaPo6GhJ0rhx43T27FnFxsYqMzNTHTt21Lp16+Tv7+/OsgEAgAexGWOMu4u4krKzsxUYGKisrCwFBAS4uxyP0HjCKneXAFSagy/2cXcJAK6A8nx+e9w1MwAAAOVBmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJbm9u9mAoDfwoq/N4nfjQNULlZmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApRFmAACApbk1zCQkJKhDhw7y9/dXvXr1dOedd2rfvn0ufYwxiouLU2hoqHx9fRUVFaU9e/a4qWIAAOBp3BpmkpOTNWLECG3evFlJSUk6f/68YmJidPr0aWef6dOna+bMmZo1a5ZSU1PlcDgUHR2tnJwcN1YOAAA8hZc7D75mzRqXxwsWLFC9evW0bds2devWTcYYJSYmavLkyRowYIAkadGiRQoODtaSJUs0bNgwd5QNAAA8iEddM5OVlSVJql27tiQpLS1NGRkZiomJcfax2+2KjIxUSkqKW2oEAACexa0rMxczxmjs2LHq2rWrWrVqJUnKyMiQJAUHB7v0DQ4O1qFDh4odJzc3V7m5uc7H2dnZV6hiAADgCTxmZWbkyJHauXOn3n333SL7bDaby2NjTJG2QgkJCQoMDHRuYWFhV6ReAADgGTwizDz55JNasWKFNmzYoAYNGjjbHQ6HpP+t0BQ6fvx4kdWaQhMnTlRWVpZzO3LkyJUrHAAAuJ1bw4wxRiNHjtTSpUv12WefKTw83GV/eHi4HA6HkpKSnG15eXlKTk5Wly5dih3TbrcrICDAZQMAANcut14zM2LECC1ZskQfffSR/P39nSswgYGB8vX1lc1m0+jRoxUfH6+IiAhFREQoPj5efn5+GjRokDtLBwAAHsKtYWbOnDmSpKioKJf2BQsWaMiQIZKkcePG6ezZs4qNjVVmZqY6duyodevWyd/f/ypXCwAAPJFbw4wxptQ+NptNcXFxiouLu/IFAQAAy/GIC4ABAAAqijADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAszcvdBQDA703jCavcXUK5HXyxj7tLAErEygwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0t4aZzz//XH379lVoaKhsNpuWL1/ust8Yo7i4OIWGhsrX11dRUVHas2ePe4oFAAAeya1h5vTp02rbtq1mzZpV7P7p06dr5syZmjVrllJTU+VwOBQdHa2cnJyrXCkAAPBUXu48eK9evdSrV69i9xljlJiYqMmTJ2vAgAGSpEWLFik4OFhLlizRsGHDrmapAADAQ3nsNTNpaWnKyMhQTEyMs81utysyMlIpKSklPi83N1fZ2dkuGwAAuHa5dWXmcjIyMiRJwcHBLu3BwcE6dOhQic9LSEjQc889d0Vru1jjCauu2rEAAEBRHrsyU8hms7k8NsYUabvYxIkTlZWV5dyOHDlypUsEAABu5LErMw6HQ9KvKzQhISHO9uPHjxdZrbmY3W6X3W6/4vUBAADP4LErM+Hh4XI4HEpKSnK25eXlKTk5WV26dHFjZQAAwJO4dWXm1KlT+u9//+t8nJaWph07dqh27dpq2LChRo8erfj4eEVERCgiIkLx8fHy8/PToEGD3Fg1AADwJG4NM1u3blX37t2dj8eOHStJGjx4sBYuXKhx48bp7Nmzio2NVWZmpjp27Kh169bJ39/fXSUDAAAPYzPGGHcXcSVlZ2crMDBQWVlZCggIqPTxuZsJwO/BwRf7uLsE/M6U5/PbY6+ZAQAAKAvCDAAAsDTCDAAAsDSP/T0zAADPYcXrA7nO5/eDlRkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBpXu4uAACAK6HxhFXuLqHcDr7Yx90lWBIrMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNK4ABgAAA/BRcsVw8oMAACwNMIMAACwNMIMAACwNMIMAACwNEuEmdmzZys8PFw+Pj668cYbtWnTJneXBAAAPITHh5l//vOfGj16tCZPnqzt27frlltuUa9evXT48GF3lwYAADyAx4eZmTNn6tFHH9Vjjz2mFi1aKDExUWFhYZozZ467SwMAAB7Ao8NMXl6etm3bppiYGJf2mJgYpaSkuKkqAADgSTz6l+b9/PPPunDhgoKDg13ag4ODlZGRUexzcnNzlZub63yclZUlScrOzr4iNRbknrki4wIAYAVX6vO1cFxjTKl9PTrMFLLZbC6PjTFF2golJCToueeeK9IeFhZ2RWoDAOD3LDDxyo6fk5OjwMDAy/bx6DBTt25dVa1atcgqzPHjx4us1hSaOHGixo4d63xcUFCgX375RXXq1CkxAHmy7OxshYWF6ciRIwoICHB3OdcE5rTyMaeVjzmtfMxp5buSc2qMUU5OjkJDQ0vt69Fhplq1arrxxhuVlJSku+66y9melJSk/v37F/scu90uu93u0lazZs0rWeZVERAQwF++SsacVj7mtPIxp5WPOa18V2pOS1uRKeTRYUaSxo4dq4ceekjt27dX586dNW/ePB0+fFhPPPGEu0sDAAAewOPDzMCBA3XixAk9//zzSk9PV6tWrbR69Wo1atTI3aUBAAAP4PFhRpJiY2MVGxvr7jLcwm63a+rUqUVOnaHimNPKx5xWPua08jGnlc9T5tRmynLPEwAAgIfy6F+aBwAAUBrCDAAAsDTCDAAAsDTCDAAAsDTCjBt8/vnn6tu3r0JDQ2Wz2bR8+XKX/cYYxcXFKTQ0VL6+voqKitKePXtc+uTm5urJJ59U3bp1Vb16dfXr109Hjx69iq/Cs1xuTvPz8zV+/Hi1bt1a1atXV2hoqB5++GH98MMPLmMwp0WV9l692LBhw2Sz2ZSYmOjSzry6KsucfvPNN+rXr58CAwPl7++vTp066fDhw879zKmr0ub01KlTGjlypBo0aCBfX1+1aNFCc+bMcenDnP5PQkKCOnToIH9/f9WrV0933nmn9u3b59LH0z6nCDNucPr0abVt21azZs0qdv/06dM1c+ZMzZo1S6mpqXI4HIqOjlZOTo6zz+jRo7Vs2TK99957+ve//61Tp07pjjvu0IULF67Wy/Aol5vTM2fO6Ouvv9azzz6rr7/+WkuXLtV3332nfv36ufRjTosq7b1aaPny5frqq6+K/bXjzKur0ub0wIED6tq1q5o3b66NGzfqP//5j5599ln5+Pg4+zCnrkqb0zFjxmjNmjVavHixvvnmG40ZM0ZPPvmkPvroI2cf5vR/kpOTNWLECG3evFlJSUk6f/68YmJidPr0aWcfj/ucMnArSWbZsmXOxwUFBcbhcJgXX3zR2Xbu3DkTGBho5s6da4wx5uTJk8bb29u89957zj7Hjh0zVapUMWvWrLlqtXuqS+e0OFu2bDGSzKFDh4wxzGlZlDSvR48eNfXr1ze7d+82jRo1Mq+++qpzH/N6ecXN6cCBA82DDz5Y4nOY08srbk5btmxpnn/+eZe2P/7xj+aZZ54xxjCnpTl+/LiRZJKTk40xnvk5xcqMh0lLS1NGRoZiYmKcbXa7XZGRkUpJSZEkbdu2Tfn5+S59QkND1apVK2cfXF5WVpZsNpvze7uY04opKCjQQw89pKefflotW7Yssp95LZ+CggKtWrVKTZs21e2336569eqpY8eOLqdNmNPy69q1q1asWKFjx47JGKMNGzbou+++0+233y6JOS1NVlaWJKl27dqSPPNzijDjYQq/IfzSbwUPDg527svIyFC1atVUq1atEvugZOfOndOECRM0aNAg5xejMacV89JLL8nLy0ujRo0qdj/zWj7Hjx/XqVOn9OKLL6pnz55at26d7rrrLg0YMEDJycmSmNOKeP3113X99derQYMGqlatmnr27KnZs2era9eukpjTyzHGaOzYseratatatWolyTM/pyzxdQa/RzabzeWxMaZI26XK0uf3Lj8/X/fdd58KCgo0e/bsUvszpyXbtm2bXnvtNX399dflniPmtXgFBQWSpP79+2vMmDGSpHbt2iklJUVz585VZGRkic9lTkv2+uuva/PmzVqxYoUaNWqkzz//XLGxsQoJCdFtt91W4vOYU2nkyJHauXOn/v3vfxfZ50mfU6zMeBiHwyFJRZLr8ePHnSnY4XAoLy9PmZmZJfZBUfn5+br33nuVlpampKQkl6+rZ07Lb9OmTTp+/LgaNmwoLy8veXl56dChQ/rLX/6ixo0bS2Jey6tu3bry8vLS9ddf79LeokUL591MzGn5nD17VpMmTdLMmTPVt29ftWnTRiNHjtTAgQP1yiuvSGJOS/Lkk09qxYoV2rBhgxo0aOBs98TPKcKMhwkPD5fD4VBSUpKzLS8vT8nJyerSpYsk6cYbb5S3t7dLn/T0dO3evdvZB64Kg8z+/fu1fv161alTx2U/c1p+Dz30kHbu3KkdO3Y4t9DQUD399NNau3atJOa1vKpVq6YOHToUuQ32u+++U6NGjSQxp+WVn5+v/Px8Vani+nFXtWpV50oYc+rKGKORI0dq6dKl+uyzzxQeHu6y3yM/pyr9kmKUKicnx2zfvt1s377dSDIzZ84027dvd95Z8+KLL5rAwECzdOlSs2vXLnP//febkJAQk52d7RzjiSeeMA0aNDDr1683X3/9tenRo4dp27atOX/+vLtelltdbk7z8/NNv379TIMGDcyOHTtMenq6c8vNzXWOwZwWVdp79VKX3s1kDPN6qdLmdOnSpcbb29vMmzfP7N+/3/ztb38zVatWNZs2bXKOwZy6Km1OIyMjTcuWLc2GDRvM999/bxYsWGB8fHzM7NmznWMwp/8zfPhwExgYaDZu3Ojy7+WZM2ecfTztc4ow4wYbNmwwkopsgwcPNsb8etvb1KlTjcPhMHa73XTr1s3s2rXLZYyzZ8+akSNHmtq1axtfX19zxx13mMOHD7vh1XiGy81pWlpasfskmQ0bNjjHYE6LKu29eqniwgzz6qosc/rmm2+aJk2aGB8fH9O2bVuzfPlylzGYU1elzWl6eroZMmSICQ0NNT4+PqZZs2ZmxowZpqCgwDkGc/o/Jf17uWDBAmcfT/ucsv3/wgEAACyJa2YAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWaAa8DBgwdls9m0Y8eOK3qcjRs3ymaz6eTJk1f0OFZ34sQJ1atXTwcPHrzqx37qqadK/BZz4FpFmAE83JAhQ2Sz2ZxbnTp11LNnT+3cudPdpaEECQkJ6tu3r/MLN6+EkgLsuHHjtGDBAqWlpV2xYwOehjADWEDPnj2Vnp6u9PR0ffrpp/Ly8tIdd9zh7rIqTX5+vrtLKKKiNZ09e1ZvvvmmHnvssRL7GGN0/vz5ipZ2WfXq1VNMTIzmzp17RcYHPBFhBrAAu90uh8Mhh8Ohdu3aafz48Tpy5Ih++umnEp+TnJysm266SXa7XSEhIZowYYLLB2hubq5GjRqlevXqycfHR127dlVqaqrLGKtXr1bTpk3l6+ur7t27l+m0ic1m05w5c9SrVy/5+voqPDxc77//vnN/4YrCv/71L0VFRcnHx0eLFy+WJC1YsEAtWrSQj4+PmjdvrtmzZzufl5eXp5EjRyokJEQ+Pj5q3LixEhISnPvj4uLUsGFD2e12hYaGupxqsdlsWr58uUudNWvW1MKFC39TTcX55JNP5OXlpc6dOzvbCk/PrV27Vu3bt5fdbtemTZtkjNH06dN13XXXydfXV23bttUHH3zgfF5mZqYeeOABBQUFydfXVxEREVqwYIEkOb/J+IYbbpDNZlNUVJTzef369dO777572TqBa8oV+cYnAJVm8ODBpn///s7HOTk5ZtiwYaZJkybmwoULxhjj/DLN7du3G2OMOXr0qPHz8zOxsbHmm2++McuWLTN169Y1U6dOdY4zatQoExoaalavXm327NljBg8ebGrVqmVOnDhhjDHm8OHDxm63mz//+c/m22+/NYsXLzbBwcFGksnMzCyxXkmmTp06Zv78+Wbfvn3mmWeeMVWrVjV79+51qbVx48bmww8/NN9//705duyYmTdvngkJCXG2ffjhh6Z27dpm4cKFxhhjXn75ZRMWFmY+//xzc/DgQbNp0yazZMkSY4wx77//vgkICDCrV682hw4dMl999ZWZN2+eS03Lli1zqTMwMND5xXkVrak4f/7zn03Pnj1d2gq/CLFNmzZm3bp15r///a/5+eefzaRJk0zz5s3NmjVrzIEDB8yCBQuM3W43GzduNMYYM2LECNOuXTuTmppq0tLSTFJSklmxYoUxxpgtW7YYSWb9+vUmPT3d+XMzxpi9e/caSebgwYMl1glcSwgzgIcbPHiwqVq1qqlevbqpXr26kWRCQkLMtm3bnH0uDTOTJk0yzZo1c/lW4DfeeMPUqFHDXLhwwZw6dcp4e3ubd955x7k/Ly/PhIaGmunTpxtjjJk4caJp0aKFyxjjx48vU5h54oknXNo6duxohg8f7lJrYmKiS5+wsDBnOCn017/+1XTu3NkYY8yTTz5pevTo4VJPoRkzZpimTZuavLy8EmsqS5gpb03F6d+/vxk6dKhLW2GYufjbr0+dOmV8fHxMSkqKS99HH33U3H///cYYY/r27WseeeSRYo9z6c/8YllZWUaSMxQB1zpOMwEW0L17d+3YsUM7duzQV199pZiYGPXq1UuHDh0qtv8333yjzp07y2azOdtuvvlmnTp1SkePHtWBAweUn5+vm2++2bnf29tbN910k7755hvnGJ06dXIZ4+JTJ5dzab/OnTs7xy3Uvn17559/+uknHTlyRI8++qhq1Kjh3KZNm6YDBw5I+vVC6B07dqhZs2YaNWqU1q1b53z+Pffco7Nnz+q6667T448/rmXLllXompTy1lScs2fPysfHp9Tx9+7dq3Pnzik6Otpl/Lfffts5/vDhw/Xee++pXbt2GjdunFJSUsr0Onx9fSVJZ86cKVN/wOq83F0AgNJVr15dTZo0cT6+8cYbFRgYqPnz52vatGlF+htjXEJIYZv06/UjF/+5pOcV9qkslx6revXqzj8XFBRIkubPn6+OHTu69Ktataok6Y9//KPS0tL0ySefaP369br33nt122236YMPPlBYWJj27dunpKQkrV+/XrGxsXr55ZeVnJwsb29vl9dcqLgLfMtbU3Hq1q2rzMzMYvcVN/6qVatUv359l352u12SnIF11apVWr9+vW699VaNGDFCr7zySonHl6RffvlFkhQUFHTZfsC1gpUZwIJsNpuqVKmis2fPFrv/+uuvV0pKissHeEpKivz9/VW/fn01adJE1apV07///W/n/vz8fG3dulUtWrRwjrF582aXcS99XJLinte8efMS+wcHB6t+/fr6/vvv1aRJE5et8EJXSQoICNDAgQM1f/58/fOf/9SHH37o/OD29fVVv3799Prrr2vjxo368ssvtWvXLkm/fqinp6c7x9m/f3+pqxZlrelSN9xwg/bu3XvZsaVf59dut+vw4cNFxg8LC3P2CwoK0pAhQ7R48WIlJiZq3rx5kqRq1apJki5cuFBk7N27d8vb21stW7YstQ7gWsDKDGABubm5ysjIkPTrHS6zZs3SqVOn1Ldv32L7x8bGKjExUU8++aRGjhypffv2aerUqRo7dqyqVKmi6tWra/jw4Xr66adVu3ZtNWzYUNOnT9eZM2f06KOPSpKeeOIJzZgxQ2PHjtWwYcO0bds2590/pXn//ffVvn17de3aVe+88462bNmiN99887LPiYuL06hRoxQQEKBevXopNzdXW7duVWZmpsaOHatXX31VISEhateunapUqaL3339fDofDeVfShQsX1LFjR/n5+ekf//iHfH191ahRI0lSjx49NGvWLHXq1EkFBQUaP368vL29S30dpdVUnNtvv10TJ05UZmamatWqVeLY/v7+euqppzRmzBgVFBSoa9euys7OVkpKimrUqKHBgwdrypQpuvHGG9WyZUvl5uZq5cqVzrBZr149+fr6as2aNWrQoIF8fHwUGBgoSdq0aZNuueUW5+km4Jrnxut1AJTB4MGDjSTn5u/vbzp06GA++OADZ5/iLgbduHGj6dChg6lWrZpxOBxm/PjxJj8/37n/7Nmz5sknnzR169Y1drvd3HzzzWbLli0ux/74449NkyZNjN1uN7fccot56623ynQB8BtvvGGio6ON3W43jRo1Mu++++5lay30zjvvmHbt2plq1aqZWrVqmW7dupmlS5caY4yZN2+eadeunalevboJCAgwt956q/n666+NMcYsW7bMdOzY0QQEBJjq1aubTp06mfXr1zvHPXbsmImJiTHVq1c3ERERZvXq1cVeAFzemkrSqVMnM3fuXOfjwguAL523goIC89prr5lmzZoZb29vExQUZG6//XaTnJxsjPn1YuMWLVoYX19fU7t2bdO/f3/z/fffO58/f/58ExYWZqpUqWIiIyOd7U2bNnWZc+BaZzOmkk+MA/hds9lsWrZsme688053l+I2q1ev1lNPPaXdu3erSpWrezZ/1apVevrpp7Vz5055ebH4jt8H3ukAUMl69+6t/fv369ixYy7Xv1wNp0+f1oIFCwgy+F1hZQZApWJlBsDVRnQHUKn4/xGAq41bswEAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKX9P+aY4A8/X0OnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(X['trestbps'])\n", + "plt.xlabel('Blood pressure (rest)')\n", + "plt.ylabel('counts')\n", + "plt.title('Blood pressure distribution')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "f568c911-d961-4d7f-87b1-f25dd5403cff", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGxCAYAAACEFXd4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5pklEQVR4nO3dfVxUZf7/8ffInaA4cqMiimJpaQvepGaRpqSJmBKZaeua1lrb5k2Lom7mVtaWtJapK5llfrO0dL9rhkaW6WaKq6ViZpT3i4YJmXfcyJ3MnN8f/ZxvE9oyMjh4eD0fj3noua5rznwOfzBvrnOdcyyGYRgCAAAwqXqeLgAAAKAmEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXaAOmbJkiWyWCxOryZNmqhPnz5KT0+vNN5isWjGjBlXvM4jR47IYrFoyZIlV/yzAZgLYQeoo958801t27ZNW7du1euvvy4vLy8NHjxYH3zwgadLAwC38vZ0AQA8IyoqSt26dXNsDxgwQEFBQVq+fLkGDx7swcqurOLiYgUEBHi6jCozDEOlpaXy9/f3dCnAVYOZHQCSpPr168vX11c+Pj7/dWxWVpbuuusuBQUFqX79+urcubPeeuutSuO+++47jRw5Uk2bNpWfn586dOig2bNny263O407fvy4hg0bpsDAQFmtVg0fPlx5eXlVqvvCabn169frwQcfVHBwsBo0aKDBgwfrP//5j9PYPn36KCoqSps3b1ZMTIwCAgL0+9//XpJUUFCgyZMnq02bNvL19VWLFi2UlJSkc+fOOe3jn//8p3r06CGr1aqAgABdc801jn1Ikt1u13PPPafrr79e/v7+aty4sTp27Kh58+Y5xjzwwAOKjIysdCwzZsyQxWJxarNYLBo/frwWLlyoDh06yM/Pz/GzPnjwoEaMGOH0833llVeq9HMD6hJmdoA6ymazqaKiQoZh6IcfftCLL76oc+fOacSIEb/6vv379ysmJkZNmzbV3//+d4WEhGjZsmV64IEH9MMPP2jq1KmSpB9//FExMTEqLy/XX//6V0VGRio9PV2TJ0/W4cOHtWDBAklSSUmJ+vXrp+PHjyslJUXXXXedPvzwQw0fPtyl4xkzZozuuOMOvfvuu8rJydFf/vIX9enTR3v27FHjxo0d43JzczVy5EhNnTpVM2fOVL169VRcXKzevXvr2LFjeuKJJ9SxY0d98803euqpp/T1119rw4YNslgs2rZtm4YPH67hw4drxowZql+/vo4ePapPP/3Usf9Zs2ZpxowZ+stf/qLbbrtN58+f1759+3T27FmXjufn0tLSlJGRoaeeekphYWFq2rSpvv32W8XExKhVq1aaPXu2wsLCtG7dOj322GM6efKknn766cv+PMB0DAB1yptvvmlIqvTy8/MzFixYUGm8JOPpp592bN93332Gn5+f8d133zmNi4+PNwICAoyzZ88ahmEYjz/+uCHJ+OKLL5zGPfroo4bFYjH2799vGIZhvPrqq4YkY/Xq1U7jHn74YUOS8eabb1bpeO6++26n9n//+9+GJOO5555ztPXu3duQZPzrX/9yGpuSkmLUq1fP2LFjh1P7ypUrDUnG2rVrDcMwjJdeesmQ5DjGixk0aJDRuXPnX6159OjRRuvWrSu1P/3008Yvfy1LMqxWq3H69Gmn9ri4OKNly5ZGfn6+U/v48eON+vXrVxoP1GWcxgLqqLfffls7duzQjh079NFHH2n06NEaN26cUlNTf/V9n376qfr27auIiAin9gceeEDFxcXatm2bY9wNN9ygm266qdI4wzAcsyEbN25UYGCgEhISnMb9txmmX/rd737ntB0TE6PWrVtr48aNTu1BQUG6/fbbndrS09MVFRWlzp07q6KiwvGKi4uTxWLRZ599Jknq3r27JGnYsGH63//9X33//feV6rjpppv01VdfaezYsVq3bp0KCgpcOo6Luf322xUUFOTYLi0t1b/+9S/dfffdCggIcKp54MCBKi0t1eeff17tzwXMgrAD1FEdOnRQt27d1K1bNw0YMECvvfaa+vfvr6lTp/7qKZdTp06pefPmldrDw8Md/a6Oa9asWaVxYWFhLh3PxcaHhYU5PueCi9X0ww8/aM+ePfLx8XF6BQYGyjAMnTx5UpJ02223KS0tTRUVFRo1apRatmypqKgoLV++3LGvadOm6aWXXtLnn3+u+Ph4hYSEqG/fvtq5c6dLx/NrNZ86dUoVFRWaP39+pZoHDhwoSY6aAbBmB8DPdOzYUevWrdOBAwcqzchcEBISotzc3Ertx48flySFhoa6PG779u2VxlV1gfKvjc/Ly1Pbtm2d2n65APhCLf7+/vqf//mfi+77Qq2SdNddd+muu+5SWVmZPv/8c6WkpGjEiBGKjIzULbfcIm9vb02aNEmTJk3S2bNntWHDBj3xxBOKi4tTTk6OAgICVL9+fZWVlVX6nEsFlF/WHBQUJC8vL91///0aN27cRd/Tpk2bi7YDdREzOwAcdu/eLUlq0qTJJcf07dtXn376qSO0XPD2228rICBAN998s2Pct99+q127dlUaZ7FYFBsbK0mKjY1VYWGh1qxZ4zTu3Xffdan2d955x2l769atOnr0qPr06fNf3zto0CAdPnxYISEhjtmun78uduWUn5+fevfurb/97W+SpC+//LLSmMaNG2vo0KEaN26cTp8+rSNHjkiSIiMjdeLECf3www+OseXl5Vq3bl2VjjUgIECxsbH68ssv1bFjx4vWHBISUqV9AXUBMztAHZWVlaWKigpJP50WWbVqldavX6+77777V2cFnn76aaWnpys2NlZPPfWUgoOD9c477+jDDz/UrFmzZLVaJUkTJ07U22+/rTvvvFPPPvusWrdurQ8//FALFizQo48+quuuu06SNGrUKM2ZM0ejRo3S888/r3bt2mnt2rVV/uK/YOfOnXrooYd07733KicnR9OnT1eLFi00duzY//repKQkvffee7rttts0ceJEdezYUXa7Xd99950++eQTJScnq0ePHnrqqad07Ngx9e3bVy1bttTZs2c1b948+fj4qHfv3pKkwYMHO+5h1KRJEx09elRz585V69at1a5dO0nS8OHD9dRTT+m+++7TlClTVFpaqr///e+y2WxVPt558+apZ8+e6tWrlx599FFFRkaqsLBQhw4d0gcffOB0hRhQ53l6hTSAK+tiV2NZrVajc+fOxssvv2yUlpY6jdcvrsYyDMP4+uuvjcGDBxtWq9Xw9fU1OnXqdNGrpo4ePWqMGDHCCAkJMXx8fIzrr7/eePHFFw2bzeY07tixY8Y999xjNGzY0AgMDDTuueceY+vWrS5djfXJJ58Y999/v9G4cWPD39/fGDhwoHHw4EGnsb179zZ+85vfXHQ/RUVFxl/+8hfj+uuvN3x9fQ2r1WpER0cbEydONPLy8gzDMIz09HQjPj7eaNGiheHr62s0bdrUGDhwoJGRkeHYz+zZs42YmBgjNDTU8PX1NVq1amWMGTPGOHLkiNPnrV271ujcubPh7+9vXHPNNUZqauolr8YaN27cRWvOzs42fv/73xstWrQwfHx8jCZNmhgxMTFOV6ABMAyLYRiGx5IWAFTTkiVL9OCDD2rHjh1Od4QGgAtYswMAAEyNsAMAAEyN01gAAMDUmNkBAACmRtgBAACmRtgBAACmxk0FJdntdh0/flyBgYEXvZU8AACofQzDUGFhocLDw1Wv3qXnbwg7+ulZPb98gjMAALg65OTkqGXLlpfsJ+xICgwMlPTTD6tRo0YergYAAFRFQUGBIiIiHN/jl0LY0f89UbhRo0aEHQAArjL/bQkKC5QBAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpcVNBAKZls9mUkZGh3NxcNW/eXL169ZKXl5enywJwhTGzA8CUVq1apbZt2yo2NlYjRoxQbGys2rZtq1WrVnm6NABXmEfDTkpKirp3767AwEA1bdpUiYmJ2r9/v9MYwzA0Y8YMhYeHy9/fX3369NE333zjNKasrEwTJkxQaGioGjRooISEBB07duxKHgqAWmTVqlUaOnSooqOjtW3bNhUWFmrbtm2Kjo7W0KFDCTxAHePRsLNp0yaNGzdOn3/+udavX6+Kigr1799f586dc4yZNWuWXn75ZaWmpmrHjh0KCwvTHXfcocLCQseYpKQkvf/++1qxYoW2bNmioqIiDRo0SDabzROHBcCDbDabkpOTNWjQIKWlpenmm29Ww4YNdfPNNystLU2DBg3S5MmT+f0A1CVGLXLixAlDkrFp0ybDMAzDbrcbYWFhxgsvvOAYU1paalitVmPhwoWGYRjG2bNnDR8fH2PFihWOMd9//71Rr1494+OPP77o55SWlhr5+fmOV05OjiHJyM/Pr8GjA3AlbNy40ZBkbNu27aL9W7duNSQZGzduvLKFAXC7/Pz8Kn1/16o1O/n5+ZKk4OBgSVJ2drby8vLUv39/xxg/Pz/17t1bW7dulSRlZmbq/PnzTmPCw8MVFRXlGPNLKSkpslqtjldERERNHRKAKyw3N1eSFBUVddH+C+0XxgEwv1oTdgzD0KRJk9SzZ0/HL6O8vDxJUrNmzZzGNmvWzNGXl5cnX19fBQUFXXLML02bNk35+fmOV05OjrsPB4CHNG/eXJKUlZV10f4L7RfGATC/WhN2xo8frz179mj58uWV+iwWi9O2YRiV2n7p18b4+fmpUaNGTi8A5tCrVy9FRkZq5syZstvtTn12u10pKSlq06aNevXq5aEKAVxptSLsTJgwQWvWrNHGjRvVsmVLR3tYWJgkVZqhOXHihGO2JywsTOXl5Tpz5swlxwCoO7y8vDR79mylp6crMTHR6WqsxMREpaen66WXXuJ+O0Ad4tGwYxiGxo8fr1WrVunTTz9VmzZtnPrbtGmjsLAwrV+/3tFWXl6uTZs2KSYmRpLUtWtX+fj4OI3Jzc1VVlaWYwyAumXIkCFauXKlvv76a8XExKhRo0aKiYlRVlaWVq5cqSFDhni6RABXkEfvoDxu3Di9++67Wr16tQIDAx0zOFarVf7+/rJYLEpKStLMmTPVrl07tWvXTjNnzlRAQIBGjBjhGDtmzBglJycrJCREwcHBmjx5sqKjo9WvXz9PHh4ADxoyZIjuuusu7qAMQBbDMAyPffgl1tS8+eabeuCBByT9NPvzzDPP6LXXXtOZM2fUo0cPvfLKK05XWpSWlmrKlCl69913VVJSor59+2rBggVVvsqqoKBAVqtV+fn5rN8BAOAqUdXvb4+GndqCsAMAwNWnqt/ftWKBMgAAQE0h7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFPz9nQBAFBTbDabMjIylJubq+bNm6tXr17y8vLydFkArjBmdgCY0qpVq9S2bVvFxsZqxIgRio2NVdu2bbVq1SpPlwbgCiPsADCdVatWaejQoYqOjta2bdtUWFiobdu2KTo6WkOHDiXwAHWMxTAMw9NFeFpBQYGsVqvy8/PVqFEjT5cDoBpsNpvatm2r6OhopaWlqV69//ubzm63KzExUVlZWTp48CCntICrXFW/v5nZAWAqGRkZOnLkiJ544gmnoCNJ9erV07Rp05Sdna2MjAwPVQjgSiPsADCV3NxcSVJUVNRF+y+0XxgHwPwIOwBMpXnz5pKkrKysi/ZfaL8wDoD5EXYAmEqvXr0UGRmpmTNnym63O/XZ7XalpKSoTZs26tWrl4cqBHClEXYAmIqXl5dmz56t9PR0JSYmOl2NlZiYqPT0dL300kssTgbqEG4qCMB0hgwZopUrVyo5OVkxMTGO9jZt2mjlypUaMmSIB6sDcKVx6bm49BwwK+6gDJhbVb+/mdkBYFpeXl7q06ePp8sA4GGs2QEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AFgWiUlJRo/frzi4uI0fvx4lZSUeLokAB7g0bCzefNmDR48WOHh4bJYLEpLS3PqLyoq0vjx49WyZUv5+/urQ4cOevXVV53GlJWVacKECQoNDVWDBg2UkJCgY8eOXcGjAFAbJSYmKiAgQK+88oo++eQTvfLKKwoICFBiYqKnSwNwhXk07Jw7d06dOnVSamrqRfsnTpyojz/+WMuWLdPevXs1ceJETZgwQatXr3aMSUpK0vvvv68VK1Zoy5YtKioq0qBBg2Sz2a7UYQCoZRITE7V69Wr5+vrq8ccf16FDh/T444/L19dXq1evJvAAdYzFMAzD00VIksVi0fvvv+/0SygqKkrDhw/Xk08+6Wjr2rWrBg4cqL/+9a/Kz89XkyZNtHTpUg0fPlySdPz4cUVERGjt2rWKi4ur0mcXFBTIarUqPz9fjRo1cutxAbiySkpKFBAQIF9fXxUWFsrX19fRV15ersDAQJWXl6u4uFj+/v4erBRAdVX1+7tWr9np2bOn1qxZo++//16GYWjjxo06cOCAI8RkZmbq/Pnz6t+/v+M94eHhioqK0tatWy+537KyMhUUFDi9AJjDlClTJEmTJk1yCjqS5Ovrq6SkJKdxAMyvVoedv//977rhhhvUsmVL+fr6asCAAVqwYIF69uwpScrLy5Ovr6+CgoKc3tesWTPl5eVdcr8pKSmyWq2OV0RERI0eB4Ar5+DBg5Kkhx566KL9Y8aMcRoHwPxqfdj5/PPPtWbNGmVmZmr27NkaO3asNmzY8KvvMwxDFovlkv3Tpk1Tfn6+45WTk+Pu0gF4SLt27SRJb7zxhsrLyzV37lxNmDBBc+fOVXl5uRYvXuw0DoD51do1OyUlJbJarXr//fd15513OsY99NBDOnbsmD7++GN9+umn6tu3r06fPu00u9OpUyclJibqmWeeqdJns2YHMI8La3a8vLxkGIbsdrujr169erJYLLLZbKzZAUzgql+zc/78eZ0/f1716jmX6OXl5fjl1bVrV/n4+Gj9+vWO/tzcXGVlZSkmJuaK1gugdvD399e1114rm80mu92uuLg4bdmyRXFxcbLb7bLZbLr22msJOkAd4u3JDy8qKtKhQ4cc29nZ2dq9e7eCg4PVqlUr9e7dW1OmTJG/v79at26tTZs26e2339bLL78sSbJarRozZoySk5MVEhKi4OBgTZ48WdHR0erXr5+nDguAB5WXl+vo0aPy9fVVeXm51q1bp3Xr1jn6fX19dfToUZWXl1dawAzAnDw6s7Nz50516dJFXbp0kfTT1RNdunTRU089JUlasWKFunfvrt/97ne64YYb9MILL+j555/XH//4R8c+5syZo8TERA0bNky33nqrAgIC9MEHH8jLy8sjxwTAsxYsWKCKigq98sorKi4u1rhx49S/f3+NGzdOxcXFmj9/vioqKrRgwQJPlwrgCqk1a3Y8iTU7gHlMmDBBqampys3NVVhYWKX+48ePq0WLFho/frzmz5/vgQoBuMtVv2YHAC7HtddeK0lKT0+/aP+F9gvjAJgfMztiZgcwk/LycjVo0EAhISE6duyYvL3/b2liRUWFWrZsqVOnTuncuXOs2QGucszsAKiTfH19NXHiRP3www9q2bKlXn/9dR0/flyvv/66WrZsqR9++EETJ04k6AB1iEevxgKAmjBr1ixJP13A8Mgjjzjavb29NWXKFEc/gLqB01jiNBZgVuXl5VqwYIEOHz6sa6+9VmPHjmVGBzCRqn5/E3ZE2AEA4GrEmh0AAACxZgeAidlsNmVkZCg3N1fNmzdXr169uOEoUAcxswPAlFatWqW2bdsqNjZWI0aMUGxsrNq2batVq1Z5ujQAVxhhB4DprFq1SkOHDlV0dLS2bdumwsJCbdu2TdHR0Ro6dCiBB6hjWKAsFigDZmKz2dS2bVtFR0crLS1N9er93990drtdiYmJysrK0sGDBzmlBVzlWKAMoE7KyMjQkSNH9MQTTzgFHUmqV6+epk2bpuzsbGVkZHioQgBXGmEHgKnk5uZKkqKioi7af6H9wjgA5kfYAWAqzZs3lyRlZWXJZrPps88+0/Lly/XZZ5/JZrMpKyvLaRwA82PNjlizA5jJhTU7oaGh+vHHH3X06FFHX+vWrdWkSROdOnWKNTuACbBmB0Cd5OXlpXvvvVc7d+5UaWmp04NAS0tLtXPnTg0dOpSgA9QhzOyImR3ATH4+s3Py5EkdOXLE0demTRuFhIQwswOYRFW/v7mDMgBTuXA11vLly9W9e/dKd1Devn27YmJilJGRoT59+ni6XABXAGEHgKn8/GosLy+vSoGGq7GAuoc1OwBM5edXY10MV2MBdQ9hB4Cp9OrVS5GRkZo5c6bsdrtTn91uV0pKitq0aaNevXp5qEIAVxphB4CpeHl5afbs2UpPT1diYqLTs7ESExOVnp6ul156icXJQB3Cmh0ApjNkyBCtXLlSycnJiomJcbS3adNGK1eu1JAhQzxYHYArjUvPxaXngFnZbLZKV2MxowOYB5eeA7hqFRcXa9++fW7Zl4+Pj+x2u3x8fPTVV1+5ZZ/t27dXQECAW/YFoOYRdgDUOvv27VPXrl09XcYlZWZm6sYbb/R0GQCqiLADoNZp3769MjMz3bKvvXv3auTIkVq2bJk6dOjgln22b9/eLfsBcGVcVtjJycnRkSNHVFxcrCZNmug3v/mN/Pz83F0bgDoqICDA7TMnHTp0YDYGqKOqHHaOHj2qhQsXavny5crJydHP1zX7+vqqV69e+sMf/qB77rlH9epxRTsAAKgdqpRK/vSnPyk6OloHDx7Us88+q2+++Ub5+fkqLy9XXl6e1q5dq549e+rJJ59Ux44dtWPHjpquGwAAoEqqNLPj6+urw4cPq0mTJpX6mjZtqttvv1233367nn76aa1du1ZHjx5V9+7d3V4sAACAq6oUdl588cUq73DgwIGXXQwAAIC7uby45vbbb9fZs2crtRcUFOj22293R00AAABu43LY+eyzz1ReXl6pvbS0VBkZGW4pCgAAwF2qfDXWnj17HP//9ttvlZeX59i22Wz6+OOP1aJFC/dWBwAAUE1VDjudO3eWxWKRxWK56Okqf39/zZ8/363FAQAAVFeVw052drYMw9A111yj7du3O12Z5evrq6ZNm/KAPQAAUOtUOey0bt1akmS322usGAAAAHdzeYHyW2+9pQ8//NCxPXXqVDVu3FgxMTE6evSoW4sDAACoLpfDzsyZM+Xv7y9J2rZtm1JTUzVr1iyFhoZq4sSJbi8QAACgOlx+EGhOTo7atm0rSUpLS9PQoUP1hz/8Qbfeeqv69Onj7voAAACqxeWZnYYNG+rUqVOSpE8++UT9+vWTJNWvX18lJSXurQ4AAKCaXJ7ZueOOO/TQQw+pS5cuOnDggO68805J0jfffKPIyEh31wcAAFAtLs/svPLKK7rlllv0448/6r333lNISIgkKTMzU7/97W/dXiAAAEB1uDyz07hxY6WmplZqf+aZZ9xSEAAAgDu5PLMjSRkZGRo5cqRiYmL0/fffS5KWLl2qLVu2uLU4AACA6nI57Lz33nuKi4uTv7+/du3apbKyMklSYWGhZs6c6fYCAQAAqsPlsPPcc89p4cKFWrRokXx8fBztMTEx2rVrl1uLAwAAqC6Xw87+/ft12223VWpv1KiRzp49646aAAAA3MblsNO8eXMdOnSoUvuWLVt0zTXXuKUoAAAAd3E57DzyyCP605/+pC+++EIWi0XHjx/XO++8o8mTJ2vs2LE1USMAAMBlc/nS86lTpyo/P1+xsbEqLS3VbbfdJj8/P02ePFnjx4+viRoBAAAum0szOzabTZs2bVJycrJOnjyp7du36/PPP9ePP/6ov/71ry5/+ObNmzV48GCFh4fLYrEoLS2t0pi9e/cqISFBVqtVgYGBuvnmm/Xdd985+svKyjRhwgSFhoaqQYMGSkhI0LFjx1yuBQAAmJNLYcfLy0txcXHKz89XQECAunXrpptuukkNGza8rA8/d+6cOnXqdNGbFErS4cOH1bNnT7Vv316fffaZvvrqKz355JOqX7++Y0xSUpLef/99rVixQlu2bFFRUZEGDRokm812WTUBAABzcfk0VnR0tP7zn/+oTZs21f7w+Ph4xcfHX7J/+vTpGjhwoGbNmuVo+/ki6Pz8fC1evFhLly51PJB02bJlioiI0IYNGxQXF1ftGgEAwNXN5QXKzz//vCZPnqz09HTl5uaqoKDA6eUudrtdH374oa677jrFxcWpadOm6tGjh9OprszMTJ0/f179+/d3tIWHhysqKkpbt2695L7LyspqrG4AAFC7uBx2BgwYoK+++koJCQlq2bKlgoKCFBQUpMaNGysoKMhthZ04cUJFRUV64YUXNGDAAH3yySe6++67NWTIEG3atEmSlJeXJ19f30qf26xZM+Xl5V1y3ykpKbJarY5XRESE2+oGAAC1i8unsTZu3FgTdVRit9slSXfddZcmTpwoSercubO2bt2qhQsXqnfv3pd8r2EYslgsl+yfNm2aJk2a5NguKCgg8AAAYFIuh51fCxnuFBoaKm9vb91www1O7R06dHA8cDQsLEzl5eU6c+aM0+zOiRMnFBMTc8l9+/n5yc/Pr2YKBwAAtUqVTmP9/FLvqrjwJPTq8PX1Vffu3bV//36n9gMHDqh169aSpK5du8rHx0fr16939Ofm5iorK+tXww4AAKg7qhR2unfvrocffljbt2+/5Jj8/HwtWrRIUVFRWrVqVZU+vKioSLt379bu3bslSdnZ2dq9e7cjXE2ZMkX/+Mc/tGjRIh06dEipqan64IMPHHdqtlqtGjNmjJKTk/Wvf/1LX375pUaOHKno6GjH1VkAAKBuq9JprL1792rmzJkaMGCAfHx81K1bN4WHh6t+/fo6c+aMvv32W33zzTfq1q2bXnzxxV+9nPzndu7cqdjYWMf2hXU0o0eP1pIlS3T33Xdr4cKFSklJ0WOPPabrr79e7733nnr27Ol4z5w5c+Tt7a1hw4appKREffv21ZIlS+Tl5eXKzwEAAJiUxTAMo6qDS0tLtXbtWmVkZOjIkSMqKSlRaGiounTpori4OEVFRdVkrTWmoKBAVqtV+fn5atSokafLAeBGu3btUteuXZWZmakbb7zR0+UAcKOqfn+7tEC5fv36GjJkiIYMGVLtAgEAAK4El++zAwAAcDUh7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFO7rLCzdOlS3XrrrQoPD9fRo0clSXPnztXq1avdWhwAAEB1uRx2Xn31VU2aNEkDBw7U2bNnZbPZJEmNGzfW3Llz3V0fAABAtbgcdubPn69FixZp+vTpTncp7tatm77++mu3FgcAAFBdLoed7OxsdenSpVK7n5+fzp0755aiAAAA3MXlsNOmTRvHgzt/7qOPPtINN9zgjpoAAADcxqXHRUg/PYl83LhxKi0tlWEY2r59u5YvX66UlBS98cYbNVEjAADAZXM57Dz44IOqqKjQ1KlTVVxcrBEjRqhFixaaN2+e7rvvvpqoEQAA4LK5FHYqKir0zjvvaPDgwXr44Yd18uRJ2e12NW3atKbqAwAAqBaX1ux4e3vr0UcfVVlZmSQpNDSUoAMAAGo1lxco9+jRQ19++WVN1AIAAOB2Lq/ZGTt2rJKTk3Xs2DF17dpVDRo0cOrv2LGj24oDAACoLpfDzvDhwyVJjz32mKPNYrHIMAxZLBbHHZUBAABqA5fDTnZ2dk3UAQAAUCNcDjutW7euiToAAABqhMth5+233/7V/lGjRl12MQAAAO7mctj505/+5LR9/vx5FRcXy9fXVwEBAYQdAABQq7h86fmZM2ecXkVFRdq/f7969uyp5cuX10SNAAAAl83lsHMx7dq10wsvvFBp1gcAAMDT3BJ2JMnLy0vHjx931+4AAADcwuU1O2vWrHHaNgxDubm5Sk1N1a233uq2wgAAANzB5bCTmJjotG2xWNSkSRPdfvvtmj17trvqAgAAcAuXw47dbq+JOgAAAGpEtdfs2Gw27d69W2fOnHFHPQAAAG7lcthJSkrS4sWLJf0UdG677TbdeOONioiI0Geffebu+gAAAKrF5bCzcuVKderUSZL0wQcf6MiRI9q3b5+SkpI0ffp0txcIAABQHS6HnZMnTyosLEyStHbtWt1777267rrrNGbMGH399dduLxAAAKA6XA47zZo107fffiubzaaPP/5Y/fr1kyQVFxfLy8vL7QUCAABUh8tXYz344IMaNmyYmjdvLovFojvuuEOS9MUXX6h9+/ZuLxAAAKA6XA47M2bMUFRUlHJycnTvvffKz89P0k93UH788cfdXiAAAEB1uBx2JGno0KFO22fPntXo0aPdUhAAAIA7ubxm529/+5v+8Y9/OLaHDRumkJAQtWzZUnv27HFrcQAAANXlcth57bXXFBERIUlav3691q9fr48++kgDBgzQ5MmT3V4gAABAdbh8Gis3N9cRdtLT0zVs2DD1799fkZGR6tGjh9sLBAAAqA6XZ3aCgoKUk5MjSU6XnhuGIZvN5t7qAAAAqsnlmZ0hQ4ZoxIgRateunU6dOqX4+HhJ0u7du9W2bVu3FwgAAFAdLoedOXPmKDIyUjk5OZo1a5YaNmwo6afTW2PHjnV7gQAAANXhctjx8fG56ELkpKQkd9QDAADgVi6v2ZGkpUuXqmfPngoPD9fRo0clSXPnztXq1avdWhwAAEB1uRx2Xn31VU2aNEnx8fE6e/asY1Fy48aNNXfuXHfXBwAAUC0uh5358+dr0aJFmj59utODP7t168ZTzwEAQK3jctjJzs5Wly5dKrX7+fnp3LlzbikKAADAXVwOO23atNHu3bsrtX/00Ue64YYb3FETAACA27h8NdaUKVM0btw4lZaWyjAMbd++XcuXL1dKSoreeOONmqgRAADgsrkcdh588EFVVFRo6tSpKi4u1ogRI9SiRQvNmzdP9913X03UCAAAcNlcCjsVFRV65513NHjwYD388MM6efKk7Ha7mjZtWlP1AQAAVItLa3a8vb316KOPqqysTJIUGhpK0AEAALWaywuUe/TooS+//LImagEAAHA7l8PO2LFjlZycrNTUVG3btk179uxxerli8+bNGjx4sMLDw2WxWJSWlnbJsY888ogsFkulGxeWlZVpwoQJCg0NVYMGDZSQkKBjx465elgAAMCkXF6gPHz4cEnSY4895mizWCwyDEMWi8VxR+WqOHfunDp16qQHH3xQ99xzzyXHpaWl6YsvvlB4eHilvqSkJH3wwQdasWKFQkJClJycrEGDBikzM9PppocAAKBucjnsZGdnu+3D4+PjFR8f/6tjvv/+e40fP17r1q3TnXfe6dSXn5+vxYsXa+nSperXr58kadmyZYqIiNCGDRsUFxfntloBAMDVyeWw07p165qo46Lsdrvuv/9+TZkyRb/5zW8q9WdmZur8+fPq37+/oy08PFxRUVHaunXrJcNOWVmZY5G1JBUUFLi/eKCOOnjwoAoLCz1dhsPevXud/q0tAgMD1a5dO0+XAdQJLocdSdq/f7/mz5+vvXv3ymKxqH379powYYKuv/56txb3t7/9Td7e3k6nzH4uLy9Pvr6+CgoKcmpv1qyZ8vLyLrnflJQUPfPMM26tFcBPQee6667zdBkXNXLkSE+XUMmBAwcIPMAV4HLYWblypX7729+qW7duuuWWWyRJn3/+uaKiovTuu+/q3nvvdUthmZmZmjdvnnbt2iWLxeLSey+sH7qUadOmadKkSY7tgoICRUREXHatAH5yYUZn2bJl6tChg4er+UlJSYmOHDmiyMhI+fv7e7ocST/NMo0cObJWzYABZuZy2Jk6daqmTZumZ5991qn96aef1p///Ge3hZ2MjAydOHFCrVq1crTZbDYlJydr7ty5OnLkiMLCwlReXq4zZ844ze6cOHFCMTExl9y3n5+f/Pz83FIngMo6dOigG2+80dNlONx6662eLgGAB7l86XleXp5GjRpVqX3kyJG/eurIVffff7/27Nmj3bt3O17h4eGaMmWK1q1bJ0nq2rWrfHx8tH79esf7cnNzlZWV9athBwAA1B0uz+z06dNHGRkZatu2rVP7li1b1KtXL5f2VVRUpEOHDjm2s7OztXv3bgUHB6tVq1YKCQlxGu/j46OwsDDH2iCr1aoxY8YoOTlZISEhCg4O1uTJkxUdHe24OgsAANRtLoedhIQE/fnPf1ZmZqZuvvlmST+t2fnnP/+pZ555RmvWrHEa+2t27typ2NhYx/aFdTSjR4/WkiVLqlTPnDlz5O3trWHDhqmkpER9+/bVkiVLuMcOAACQJFkMwzBceUO9elU78+XqDQY9qaCgQFarVfn5+WrUqJGnywGuWrt27VLXrl2VmZlZq9bs1Db8nAD3qOr3t8szO3a7vVqFAQAAXEkuL1AGAAC4mhB2AACAqRF2AACAqRF2AACAqRF2AACAqVXpaixXngrOpdsAAKA2qVLYady4cZUfxnm13FsHAADUDVUKOxs3bnT8/8iRI3r88cf1wAMPOJ56vm3bNr311ltKSUmpmSoBAAAuU5XCTu/evR3/f/bZZ/Xyyy/rt7/9raMtISFB0dHRev311zV69Gj3VwkAAHCZXF6gvG3bNnXr1q1Se7du3bR9+3a3FAUAAOAuLoediIgILVy4sFL7a6+9poiICLcUBQAA4C4uPxtrzpw5uueee7Ru3Tqnp54fPnxY7733ntsLBAAAqA6XZ3YGDhyogwcPKiEhQadPn9apU6d011136cCBAxo4cGBN1AgAAHDZXJ7ZkaSWLVtq5syZ7q4FAADA7S4r7Jw9e1aLFy/W3r17ZbFYdMMNN+j3v/+9rFaru+sDAACoFpdPY+3cuVPXXnut5syZo9OnT+vkyZN6+eWXde2112rXrl01USMAAMBlc3lmZ+LEiUpISNCiRYvk7f3T2ysqKvTQQw8pKSlJmzdvdnuRAAAAl8vlsLNz506noCNJ3t7emjp16kXvvwMAAOBJLp/GatSokb777rtK7Tk5OQoMDHRLUQAAAO7ictgZPny4xowZo3/84x/KycnRsWPHtGLFCj300ENOj5AAAACoDVw+jfXSSy/JYrFo1KhRqqiokCT5+Pjo0Ucf1QsvvOD2AgEAAKrD5bDj6+urefPmKSUlRYcPH5ZhGGrbtq0CAgJqoj4AAIBquaz77EhSQECAgoKCZLFYCDoAJEmWilJ1Casn/7MHpOMunyWvM/zPHlCXsHqyVJR6uhSgTnA57Njtdj333HOaPXu2ioqKJEmBgYFKTk7W9OnTVa8ev+CAuqp+0Xfa9UhDafMjEnehuKQOknY90lB7i76TFOPpcgDTcznsTJ8+XYsXL9YLL7ygW2+9VYZh6N///rdmzJih0tJSPf/88zVRJ4CrQGnDVrrxtSK988476tC+vafLqbX27tun3/3ud1o8sJWnSwHqBJfDzltvvaU33nhDCQkJjrZOnTqpRYsWGjt2LGEHqMMM7/r6Ms+uksbXSeGdPV1OrVWSZ9eXeXYZ3vU9XQpQJ7h8zun06dNqf5G/2Nq3b6/Tp0+7pSgAAAB3cTnsdOrUSampqZXaU1NT1alTJ7cUBQAA4C4un8aaNWuW7rzzTm3YsEG33HKLLBaLtm7dqpycHK1du7YmagQAALhsLs/s9O7dWwcOHNDdd9+ts2fP6vTp0xoyZIj279+vXr161USNAAAAl+2y7rMTHh7OQmQAAHBVqFLY2bNnT5V32LFjx8suBgAAwN2qFHY6d+4si8UiwzB+dZzFYpHNZnNLYQAAAO5QpbCTnZ1d03UAAADUiCqFndatW9d0HQAAADXC5QXKp06dUkhIiCQpJydHixYtUklJiRISErgaCwAA1DpVvvT866+/VmRkpJo2bar27dtr9+7d6t69u+bMmaPXX39dsbGxSktLq8FSAQAAXFflsDN16lRFR0dr06ZN6tOnjwYNGqSBAwcqPz9fZ86c0SOPPKIXXnihJmsFAABwWZVPY+3YsUOffvqpOnbsqM6dO+v111/X2LFjVa/eT3lpwoQJuvnmm2usUAAAgMtR5Zmd06dPKywsTJLUsGFDNWjQQMHBwY7+oKAgFRYWur9CAACAanDpcREWi+VXtwEAAGobl67GeuCBB+Tn5ydJKi0t1R//+Ec1aNBAklRWVub+6gAAAKqpymFn9OjRTtsjR46sNGbUqFHVrwgAAMCNqhx23nzzzZqsAwAAoEa4tGYHAADgakPYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApubRsLN582YNHjxY4eHhslgsSktLc/SdP39ef/7znxUdHa0GDRooPDxco0aN0vHjx532UVZWpgkTJig0NFQNGjRQQkKCjh07doWPBAAA1FYeDTvnzp1Tp06dlJqaWqmvuLhYu3bt0pNPPqldu3Zp1apVOnDggBISEpzGJSUl6f3339eKFSu0ZcsWFRUVadCgQbLZbFfqMAAAQC3m0rOx3C0+Pl7x8fEX7bNarVq/fr1T2/z583XTTTfpu+++U6tWrZSfn6/Fixdr6dKl6tevnyRp2bJlioiI0IYNGxQXF1fjxwAAAGo3j4YdV+Xn58tisahx48aSpMzMTJ0/f179+/d3jAkPD1dUVJS2bt16ybBTVlbm9ODSgoKCGq0bqCuKi4slSbt27fJwJf+npKRER44cUWRkpPz9/T1djiRp7969ni4BqFOumrBTWlqqxx9/XCNGjFCjRo0kSXl5efL19VVQUJDT2GbNmikvL++S+0pJSdEzzzxTo/UCddG+ffskSQ8//LCHK7k6BAYGeroEoE64KsLO+fPndd9998lut2vBggX/dbxhGLJYLJfsnzZtmiZNmuTYLigoUEREhFtqBeqyxMRESVL79u0VEBDg2WL+v71792rkyJFatmyZOnTo4OlyHAIDA9WuXTtPlwHUCbU+7Jw/f17Dhg1Tdna2Pv30U8esjiSFhYWpvLxcZ86ccZrdOXHihGJiYi65Tz8/P/n5+dVo3UBdFBoaqoceesjTZVxUhw4ddOONN3q6DAAeUKvvs3Mh6Bw8eFAbNmxQSEiIU3/Xrl3l4+PjtJA5NzdXWVlZvxp2AABA3eHRmZ2ioiIdOnTIsZ2dna3du3crODhY4eHhGjp0qHbt2qX09HTZbDbHOpzg4GD5+vrKarVqzJgxSk5OVkhIiIKDgzV58mRFR0c7rs4CAAB1m0fDzs6dOxUbG+vYvrCOZvTo0ZoxY4bWrFkjSercubPT+zZu3Kg+ffpIkubMmSNvb28NGzZMJSUl6tu3r5YsWSIvL68rcgwAAKB282jY6dOnjwzDuGT/r/VdUL9+fc2fP1/z5893Z2kAAMAkavWaHQAAgOoi7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFPzaNjZvHmzBg8erPDwcFksFqWlpTn1G4ahGTNmKDw8XP7+/urTp4+++eYbpzFlZWWaMGGCQkND1aBBAyUkJOjYsWNX8CgAAEBt5tGwc+7cOXXq1EmpqakX7Z81a5ZefvllpaamaseOHQoLC9Mdd9yhwsJCx5ikpCS9//77WrFihbZs2aKioiINGjRINpvtSh0GAACoxbw9+eHx8fGKj4+/aJ9hGJo7d66mT5+uIUOGSJLeeustNWvWTO+++64eeeQR5efna/HixVq6dKn69esnSVq2bJkiIiK0YcMGxcXFXXTfZWVlKisrc2wXFBS4+cgAAEBtUWvX7GRnZysvL0/9+/d3tPn5+al3797aunWrJCkzM1Pnz593GhMeHq6oqCjHmItJSUmR1Wp1vCIiImruQAAAgEfV2rCTl5cnSWrWrJlTe7NmzRx9eXl58vX1VVBQ0CXHXMy0adOUn5/veOXk5Li5egAAUFt49DRWVVgsFqdtwzAqtf3Sfxvj5+cnPz8/t9QHAABqt1o7sxMWFiZJlWZoTpw44ZjtCQsLU3l5uc6cOXPJMQAAoG6rtWGnTZs2CgsL0/r16x1t5eXl2rRpk2JiYiRJXbt2lY+Pj9OY3NxcZWVlOcYAAIC6zaOnsYqKinTo0CHHdnZ2tnbv3q3g4GC1atVKSUlJmjlzptq1a6d27dpp5syZCggI0IgRIyRJVqtVY8aMUXJyskJCQhQcHKzJkycrOjracXUWAACo2zwadnbu3KnY2FjH9qRJkyRJo0eP1pIlSzR16lSVlJRo7NixOnPmjHr06KFPPvlEgYGBjvfMmTNH3t7eGjZsmEpKStS3b18tWbJEXl5eV/x4AABA7WMxDMPwdBGeVlBQIKvVqvz8fDVq1MjT5QBwo127dqlr167KzMzUjTfe6OlyALhRVb+/a+2aHQAAAHcg7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFPz6LOxAOBiiouLtW/fPrfsa+/evU7/ukP79u0VEBDgtv0BqFmEHQC1zr59+9S1a1e37nPkyJFu2xfP2QKuLoQdALVO+/btlZmZ6ZZ9lZSU6MiRI4qMjJS/v79b9tm+fXu37AfAlcFTz8VTzwEAuBrx1HMAAAARdgAAgMkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKl5e7qA2uDCg98LCgo8XAkAAKiqC9/bF77HL4WwI6mwsFCSFBER4eFKAACAqwoLC2W1Wi/ZbzH+WxyqA+x2u44fP67AwEBZLBZPlwPAjQoKChQREaGcnBw1atTI0+UAcCPDMFRYWKjw8HDVq3fplTmEHQCmVlBQIKvVqvz8fMIOUEexQBkAAJgaYQcAAJgaYQeAqfn5+enpp5+Wn5+fp0sB4CGs2QEAAKbGzA4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AADA1wg4AU9q8ebMGDx6s8PBwWSwWpaWlebokAB5C2AFgSufOnVOnTp2Umprq6VIAeBhPPQdgSvHx8YqPj/d0GQBqAWZ2AACAqRF2AACAqRF2AACAqRF2AACAqRF2AACAqXE1FgBTKioq0qFDhxzb2dnZ2r17t4KDg9WqVSsPVgbgSrMYhmF4uggAcLfPPvtMsbGxldpHjx6tJUuWXPmCAHgMYQcAAJgaa3YAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICp/T9BlpfjY30RsQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.boxplot(X['trestbps'])\n", + "plt.ylabel('Blood pressure (rest)')\n", + "plt.title('Blood pressure')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "5c174a9d-59b7-4efe-a0eb-a132388c1d2a", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Chol / Age split by sex')" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADZ7ElEQVR4nOzdd3hUZfbA8e/0SZ30DqH3DlJFUARFwcJaUERUdBVsrG11/a1ll9XVXV1de1sBUbEXFFGkidKbgAhSQ0nvdfr9/fGmTTITEgwEwvk8zzzKvTdz70zKPfO+5z1Hp2mahhBCCCFEK6Vv6QsQQgghhDiRJNgRQgghRKsmwY4QQgghWjUJdoQQQgjRqkmwI4QQQohWTYIdIYQQQrRqEuwIIYQQolWTYEcIIYQQrZoEO0IIIYRo1STYEaIFbdu2jRtvvJH27dtjtVoJDQ1lwIABPP300+Tn51cf165dOyZMmNBs5z148CA6nY45c+Y0+msmTZrEpZde2qhjv/zyS3Q6HdHR0TgcjuO8ylPPY489hk6n89k2evRoRo8eXf3v8vJyHnvsMVasWNGo51yxYgU6nY6PP/64Ga9UCFGbsaUvQIgz1RtvvMHMmTPp2rUr999/Pz169MDlcrFx40ZeffVV1qxZw2effdbSlwlAWVkZixcv5tVXX23U8W+99RYA+fn5fP7551x99dUn8vJa1Msvv+zz7/Lych5//HEAnyBICNFyJNgRogWsWbOGGTNmMHbsWD7//HMsFkv1vrFjx3LvvfeyePHiFrxCX4sWLcLtdjNx4sRjHpuZmcmiRYs477zzWL16NW+99VarDnZ69OjR0pcghDgGmcYSogU88cQT6HQ6Xn/9dZ9Ap4rZbOaSSy6pt33x4sUMGDCAoKAgunXrxv/+9796x+zYsYNLL72UyMhIrFYr/fr1Y+7cub/rej/55BPOO+88IiMjj3ns3Llzcbvd/OlPf2LSpEksXbqUtLS0escVFhYyffp0oqKiCA0N5eKLL2b//v3odDoee+wxn2P37NnDtddeS1xcHBaLhe7du/PSSy816to/+ugjhgwZgs1mIzg4mA4dOnDTTTdV76+aRpo/fz733HMPCQkJBAUFMWrUKLZs2XLM5689jXXw4EFiY2MBePzxx9HpdOh0Om644YZjPo/dbm/w/O+88w46nY41a9bU+9q//e1vmEwm0tPTAz5/Tk4Of/zjH2nTpg0Wi4XY2FhGjBjB999/73Pc999/z5gxYwgPDyc4OJgRI0awdOnS6v179uwhPDycK6+80ufrli1bhsFg4K9//esxX6sQJ50mhDip3G63FhwcrA0ZMqTRX5OamqqlpKRoPXr00ObNm6d9++232pVXXqkB2sqVK6uP27VrlxYWFqZ17NhRmzdvnvb1119r11xzjQZoTz31VPVxBw4c0ADt7bffPua5KyoqtNDQUO31119v1LV26dJFS0xM1Nxut/b9999rgPbYY4/5HOPxeLSzzz5bs1qt2j//+U/tu+++0x5//HGtc+fOGqA9+uij1cf+8ssvms1m03r37q3NmzdP++6777R7771X0+v19Z63rtWrV2s6nU6bPHmytmjRIm3ZsmXa22+/rU2dOrX6mOXLl2uA1qZNG+3SSy/VFi5cqM2fP1/r1KmTFh4eru3bt6/62EcffVSr+2dz1KhR2qhRozRN0zS73a4tXrxYA7Tp06dra9as0dasWaPt3bs34DU29vwOh0NLSEjQpkyZ4vP1LpdLS0pK0q688soG34sLLrhAi42N1V5//XVtxYoV2ueff6498sgj2oIFC6qPeeeddzSdTqdddtll2qeffqotXLhQmzBhgmYwGLTvv/+++rgFCxZogPb8889rmqZpGRkZWnx8vDZq1CjN7XY3eB1CtAQJdoQ4yTIzMzVAmzx5cqO/JjU1VbNarVpaWlr1toqKCi0qKkq79dZbq7dNnjxZs1gs2qFDh3y+fvz48VpwcLBWWFioaVrTgp3PP/9cMxgMWnZ29jGP/eGHHzRAe/DBBzVN0zSv16u1b99eS01N1bxeb/VxX3/9tQZor7zyis/XP/nkk/WCnQsuuEBLSUnRioqKfI694447NKvVquXn5we8nn//+98aUP26/akKNgYMGOBzjQcPHtRMJpN28803V287VrCjaZqWk5NT7zU0pKnnN5vNWlZWVvW2Dz74oF7Q609oaKg2a9asgPvLysq0qKgobeLEiT7bPR6P1rdvX23w4ME+22fMmKGZzWZtzZo12nnnnafFxcVp6enpjXrNQpxsMo0lxGmiX79+tG3btvrfVquVLl26+EwRLVu2jDFjxtCmTRufr73hhhsoLy/3OwVyLJ988gkjR46snp5pSFVictU0UdUUTlpams9UyMqVKwG46qqrfL7+mmuu8fm33W5n6dKlXH755QQHB+N2u6sfF110EXa7nbVr1wa8nrPOOqv6PB9++CFHjx4NeOy1117rs9IqNTWV4cOHs3z58mO+7ubQmPPPmDEDUMntVV588UV69+7NOeec0+DzDx48mDlz5jB79mzWrl2Ly+Xy2b969Wry8/OZNm2az/vs9Xq58MIL2bBhA2VlZdXH/+c//6Fnz56ce+65rFixgvnz55OYmPi73gMhThQJdoQ4yWJiYggODubAgQNN+rro6Oh62ywWCxUVFdX/zsvL83vDSUpKqt7fFC6Xi4ULF/KHP/zhmMeWlJTw0UcfMXjwYGJjYyksLKSwsJDLL78cnU5XHQhVXYfRaCQqKsrnOeLj433+nZeXh9vt5oUXXsBkMvk8LrroIgByc3MDXtM555zD559/jtvt5vrrryclJYVevXrx/vvv1zs2ISHB77amvmfHqzHnj4+P5+qrr+a1117D4/Gwbds2Vq1axR133HHM5//ggw+YNm0ab775JsOGDSMqKorrr7+ezMxMALKysgC44oor6r3XTz31FJqm+ZRDsFgsXHvttdjtdvr168fYsWN/71sgxAkjq7GEOMkMBgNjxozhm2++4ciRI6SkpDTbc0dHR5ORkVFve1XiakxMTJOe7/vvv6eoqIjLL7/8mMe+//77lJeXs379er+JzJ999hkFBQVERkYSHR2N2+0mPz/fJ+CpuvFWiYyMxGAwMHXqVG6//Xa/523fvn2D13XppZdy6aWX4nA4WLt2LU8++STXXnst7dq1Y9iwYQHPXbXNX5B5IjT2/HfffTfvvPMOX3zxBYsXLyYiIoIpU6Yc8/ljYmJ47rnneO655zh06BBffvklDz74INnZ2SxevLj6Z+OFF15g6NChfp+jdjC6Y8cOHnnkEc466yw2bNjAs88+yz333NOUlyzESSMjO0K0gIceeghN07jllltwOp319leNqDTVmDFjWLZsWb1VOfPmzSM4ODjgTSyQTz75hKFDh5KcnHzMY9966y3CwsJYunQpy5cv93n861//wuFw8O677wIwatQoQI021LZgwQKffwcHB3PuueeyZcsW+vTpw6BBg+o9GhuMWCwWRo0axVNPPQVQb6XV+++/j6Zp1f9OS0tj9erVTa6VU7W6rvaIW2M09vwDBw5k+PDhPPXUU7z77rvccMMNhISENOlcbdu25Y477mDs2LFs3rwZgBEjRhAREcHOnTv9vs+DBg3CbDYDqu7SlVdeSbt27Vi+fDl33HEHDz74IOvWrWvSdQhxssjIjhAtYNiwYbzyyivMnDmTgQMHMmPGDHr27InL5WLLli28/vrr9OrVq1F1bWp79NFH+eqrrzj33HN55JFHiIqK4t133+Xrr7/m6aefxmazNfq5PB4PX3zxBQ8++OAxj92xYwfr169nxowZnHfeefX2jxgxgmeeeYa33nqLO+64gwsvvJARI0Zw7733UlxczMCBA1mzZg3z5s0DQK+v+Rz2/PPPc/bZZzNy5EhmzJhBu3btKCkpYe/evSxcuJBly5YFvK5HHnmEI0eOMGbMGFJSUigsLOT555/HZDJVB1xVsrOzufzyy7nlllsoKiri0UcfxWq18tBDDzX2LQMgLCyM1NRUvvjiC8aMGUNUVBQxMTG0a9euwa9ryvnvvvturr76anQ6HTNnzjzmNRUVFXHuuedy7bXX0q1bN8LCwtiwYQOLFy9m0qRJAISGhvLCCy8wbdo08vPzueKKK4iLiyMnJ4eff/6ZnJwcXnnlFQBuu+02Dh06xPr16wkJCeGZZ55hzZo1TJ48mS1bthAREdGk90yIE65l86OFOLNt3bpVmzZtmta2bVvNbDZrISEhWv/+/bVHHnnEZ/VTamqqdvHFF9f7+rorgTRN07Zv365NnDhRs9lsmtls1vr27Vtv1VVjVmNVLRvfv3//MV/HrFmzNEDbunVrwGMefPBBDdA2bdqkaZqm5efnazfeeKMWERGhBQcHa2PHjtXWrl3rs6S59vXedNNNWnJysmYymbTY2Fht+PDh2uzZsxu8rq+++kobP368lpycrJnNZi0uLk676KKLtFWrVlUfU7Ua6p133tHuuusuLTY2VrNYLNrIkSO1jRs3+jxfY1ZjaZp67/r3769ZLBYN0KZNmxbwGpty/ioOh0OzWCzahRde2ODrr2K327XbbrtN69OnjxYeHq4FBQVpXbt21R599FGtrKzM59iVK1dqF198sRYVFaWZTCYtOTlZu/jii7WPPvpI0zRNe+ONN/z+7Ozdu1cLDw/XLrvsskZdkxAnk07Tao2bCiFEpZkzZ7Ju3To2bdp00s753nvvMWXKFH766SeGDx9+Us65YsUKzj33XD766COuuOKKk3LO32vhwoVccsklfP3119WJ2kKIwGQaSwjhV92eT83t/fff5+jRo/Tu3Ru9Xs/atWv517/+xTnnnHPSAp3Tzc6dO0lLS+Pee++lX79+jB8/vqUvSYjTggQ7QogWERYWxoIFC5g9ezZlZWUkJiZyww03MHv27Ja+tFPWzJkz+emnnxgwYABz586t14FdCOGfTGMJIYQQolWTpedCCCGEaNUk2BFCCCFEqybBjhBCCCFaNUlQBrxeL+np6YSFhUnCnxBCCHGa0DSNkpISkpKSfIqR1iXBDqpvUN0u0UIIIYQ4PRw+fLjBPoMS7KCWwIJ6s8LDw1v4aoQQQgjRGMXFxbRp06b6Ph6IBDtQPXUVHh4uwY4QQghxmjlWCookKAshhBCiVZNgRwghhBCtmgQ7QgghhGjVJGdHCCGEOI15PB5cLldLX8YJYTKZMBgMv/t5JNgRQgghTkOappGZmUlhYWFLX8oJFRERQUJCwu+qgyfBjhBCCHEaqgp04uLiCA4ObnVFcTVNo7y8nOzsbAASExOP+7kk2BFCCCFOMx6PpzrQiY6ObunLOWGCgoIAyM7OJi4u7rintCRBWQghhDjNVOXoBAcHt/CVnHhVr/H35CVJsCOEEEKcplrb1JU/zfEaZRpLCCHEGaGw3InD7SXYbCDMamrpyxEnkQQ7QgghWrXCcifbjhTx/NI9HC2ooEdSOH86vzMdY0MJtsht8Ewg32UhhBCtVrnTzfvrD/HU4t3V2zKL7Szfnc2b1w/ivG5xZ8RU0JlOcnaEEEK0WrklDp757rd62zUNHvp0O1nFjha4KnGySbAjhBCi1TqYV47bq/ndl13ioKDceZKv6NT08ccf07t3b4KCgoiOjub888+nrKwMgLfffpvu3btjtVrp1q0bL7/8cvXX3XTTTfTp0weHQwWNLpeLgQMHMmXKlBZ5HYFIsCOEEKLVMhkavs0Z9DKFlZGRwTXXXMNNN93Er7/+yooVK5g0aRKapvHGG2/w8MMP849//INff/2VJ554gr/+9a/MnTsXgP/+97+UlZXx4IMPAvDXv/6V3Nxcn4DoVCA5O0IIIVqtNlFBBJkMVLg89fZ1iAkhIlhWZWVkZOB2u5k0aRKpqakA9O7dG4C///3vPPPMM0yaNAmA9u3bs3PnTl577TWmTZtGaGgo8+fPZ9SoUYSFhfHMM8+wdOlSbDZbi70ef2RkRwghRKsVF2bh2av6UjcH2WrS8+zV/YgLs7bMhZ1C+vbty5gxY+jduzdXXnklb7zxBgUFBeTk5HD48GGmT59OaGho9WP27Nns27ev+uuHDRvGfffdx9///nfuvfdezjnnnBZ8Nf7JyI4QQohWy2w0MKprLN/efQ7vrktjb04pg1KjuLx/MimRQS19eacEg8HAkiVLWL16Nd999x0vvPACDz/8MAsXLgTgjTfeYMiQIfW+porX6+Wnn37CYDCwZ8+ek3rtjSXBjhBCiFYt2GykS0IYf53QA6fHi8VokFydOnQ6HSNGjGDEiBE88sgjpKam8tNPP5GcnMz+/fsbTDj+17/+xa+//srKlSu54IILePvtt7nxxhtP4tUfmwQ7QgghzghGgx7jMRKWz0Tr1q1j6dKljBs3jri4ONatW0dOTg7du3fnscce46677iI8PJzx48fjcDjYuHEjBQUF3HPPPWzdupVHHnmEjz/+mBEjRvD8889z9913M2rUKDp06NDSL62aBDtCCCHEGSw8PJwffviB5557juLiYlJTU3nmmWcYP348oBpx/utf/+KBBx4gJCSE3r17M2vWLOx2O1OmTOGGG25g4sSJAEyfPp2vv/6aqVOn8sMPPxx3l/LmptM0zX8BgjNIcXExNpuNoqIiwsPDW/pyhBBCiAbZ7XYOHDhA+/btsVpbd5J1Q6+1sfdvGc8TQgghRKsmwY4QQgghWjUJdoQQQgjRqkmwI4QQQohWTYIdIYQQQrRqEuwIIYQQolWTYEcIIYQQrZoEO0IIIYRo1STYEUIIIUSrJsGOEEIIIVo1CXaEEEIIcVK9/PLL1e0fBg4cyKpVq07o+STYEUIIIc5gHq/Gmn15fLH1KGv25eHxntiWmR988AGzZs3i4YcfZsuWLYwcOZLx48dz6NChE3ZO6XouhBBCnKEW78jg8YU7ySiyV29LtFl5dGIPLuyVeELO+eyzzzJ9+nRuvvlmAJ577jm+/fZbXnnlFZ588skTck4Z2RFCCCHOQIt3ZDBj/mafQAcgs8jOjPmbWbwjo9nP6XQ62bRpE+PGjfPZPm7cOFavXt3s56siwY4QQghxhvF4NR5fuBN/E1ZV2x5fuLPZp7Ryc3PxeDzEx8f7bI+PjyczM7NZz1WbBDtCCCHEGWb9gfx6Izq1aUBGkZ31B/JPyPl1Op3v+TSt3rbmJMGOEEIIcYbJLgkc6BzPcY0VExODwWCoN4qTnZ1db7SnOUmwI4QQQpxh4sKszXpcY5nNZgYOHMiSJUt8ti9ZsoThw4c367lqk9VYQgghxBlmcPsoEm1WMovsfvN2dECCzcrg9lHNfu577rmHqVOnMmjQIIYNG8brr7/OoUOHuO2225r9XFUk2BFCCCHOMAa9jkcn9mDG/M3owCfgqcqceXRiDwz65s+jufrqq8nLy+Nvf/sbGRkZ9OrVi0WLFpGamtrs56oi01hCCCHEGejCXom8ct0AEmy+U1UJNiuvXDfghNXZAZg5cyYHDx7E4XCwadMmzjnnnBN2LpCRHSGEEOKMdWGvRMb2SGD9gXyyS+zEhampqxMxotOSJNgRQgghzmAGvY5hHaNb+jJOKJnGEkIIIUSrJsGOEEIIIVo1CXaEEEII0apJsCOEEEKIVk2CHSGEEEK0ahLsCCGEEKJVk2BHCCGEEK2aBDtCCCGEaNUk2BFCCCHESfPDDz8wceJEkpKS0Ol0fP755yf8nBLsCCGEEGcyrwcOrILtH6v/ej0n9HRlZWX07duXF1988YSepzZpFyGEEEKcqXZ+CYv/DMXpNdvCk+DCp6DHJSfklOPHj2f8+PEn5LkDkZEdIYQQ4ky080v48HrfQAegOENt3/lly1zXCSDBjhBCCHGm8XrUiA6an52V2xY/eMKntE4WCXaEEEKIM03a6vojOj40KD6qjmsFWjTYeeyxx9DpdD6PhISE6v2apvHYY4+RlJREUFAQo0eP5pdffvF5DofDwZ133klMTAwhISFccsklHDly5GS/FCGEEOL0UZrVvMed4lp8ZKdnz55kZGRUP7Zv31697+mnn+bZZ5/lxRdfZMOGDSQkJDB27FhKSkqqj5k1axafffYZCxYs4Mcff6S0tJQJEybg8bSOoTchhBCi2YXGN+9xp7gWX41lNBp9RnOqaJrGc889x8MPP8ykSZMAmDt3LvHx8bz33nvceuutFBUV8dZbb/HOO+9w/vnnAzB//nzatGnD999/zwUXXHBSX4sQQghxWkgdrlZdFWfgP29Hp/anDm/2U5eWlrJ3797qfx84cICtW7cSFRVF27Ztm/18cAqM7OzZs4ekpCTat2/P5MmT2b9/P6BefGZmJuPGjas+1mKxMGrUKFavVnOImzZtwuVy+RyTlJREr169qo/xx+FwUFxc7PMQQgghzhh6g1peDoCuzs7Kf1/4T3VcM9u4cSP9+/enf//+ANxzzz3079+fRx55pNnPVaVFg50hQ4Ywb948vv32W9544w0yMzMZPnw4eXl5ZGZmAhAf7zuEFh8fX70vMzMTs9lMZGRkwGP8efLJJ7HZbNWPNm3aNPMrE0IIIU5xPS6Bq+ZBeKLv9vAktf0E1dkZPXo0mqbVe8yZM+eEnA9aeBqrdlGh3r17M2zYMDp27MjcuXMZOnQoADqdb8SpaVq9bXUd65iHHnqIe+65p/rfxcXFEvAIIYQ48/S4BLpdrFZdlWapHJ3U4SdkRKcltfg0Vm0hISH07t2bPXv2VOfx1B2hyc7Orh7tSUhIwOl0UlBQEPAYfywWC+Hh4T4PIYQQ4oykN0D7kdD7CvXfVhbowCkW7DgcDn799VcSExNp3749CQkJLFmypHq/0+lk5cqVDB+uEqYGDhyIyWTyOSYjI4MdO3ZUHyOEEEKIM1uLTmPdd999TJw4kbZt25Kdnc3s2bMpLi5m2rRp6HQ6Zs2axRNPPEHnzp3p3LkzTzzxBMHBwVx77bUA2Gw2pk+fzr333kt0dDRRUVHcd9999O7du3p1lhBCCCHObC0a7Bw5coRrrrmG3NxcYmNjGTp0KGvXriU1NRWABx54gIqKCmbOnElBQQFDhgzhu+++IywsrPo5/vOf/2A0GrnqqquoqKhgzJgxzJkzB4Oh9Q3DCSGEELVpmr9l461Lc7xGnXYmvFPHUFxcjM1mo6ioSPJ3hBBCnPI8Hg+//fYbcXFxREdHt/TlnFB5eXlkZ2fTpUuXegMZjb1/t3hRQSGEEEI0jcFgICIiguzsbACCg4OPuVL5dKNpGuXl5WRnZxMREfG7Zmwk2BFCCCFOQ1WrlqsCntYqIiLCb6eFppBgRwghhDgN6XQ6EhMTiYuLw+VytfTlnBAmk6lZcnAl2BFCCCFOYwaDQRblHMMpVWdHCCGEEKK5SbAjhBBCiFZNgh0hhBBCtGoS7AghhBCiVZNgRwghhBCtmgQ7QgghhGjVJNgRQgghRKsmwY4QQgghWjUJdoQQQgjRqkmwI4QQQohWTYIdIYQQQrRqEuwIIYQQolWTYEcIIYQQrZoEO0IIIYRo1STYEUIIIUSrJsGOEEIIIVo1CXaEEEII0apJsCOEEEKIVk2CHSGEEEK0ahLsCCGEEKJVk2BHCCGEEK2aBDtCCCGEaNUk2BFCCCFEqybBjhBCCCFaNQl2hBBCCNGqSbAjhBBCiFZNgh0hhBBCtGoS7AghhBCiVZNgRwghhBCtmgQ7QgghhGjVJNgRQgghRKsmwY4QQgghWjUJdoQQQgjRqkmwI4QQQohWTYIdIYQQQrRqEuwIIYQQolWTYEcIIYQQrZoEO0IIIYRo1STYEUIIIUSrJsGOEEIIIVo1CXaEEEII0apJsCOEEEKIVk2CHSGEEEK0ahLsCCGEEKJVk2BHCCGEEK2aBDtCCCGEaNUk2BFCCCFEqybBjhBCCCFaNWNLX4AQQgjhj9erkVVip9zpwWLUExNqwWoytPRlidOQBDtCCCFOOfllTr79JZNnvttNbqkTi1HP1We1YeboTiTYrC19eeI0I9NYQgghTikej5cvfz7KQ59uJ7fUCYDD7WXemjTu//hn8sscLXyF4nQjwY4QQohTSlaJg/8s2eN336o9uWQVS7AjmkaCHSGEEKeUErubogpXwP17s0tP4tWI1kCCHSGEEKcUq0mPThd4f0yo+eRdjGgVJNgRQohm4nR7ySiqIKOwgjKHu6Uv57QVFWLm/O5xfvdFBJtIjQ45yVckTneyGksIIZrB0YIK3li1n483HcHp9jKuZzz3jO1Cu+gQ9PoGhilEPWFWE49O7Mmh/HJ2Z9ZMWYVbjcy9cTAJ4bIaSzSNTtM0raUvoqUVFxdjs9koKioiPDy8pS9HCHGaSS+s4OrX13A4v8Jne5jFyMI7z6ZdzJkzElFY7iSv1Mkv6UWEWIx0iQ8jPtyC2dj0+jjZxXYO5ZfzS3oxKZFBdEsII9EWJMGjqNbY+7eM7AghxO/0097ceoEOQInDzZs/7uevE3pgOY6b/ekmt8TBv7/bzYINh6u3WYx6Xrx2AGd3jiGoiQUB48KtxIVbGdQuqrkvVZxhJGdHCCF+hwqXm4U/pwfc//3ObArLA68sak2+35XlE+iAqo9z2/xNZBTWDwaFOFkk2BFCiN/BoNMTHmQKuD/EYsRwBky7ZJfYeWn5Xr/7PF6twYBQiBNNgh0hhPgdzEY904a1C7j/prPbERNqOXkX1EI8Xo2sosDF/g7klp3EqxHC1ykT7Dz55JPodDpmzZpVvU3TNB577DGSkpIICgpi9OjR/PLLLz5f53A4uPPOO4mJiSEkJIRLLrmEI0eOnOSrF0KcyTrGhTBtWGq97SM6RnN+9/gWuKKTL8hkoHeKLeD+szvHnsSrEcLXKRHsbNiwgddff50+ffr4bH/66ad59tlnefHFF9mwYQMJCQmMHTuWkpKS6mNmzZrFZ599xoIFC/jxxx8pLS1lwoQJeDyek/0yhBBnqKgQC7PO78LCO8/mphHtuGZwGxb8cSjPTe5H/BmyTDoi2MxD47v53RcTamZYh+iTfEVC1GjxpeelpaUMGDCAl19+mdmzZ9OvXz+ee+45NE0jKSmJWbNm8ec//xlQozjx8fE89dRT3HrrrRQVFREbG8s777zD1VdfDUB6ejpt2rRh0aJFXHDBBY26Bll6LoQQv1+pw826/Xn89fMdpBfZARjSPpInLu9Dx7jQFr460Ro19v7d4iM7t99+OxdffDHnn3++z/YDBw6QmZnJuHHjqrdZLBZGjRrF6tWrAdi0aRMul8vnmKSkJHr16lV9jBBCiJMj1GJkTPd4Prt9BEv+dA7L7xvNa1MHSaAjWlyL1tlZsGABmzdvZsOGDfX2ZWZmAhAf7zvfHR8fT1paWvUxZrOZyMjIesdUfb0/DocDh6Mmka64uPi4X4MQQghf8eHWM2b6TpweWizYOXz4MHfffTffffcdVmvgXwpdnW5wmqbV21bXsY558sknefzxx5t2wUIIcYbLKKzgQG4Zh/LL6RgXStuoYAlqxGmhxYKdTZs2kZ2dzcCBA6u3eTwefvjhB1588UV2794NqNGbxMTE6mOys7OrR3sSEhJwOp0UFBT4jO5kZ2czfPjwgOd+6KGHuOeee6r/XVxcTJs2bZrttQkhRGuzJ6uEKW+uI7ukZlS8fUwIc28aTNuo4Ba8MiGOrcVydsaMGcP27dvZunVr9WPQoEFMmTKFrVu30qFDBxISEliyZEn11zidTlauXFkdyAwcOBCTyeRzTEZGBjt27Ggw2LFYLISHh/s8hBBC+JdVbGf63I0+gQ6o2jn3fLiVwnJnC12ZEI3TYiM7YWFh9OrVy2dbSEgI0dHR1dtnzZrFE088QefOnencuTNPPPEEwcHBXHvttQDYbDamT5/OvffeS3R0NFFRUdx333307t27XsKzEEKI45NT4uBQfrnffRsPFpBX5iQi2HySr0qIxjulG4E+8MADVFRUMHPmTAoKChgyZAjfffcdYWFh1cf85z//wWg0ctVVV1FRUcGYMWOYM2cOBkPrb7onhBAnQ4m94d5eFU6payZObS1eZ+dUIHV2hBAisP05pZz3zEq/+yxGPd/fM4o2krcjWsBpU2dHCCHEqS061MKEPol+9904oh2xYa2/95c4vZ3S01hCCCFani3IxCMTehAfbuHddYewu7yEWYzcOqoDkwe3xWqStAFxapNpLGQaSwghGsPp9pJdbMfu9hBkNhAXZsVkkAkC0XIae/+WkR0hhBCNYjbqSZHcHHEakpBcCCGEEK2aBDtCCCGEaNUk2BFCCCFEqybBjhBCCCFaNQl2hBBCCNGqSbAjhBBCiFZNgh0hhBBCtGoS7AghhBCiVZNgRwghhBCtmgQ7QgghhGjVJNgRQgghRKsmwY4QQgghWjUJdoQQQgjRqkmwI4QQQohWTYIdIYQQQrRqEuwIIYQQolUztvQFCCGEEP4UlDnJKXVwpKCC6BAzCTYr8eHWlr4scRqSYEcIIcQpJ7PIzgMf/8wPe3Krt6VEBjHnxrPoFBfWglcmTkcyjSWEEOKUUu5w869vd/sEOgBHCiqY+tZ6MooqWujKxOlKgh0hhBCnlNxSB19sPep3X0aRnSMFEuyIpmn0NNY999zT6Cd99tlnj+tihBDiTOBweahwegi2GDEb5TNnXXaXF7dXC7g/o8h+Eq9GtAaNDna2bNnSqON0Ot1xX4wQQpyyynLBVQF6A4TEg8HQ5Kcod7hJyy/njVX72ZNVSo/EMG46uwNto4MJMjX9+VqrYIuBYLOBcqfH7/720cEn+YrE6a7Rwc7y5ctP5HUIIcSpyVEK6Zvg24chczsERcKQ22DgDRCW0Oincbm9/LAnlxnvbkKrHLTYfrSIjzcf5a1pgzincyx6vXxYBIgLs3DLyPY8v3RvvX29ksNJsAW1wFWJ09nvHj89cuQIR4/6n1sVQojTXtpqmHuJCnQAKgpgxZPw+e1qtKeRskvU6iKtzuyMx6tx30c/k1UsUzNVzEYDU4e24/ZzO2KpnObT6eC8rrG8NnUQsWGWFr5Ccbo5rqXnXq+X2bNn88wzz1BaWgpAWFgY9957Lw8//DB6vcxBCyFagZJM+OYB//v2fQ/F6RAS06inyi11Umx3B9yXV+YkMUJGLKrEhFm4a0xnJp/VlhK7iyCzkegQM+FBppa+NHEaOq5g5+GHH+att97in//8JyNGjEDTNH766Scee+wx7HY7//jHP5r7OoUQ4uRzlELBgcD7D6+DxD6Neiqt7pCOOCaL0UCbKMnPEb/fcQU7c+fO5c033+SSSy6p3ta3b1+Sk5OZOXOmBDtCiNbBYFQJyV7/ibIERzf6qWLDLIRajJQ66o/uRAabiAoxH+9VCiGO4bjmm/Lz8+nWrVu97d26dSM/P/93X5QQQpwSgmOg6wT/+wwmSB7Q6KeKDbfwxOW96m3X6eDpP/SRNghCnEDHFez07duXF198sd72F198kb59+/7uixJCiFOCJRTG/R0i2/tu1xvgynkQ2vjVWGaDgfO6x7PwjhGM75VA57hQJvZJ5Os7RzKicwwGWYklxAmj045jInnlypVcfPHFtG3blmHDhqHT6Vi9ejWHDx9m0aJFjBw58kRc6wlTXFyMzWajqKiI8PDwlr4cIcSppjgdcn+D3H1gDYfkgRCeCKbjSygud7ipcHkIthgIMkmLQiGOV2Pv38f1WzZq1Ch+++03XnrpJXbt2oWmaUyaNImZM2eSlJR03BctRGulaRqF5S50QITkZpx2MrVIdrl6sDonjuTIYEZpsSRg5ngnnoItRoItEuQIcbIc18hOayMjO+JEyiis4LudWXy06TB6nY7rhqRyTpdYEmySo3E6OFJQzpQ315GWV169zaDX8frUgYzsHIPZeGIqHxeWOymxu9HrdUQGmwg2S3AkRF0ndGQHoLCwkPXr15OdnY3X6/XZd/311x/v0wrRqmQUVnDdW+vYl1NWve2BI9vom2LjtamDJOA5xZU53Dy5aJdPoAOqEOCM+ZtZeu+oZl8a7XR7+C2rlMcX/sKGgwWYDDom9kniT2O7yDJsIY7TcQU7CxcuZMqUKZSVlREWFubTD0un00mwIwTg9Wp8vT3DJ9Cp8vORItYfyOeSfjLteyrLK3Oy+JdMv/ucHi8/Hyls9gDkQG4Zk15ejdOjPkS6PBqfbjnKugP5fHTbMJKk8KAQTXZcq7HuvfdebrrpJkpKSigsLKSgoKD6IUvPhVAKyp18tPFIwP3vrU+jNEBFXXFqcHu8eBrovp1f5mzW85U6XDy7ZE91oFPb0cIK1h+Qv69CHI/jCnaOHj3KXXfdRXCwDKkKEYjuGCuJdehAVhuf0kItRto2MHIzoG1k05/UWQb5B1SvrfyD4KyZIiu1u1mzL3C/rW92ZOLx1g+ETkvl+ZC7BzJ3QNER8EjgL06c4wp2LrjgAjZu3Njc1yJEqxIZbObqwW0C7p8ypC2hsiLnlBYXbuWxiT387hvZKYbEiCbmXBVnwNf3wYsD4dWz4aVB8O1fVA8uQK/XYQsO3PspLsyCoTX0HszbB+9dDS8OgldHwCsjYMs8FQAJcQI0+i/tl19+Wf3/F198Mffffz87d+6kd+/emEy+v5y120gIcabS6XSM75XA++sOsSe71GffgLYRnNU+qoWuTDTF4PZRvHvzEP7+1U52ZZYQHmTkxuHtuXZIW6JDmtB9u6IQFt0PuxbWbPO4YNPb4HbARU8TGxrKLSM78MgXv/h9imsaCJ5PG0VHYM7FUJJRs81eCF/9CYIioeflLXZpovVq9NLzxnYy1+l0eDwB+sicomTpuTiRMgorWPFbDh9uOIxer2Pq0FSGdowmQdoDnFbySh1UuDwY9DpiQy0YDU0cYcndo0Yy/NHp4c5NENWB7GI7D3yyjRW7c3wO+ctF3Zl8VpvTv+v3rkWw4Br/+yLbw03fQlj8yb0mcdpq9qXndZeXCyEaJzEiiGsGt2V8rwT0Ot3pf7M6Q0WHNmEUx5+Gpmg0L1QUAGrq7N9X9uVIQTnLd+UQajFyXrc44sIthFlPzM+O0+0hu8TBkYIKvF6NNlHBxIRZCDIdRw0hRymU5UDBQVVh2pai2moYKm83RzYE/tqCA+C2H9drEKIhTUoYWLZsGXfccQdr166tF0EVFRUxfPhwXn311dOuXYQQJ0NEsFROPqNZwxrebw6t/t+YUAsxoRb6tTmOBOgmKne4Wb47m/s+2kaFS43Kmw16HrqoG5MGpGBrSnBelgtrXoKfnlMBHIA1Aq6aB22HgdEMMZ0Df31wtGqwKkQza9I47HPPPcctt9zid6jIZrNx66238uyzzzbbxQkhxKkiu9hOWl4ZRwsqcLqPY6Q7JBYSAzRKbjtc7W8BhwrKueP9LdWBDqgaQo8v3MmvGcVNe7L9y+HHZ2sCHVD5OO/+AYoryzCkjgBTgBVuw++GUJnCEs2vScHOzz//zIUXXhhw/7hx49i0adPvvighhDhVFFe4+O6XTK58bQ2j/rWC859dyZOLfiWzqInTLSGxaoQjtpvv9oS+MOk1CD6OhPWSLLV0+8hGNW3krF/AsiFOt5e3fzpIoMzNF5ftocTuatyTlWbDin/63+dxwc7KRS7hyTD1c5WMHNcdUgaB1Qb9pkC/a1RHeSGaWZOmsbKysuqtvPJ5MqORnJycgPuFEKJZFB2BjG2QtQPiekJiH4g4MSuVftqby4x3N1f/u8Ll4e3VB9mRXsQr1w0kpim5PJHt4Pov1Uqkkgx14w9LgNC4pl9Y9q/wwRS1jBtAb4ShM2H4XRDauFEih9vD/pzSgPvT8supcHkalyvkcUHhocD7M7er/xqMVMQPIPvGn1mzL5e8MidDzosmNSqY2NDQwF8vxO/QpGAnOTmZ7du306lTJ7/7t23bRmJiYrNcmBBC+JW9C+ZerPJDqgRHwQ1fQ5z/mjjHK6vIzuyvf/W7b8PBAtILK5oW7IBaaRQWD/Q7/gsrrFy+XZ5Xs83rhtX/hfBEGHwbNGIFbZDJQP82EWw4WOB3f89EGyGNbUBqtKr3P2Or//3tzgZUsLhiTy53vLelVnXq/fRvG8ErUwZKvzhxQjRpGuuiiy7ikUcewW6vP3xbUVHBo48+yoQJE5rt4oQQwkdJFnx4nW+gA2ql04Ip1cX5mkup083RwoqA+7ceLmzW8zVa5jbfQKe2H/4NpRn+99VhNOiZPLgtFmP9W4FOB3ee14mQxha+DImG8x/zv89qg05jABVA3v7u5nptOLYcKuR/P+7H6T69SpcE5CpXU4sZP0PeXqgoaukrOqM1Kdj5v//7P/Lz8+nSpQtPP/00X3zxBV9++SVPPfUUXbt2JT8/n4cffvhEXasQDdM0Nb2xdxlsmgeHN6ibo2g9ynNVvRp/8verJc/NyGzQY9QH7ukR+3uXox+vrB2B95XnqSKFjZQSFcS7Nw+hTVRNg9G4MAtvTTuL9rEhTbuupAFw2asqH6dKbDe4YRHY1DTjyj05BGo39u66Q+SWNm+/sRZRmgVLHld1lV47B14YCJ9MV3+fRIto0jRWfHw8q1evZsaMGTz00ENU1SPU6XRccMEFvPzyy8THSya9aAGapnIC3rnUt55JXE+49oMTls8hTjLXMZKCm7lGS3SImQl9E/l8S3q9fRajnl7JtmY9X20VLjeF5S706IgJNWOoXcQwvlfgLwyJAWPjgzCzwcCgdlF8cttwCsqdeDWIDDYRH25Fd6wGb3UF2aD3VdB+pPo9NJjVcvJaOURZDSR2lzk9DTZePS24KuDH52H9q77b9y6BD6fBNQsanVMlmk+TG/OkpqayaNEiCgoK2Lt3L5qm0blzZyIjT3w9CCECKk5Xy1vrFm7L/gUW3QeT3gCrVMc+7VXVYfH4WSGkN0JwTPOezmLkgQu68WtGMbszaxJ5LUY9b00bRHx484/seL0aGUV2CrMPYfWUoDOYyNSFkZCQSHx45ehLYh/1Xvibyhp5H4TW5E66PV6yih2UOtxYTXqiQ82EWuonHMeFW4lrjqreBoMqJGhL8bv77E4xvLxin999PRLDCTaf5quxSrNh45v+9x3dCKWZEuy0gOPuQhgZGclZZ53VnNcixPErPKT+yPiz51s1/SHBzukvNA6G3q6K1tU15LYTUqsmKSKId24awoHcMjamFZAUYWVQahTxNgtmQ/PfmPMKCrAeXkPPFQ9Wr27yJg0iZ8wz5NCN2HCrCiRu+Bo+uE7lg4AKAofMhN5XVCcn55c5+GxLOs8v/Y3iCjd6HYzvlcjDF3cnKSIo0CWcUJ3iQumWEMauzJJ6+x6Z2OP3V6puaY7ihqcRCw9BQu+Tdz0C+B3BjhCnlIZyNTRNDS2fKI5SVd/EaFXD+P54PCrg0unU6ENr6FzdEszBMPwOCE+CH/6lvu8hMXD2PWr6xHJili5XjXoM6RB9Qp6/SoXLjbngN2xfTKF28Rt9+kbiP76MkmlLIbxj5UV1V7kwZTlq+i4kBkLi1HsEeDxevvw5nb9/tbP6ebwafL09g0P5ZfzvhsHEhp38wCIu3Mr/bjiLF5ft5ZPNR3C4vXSJD+WxiT3pfQKnBU8ac4iqFeQNkGgdJiuWW4IEO6J1iPZfDgEASxhYTsCojrMUcvfCyqdUvlBEKoz+s/rUVjtBs+gwbHkPti1QDR8HTINefwBbcvNf05kgJBbOugW6T1SfoI0W1XupFQSQnrIiQn/8B36r/FUUoNu7BE9cewxVr7V6GXt9WSUOnvvefzL39qPFZBRWtEiwA2q07JGJPbj93I64vRohZiMxLXQtzS4kDnpcDjs+rr8vqoMK1MVJd/r/dRAC1B/8Duf533fO/apwW3PyeuHAKnhjNOxepAKatB9h7kT4+X1wlqvjig7D2xfBiifUaqG8vbDkrzB/EhQfbd5rOpPo9eqmEdVe/bcVBDoAJm8FhkB1aoDQI6vQa41rVVHuVAnOgezKqj+NdDIVlrsoKHeRU+KgzOmmzOFu0etpNpZQGPd36Fjn71F0J5jyUfP/LRKNIiM7onUIjobLXlajLFvfBY9Tja6M+jP0vrL5mwuWZMDCu/x/Al/yKHS9GIwpsO0j/1Vlc3bB/pXQ79rmva7a7MWq0Jw1otUEA62dyWRWRQFz/Pek8kR1xGBo3J9ti9GAyaDD5fG/uimxhYr3eb0av2YUc8u8jaRXrswy6HXcNKIdt43qePrn7IAKwP/wlsojLElXU9ehgUfhxIknwY5oPcIT4cIn4ew/qRwGc4halXICkkipKAicEO1xQmGayp3Y9kHg59jyDnSb0PyJ0yVZcGQ9rH1FFTbrcZmaNpPl96c8fVgcnpH3Y/j05vo7dfomBcfRoWYu7ZfMx5vq13aJCDbRMbZlWjOkF1Uw+fW1lNQayfF4Nd5YdYA2UcFMHZra9CXvp6LgKPWI63bsY8UJJ8GOaF1MQRCZeuLPozvGSIneCOgbHlHSm0DXxEDMZVcFyyryVUJ0cIzvMtbSbPjqT7D765pt6Vtg3atw07cn57053ZTlquRxV4UaDQyNVz9HLcTQcTTewbeiX/9azUajBe9lr2GIaNvo5wk2G7l3XBcO55ez7kBNSYaoEDPzbhrcYiM7m9IKfAKd2l5YtpcLeiQQLy0jRDOTYEeI4xEcpZo6Fhysv88coqrFhkTDoJtU8OHP4D+CpQkVastyYdPbqh1AVfG8uB5wxds1nx5z9/gGOlVKMmDNizBudpMKzp1s5Q432SUONqblU+H0MLh9FPHhViKCzSfmhHn74OMbVUl/UEXwht0JQ2e0XC2UkFj05z0Mg29By9wO5mB0sd3Rh8aDqWlBQKItiJenDCCz2M7e7FLiwiykRoeQaPNfMNDu8qChEWQ6cbeG3X6WnFfJKXHg9DQuJ0mIppBgR4gA3B4vuaVONE0jLMjoW4gtLAEmva4SkmvX1NDp4LJXaubmu4yHpHcgfbPvk3c4F1IGNf5iNA12fQXLZvtuz94JcyfALcsgoi1smR/4ObZ/pKb4TtHVICV2F19ty+Dhz7b7tBOY1D+Zhy7q3vwrh4rTYd4lviX8PU748RmVAzb0NrWEuCVYbWC1oYvp/LufKjrUQnSohZ5JgZd155TY2XG0mHlr0vB4vVx1VhsGtYsioTmKDNbRKynw9FmSzYrZT58uIX4vCXaE8COzqIL31x9m/to0Sh1uRnWJ5b5xXWkfE4Kp6o9x4gCYsUYFGEfWQ0xXGHyzWoJuqByJCE+Eye/C4fWwea6a/jrrFkjq17RVGcXpsOKf/veV5aipqmNNcfhLpj6FHC2o4KFPt9fb/umWo4zoFMMfBvqvyHvccnYH7lX047+h56UBqwCfTlweD1nFDkrsboJMBqJDzYRZawL3nBI793+8jRW7a2pV/bAnl97J4bxx/VnN3oW8b6yBqBAz+WX1e2DdMzKOeH0pINNYonlJsCNEHVnFdm6Zt5HtR2tWxHy3M4uVv+Xw5R1n0zUhTG00miC6I5z7f+CuUNND/nJ0wpOg52XQ5QIV7BzPNJKrTE1FBZK+BXpcCv2nwM/v+T+mz5VqxOIUpGka763zs2qt0isr9zGqS2zz1mLJ3hl4X3l+s/fZqsvr1dA30GS0OeSVOvhgw2FeWr6XMqcHnQ7O6xrH3y7tSXKkKj7485Ein0CnyvajxXy3M7PZE4aTD3zCgqvHcPc3OSSEBxFqMbA3p5QJXUI5T1sLrnFA87b9EC1E09QHtYKDKtcwphOEJakCmCeZjBcKUcfuzBKfQKeKw+3lX9/uosRep3aJwaBqawRKRi7JUsvMv7wLFs6CtNVN786tMzT8ByKqsqpuTBc1dVZXWILKRTlF83VcHo2jRYGrXOeWOnB7mzeXQ4tuYIrIEg6G5n+vXG4vabllvLJ8L7e/t5nXf9hHWl4Z7hOQp+L2ePlsy1Ge/nY3ZU5VzVfTYOmubG6et5GcEgcVTg/zVh8M+Bzvrj3kdwTmdwmNI+HQ1/zr0s6kRlnxahq3jUzlsi5mona8fXxlIjweKMlUD399005hqneZnexi+wn5OWgxmgZZv6haZHMuUrlxr46ED6aqAOgkk5EdIer4envgEZQVu3Motbt9pgEaVJIJn90G+5fXbPv5Peg5CcY/pXo9NUZQBJx1s/+pLKsNkgeq/w+Ng4nPw+FrYe1Lqrhhz8tVv6QmrOQ52cxGPcM7RrP0V//L+fu3icBkaN7PZs7orlhCYlTidx2OQbehD4mjOaszeb0aWw8Xct1b63C41U3tmx2Z/GfJHt6/ZQj92jZvM+XsEgf/Xea/gvKvGSUcKSinc3worga6jLs8XrzNPP1Z0mY0H2YdZfarNXlsX2/PpE1UEO9f9zEpoU0suld0RE0lb30XNC/0vhoG3XhalFo4WljBgvWH+HSzKjB6xcAUrj6rTYv1LWtWxenwzmX1P9gdWg3fPw4TnlWLOU6SFh3ZeeWVV+jTpw/h4eGEh4czbNgwvvnmm+r9mqbx2GOPkZSURFBQEKNHj+aXX37xeQ6Hw8Gdd95JTEwMISEhXHLJJRw5EmAeXohGsAUFvsWFWIxNG9Lft8I30Knyy6eQsa3xzxMcDd0ugQHX+y57D09WxctqT0+FxUOPS+CaD+H6z2HE3ad0oAPgdHvpmWQjJtSM2aBnSPsoRnSKxhZkwqDXMW14u2b/1LshP5ijl3yocqyq6HRU9JrC+ujLyC4N0NvoOGWV2Jn57ubqQKdKhcvDHe9vIau41rSZs0wN/R9YpfK9io6Ap2kVhsudboorAn/NnqxSQi0mrmwgF+rSfklENfNKuGxXELOX1v9kfzi/gv+uzqHC3YTvc9FRtUhgxZOqeGfREZVg/vaFUHi4Ga+6+aUXVnD1a2t4YdlejhZWcLSwgueX7uHq19eQXngCe/mdLPn7A49g7/i46aPbv1OLjuykpKTwz3/+k06dVF+juXPncumll7JlyxZ69uzJ008/zbPPPsucOXPo0qULs2fPZuzYsezevZuwMJU3MWvWLBYuXMiCBQuIjo7m3nvvZcKECWzatAnDiSgmJ1q9y/sn8/oP+/3umzKkLdGhjfzjX54H614JvH/ty5A6rPGfbiLaqL5aPS5XdXZMwWrIP76X/8qsgZqSnoJMBh2b0wr45IYehGnFhJTsR695KQ1OpsIUzRubsulTt0mks0yNXJmCm7aEv9LurFIeWl3EI6PeoUe4A72rlApLDJ/udvLyRwdZem/z1iTKLXGSU+q/G/aRggrySp3Eh1tVvtDG/6kbuLcyWLFGwJVzIHV4o6ciLUYDZoM+4FLupEg1ejCsYzRdE0LZnVnqsz/RZuWKgSkYmnlE7fsAo3cAn29J5+7zu5BsbuSt6bfF6qZaV9ERdUMdfreqHu5xq9Yt+5arxPS2gyFlcIuN/ni9Gl9vz+BIQf2g5nB+Bd/9ksm04e1O7+KKDbXD8bpPbHNmP1o02Jk4caLPv//xj3/wyiuvsHbtWnr06MFzzz3Hww8/zKRJkwAVDMXHx/Pee+9x6623UlRUxFtvvcU777zD+eefD8D8+fNp06YN33//PRdccMFJf03i9JccYeWe87vw7Pe/+WzvlhDG1GGpjZ9O8XpVBeNAXGU1N7PGsIar5eolmeAoUSu+QmJO6lDwiaLT6ZjcO4zw0n0Y0zepkS+XnchO5xPR+QLuGtaeyKo2Ao5SyN8Hq56B7F8hthuMvAeiOzep63mvpHAO51dwy2dqJFi1VlCjAXFhFoJMzfthyXWMkanqnKTDa2HZ33132gvhvSth5tqGm97WEhNq5g8Dknl/Q/0RjugQMx1i1M9Noi2IOTcOZuHP6by//jBur5fL+yVz1VltqpOYm1NpAz2wnB4v3gam1XxUFKrmuoFs/wj6T1WFIo9uhHmX1iSdr39V/e7c8A3Edmn8xTeTogoXn28JHAx8uuUol/VPPnH1pU6G2AYqR1ttYD65FbxPmQRlj8fDggULKCsrY9iwYRw4cIDMzEzGjRtXfYzFYmHUqFGsXr0agE2bNuFyuXyOSUpKolevXtXH+ONwOCguLvZ5CFElPMjMtBHtWHT3SKaf3Z5J/ZP53w1nMefGwSTamjCXHhQJ3S8NvL/XlcfXjT0sAWI6q2rIrSDQqRKpFWJc/nfVKNVlV8Hc+tfRfXozEZ48lfDoccO+pfD6KNj5BeT+Br9+Ca+Phj3fNSk5tV1MCB1ja96/2j2k7rugqxplaUaxYRYsAWrIhJgNRIeYVf7Q8if8P4HHBds+bPT5gsxG7j6/CyM7+ya2x4ZZmH/zEJ8Kyom2IG4+uwMf3jqUT2cM564xnUk5AYEOwLldA+epDWkfSZi1kZ/B9YaGk8gNFjXlW5IB70+uv7quLBc++yOU5TXufM1Ir9cF/FkAMBv06E/nUR1Qq1CTBvjfN/J+CEs8qZfT4gnK27dvZ9iwYdjtdkJDQ/nss8/o0aNHdbASH+87PB8fH09aWhoAmZmZmM1mIiMj6x2TmZkZ8JxPPvkkjz/+eDO/EtGa2IJM2IJM9JjQo+EDi46qYfHMn9XIQmJflUej14PBCAOmwuY59eenI9pC1wtVEUIBXi+6rB2U2rqQM/kpfjrqosKlMXyklcTsVURtnqeaunocalWbv6TZhXdDylmNnpqID7cy96bBPPLFLyzfnY2mqe/7feO6MLZ7/HFPIZQ73Xi9EFrnph0TZuHecV15YtGv9b7mL1VFE8sLoSAt8JNn/aJGA/WN+9OdYLPy/OR+5JQ4OZBbRkyomeSIIBL9JMDq9Tpiw44d4DndXhxuD1aT4biSxttGBTOyUwyr9vomhpsMOv46oWfjRzMsYTDkVji4yv/+wX9Ulc4P/aZ62fmTvkVNN4ec3JIMtiAT04a1Y/OhrX733zCiHeEN5A6eFkLj4Op34NuH1QcSzas+3I28D/pdo/4+nkQtHux07dqVrVu3UlhYyCeffMK0adNYuXJl9f66f3A0TTvmH6FjHfPQQw9xzz33VP+7uLiYNm1O/cx9cYrJ21e/Aq81AqZ9CQl9VCATmQo3fw8//Rd2fKKCoL7XwpDbWkXBumbjdVFSVsEntht4fM5hn1jm4u59eaxfe2KdpWo6x17o/zkcxSqobEIeRkpkMM9P7kd+mROHy0uo1Uh8mOW48lRySuz8fKSIuasP4nR7uWJgCmd3jqkeDQwyGbhqUAodYkN45rvdpOWV0yE2hPsv6Eq/NpGYjQYwBkFcdzi8zv9J2g5tdKBTJSrEQhSldA32Ag4IjWjyawMVxB3KK+ft1QfZm11KnxQb1w1JpU1UkLr2RooJs/DMVX1ZuC2dt1YdoKjCxfBO0dVFO5skZTB0HKNG+2prOww6jlb/7wjcngJQAXQLGNYxmuEdo1i9L99n+4hO0QxuF9Ui19TsbClw6Utw/mOqFpk5TI1MH095gd+pxYMds9lcnaA8aNAgNmzYwPPPP8+f//xnQI3eJCbWDHdlZ2dXj/YkJCTgdDopKCjwGd3Jzs5m+PDhAc9psViwWE7NeiPiNFGeB5/dWr8Cr70Q3rsKblle05Yhsh1c+AScc5/6d3AMGE/jufgTQW/kcPRwHvus/qjH178WMKp9G67qEAz2omM8UdNHY8KspsaXEgggu8TOnz/ZzvJdNcm36w7k0zE2lPnTB1ePpEQEmzm/ezz920Tg9HixGFU14WrBkTDmEZhzcf2TmEOg28T62xviKIWMrfDd/6n/hsSp1Xm9r2x82QPA6fGw8rccZr67uToQ3ZRWwPy1abwzfQhDOzRtZCQu3MqNw9szsU8SHk0jzGKqNxLWKGHxqj1L1nbY8D/QPKofXWLfmgrlUR3UBw9/o4HWCDXd3ALiwq08d3V/dqQX8966NPQ6HdcOaUuPxHDiTkCbjhZjCW1SLt2Jcsrk7FTRNA2Hw0H79u1JSEhgyZIl1fucTicrV66sDmQGDhyIyWTyOSYjI4MdO3Y0GOwI8buV5cGRDf73lWTWr3ZstKrgJzyp4UBH08B9ehVFaw5e9Ly3LfAn8Nc25JOjhUNIrJqa8CcossWad/6aXuwT6FTZl1PKZ1uO4qmTdBsdaiHRFuQb6FRJ6A2T3vC9CUd3hBu+bvrqoYOrVOCUvkX9bJVmwbd/gW/+rFZ9NVJ2sYP7Pvy5Xrzg8mjc88FWsoqaXm1ar9cRF24l0RZ0fIFOlbB46HS+Wq121TxVqbx2K5aQWBh4k/+vHfs4hJ7c3JHa4sKtnNctjpenDOSlawcwumtc6wp0TiEtOrLzl7/8hfHjx9OmTRtKSkpYsGABK1asYPHixeh0OmbNmsUTTzxB586d6dy5M0888QTBwcFce+21ANhsNqZPn869995LdHQ0UVFR3HffffTu3bt6dZYQJ8SxWgkccwSiDmepqguy+R210qjDaOh6kcrtOQPyetxejYySwJV688qceDTUTeyyV1XCqVZrdZNOD5e9DE0tSNcU9mL1fdIbfUZFHG4P89cFzrNZsOEwVw5K8c2HqWpHYbTWD96sNuj5B7XMvDwP9CZVR8lfeYGGFGfANw/43/fLpzDqgcCBYx2ZRfbqKsx1pRfZyS93Et/MPbSaLNCHCGs4jH5IrQ768Rn1YSS6E5z/OLQboSqgtzBpfnritWiwk5WVxdSpU8nIyMBms9GnTx8WL17M2LFjAXjggQeoqKhg5syZFBQUMGTIEL777rvqGjsA//nPfzAajVx11VVUVFQwZswY5syZIzV2xIkVFKHquwRaWm5rQhE/VwXsXgyf3lwz1P7bYlj5FNz4jcrhaOXMRj1je8QHrKA8pH20+vSvN0D7c2DGaljzEmT/ArE9YNhMNV14HEmPpQ4X+aVOHG4vIRYj8eFWDLV7VrkqIG+vWg5+aJ0aPTr7HjWaEBoHGrg9arn6dUNT6ZoQhlfTyC52MG9NGnaXp2ZEpLwA0jfBsn+o+jAxXeC8/1PTLkERNec0GFS+w7HyuuwlUJ4LbodK2A1LVHlhoHKYCgP3GyN9S6N/to5VRVk7xZvMEhoLg2+B7hNVgrfR0qRpPHH602mn/E/piVdcXIzNZqOoqIjw8ONYCizOPG4HrHkZlj5Wf1/fa+DCpxpf1K/gILx4Fnj8jGykDIZrP2j0J/DT2dGCCi5/+SeyS3wTRk0GHV/deTZdE+r8brodqqigOfi4e34dLShn9te/kl/mJNRqJKfYwbVD23Jhz4SaVUFpa2DuxeCtM7LRZzJc+CQER/Hj3hxcbo3nvv+Nn4+oUb32MSHcM7YLFQ4PkwYmY/Q6YNMcWPxg/Qu55AXoO1ktt2+swjT45kH47RsVJIfGwfl/g67jVeCUvx9eGBC42/3V70F3P7lBfhwuKOf8Z1bWq/4Mqp7PwjvPblpZBiGaSWPv3zJ2JsTxMFrUsvIJz0Fo5fSC1QajHlR5AE2pXpz1i/9AB+DIelUt+QyQHBnEh7cO44KeCVQNrPRJsfHxbcP9r9IxWlRC73EGOtnFdt77aRcPnmXkjfYreCVsDm8OzqCTpZjV+3LVaEVpNnz9p/qBDqiCdqWqxEVyRBB3vb+lOtABOJBbxqwPttIjORyjQa+e6/vH/F/Mt39RDWMbqzgD3rkcdi+qCWZKs+HzWn3YgqKhw3n+v95ogYRejT5dXKiFxyb2rLddp4N/TupDfCOWrLcoj1MFf2tegi/ugK3vqVEv+ax/xmjx1VhCnLZCYlT7hi7j1CiDwaxyRpo6lXKssulNqbJ8mmsXE8IzV/WhoKw7Xk0jzGokKuTErJwsLilheuxuohbMqL7pxW2bT1xEWw5N/JDs4iji3cWqSnMgaWvQYruzeEcWJX4qA3u8Gi8u28szV/UlpDQrcK6Xo0QVuaudgFyWq6aidAY1smepmb4n9zdV+sCfJY+qpddhCXDxv1WCcu0u03oDXDnXN4n3GCwmAxf3SaRzfCgvLNvLwbwyeiSGc8e5nWgfG4JefwrnlXncavpx/qSaDxVb3lHv6Q2LzohpYiHBjhC/j16vigj+Hol9A++LbK+Wx55BQi0mQi0nvg5HDAVEfHt7/U/3hYdIXP8ExRc8rwKNQMuWAcwhOFxeVu/LpV9KOA+NjCDFVIJO85Cvi+S/64rZcriAUoebkGNNUVUFyS47WuY2dIvug4yfQadH63oRjPs7uqgO6phAKwFBTW9V5ZJFdYDpS+DIRtUXKqoDdJ+gfmabOCIWHmRiULsoXrp2ABUuNyEWI8GN7WHVkkoz4IPr6o+elufDp3+EqZ+pDy6iVTsNflLFKak0W+Wa7FsGQVHQ6Tz1SfEk9ztpFULjVCXYda/5btfpYcJ/mvQJXNRSlqvqIO1ZAqYg6DxWJfBa1bx+cOZG/9NTgGnP14SN/RuERqmidXu/r3+QTg9thmA06BjXNYILww4Q++311Uu6k0zBPHXO31jUYQhmg14tgQ6JUddVly1F1V8CvLl70L89vmZET/Oi2/UVHN2Ed/p36CPaNtzF3hyqVnBVX6dBjTi2GwEWmxrZ0R9/BkOowUWo1w76k9CqpDgdsneqzu+R7dUKtfDkpo2eFh4JXIgyc1tlBWUJdlo7CXZE05VkwMfTIe2nmm06HUx8AXpefkoUkDqtWG1wzv3QZij88C/1/iYPVKt0Yk5+k8JWoTQLvr4Xfl1Ys+27h1XBvkHTISgCo7Mw8Nd7PZjwqO/N+KfgfxfWb/kx4XkIjcNo0HN1JzC/PsV3ytFVTuTS+/jDlIVYQ8zgTYQr5vhOp4Bafn7F/yA8US1vXz7b/9RlSQba/lUwYAq0GaICOH9ToGfdXBMgF6bBvMt8O4MbLTDlY2gzDIxNGEFzlKrnWf0C5O2BhL4wdIZaBWc6ATk7BQdh7iXqNVQxWtVITMrgxgc8zrKG9wfKlxOtigQ7omk8Htg0zzfQATXM/+Ud0HYIWOQG3WQhsdBrklpW7XGqT+dWWRl43PYs8Q10qiz9G3Q8D4L6o0seGPjrY7uiq2rLEN0JblkGe5eqZqO2tjBwmsqvMYeowOjndwLmVll+fApS+qgVUm2GqM7l2z5U/dSSB0GvP4BN5eo4y4sxpwVuYmzY8w30m6xGN677FN69UtX+qdJprApADCaVB7T4Id9AB1R+2XtXw+3rGh4h8vkaJ/z2LXxSqzhf+hbYOh+mfAIdRjVvPaiKIlj4J99AB1TO03tXq9IDjS2wGNU+8FRkUGSLVVAWJ5cEO6JpyrJg3SuB9//yuSpWJo6PDKf/fqXZavQhkPVvwCUvoPM4VeCzb5nvfp1OjbTVvnlHtIVBN0L/qWoaqPY+tx1d1o6Ap9Pl71V9gYhQhe+iO8K5D6ku5nV6BHnQq58BR7Hf53IGJ2JAp+qIpQyGmWtUsnJZLsT3UiM6VT9DZbmw+xv/F+UqV4nXjQ12SjNh4Z31t3vd8MUMuHlpTXuU5lCeC/uX+d/nKFbJ2ZXBTondRW6pk00H8/ECA1MjiQu1EFbVSDMkDobMgA1v4uk4FmdYMpa83ejTfoALnvBfQdlVoYpHtkAPJ3FiSLAjmkbzBp7/Bt9VH0K0BK+74eX6Zdkq0PC4od8USOqvVueU5ULKIBh2pwoS2g6r/7X+pk6MVpVkXrXku66YrqoApc81VBYCNFp9Om67gmJxDZxJ+JL7/D6Vvc8UwqvybQxGFawEClg8Tt8q03XVnZZrSHF64Omg4nSVp9Scwc6xppYqv7+F5U7mr03jmSW/+QzczBzdkVtGdiAyxAzWMMqHP8CRHnfx3sZ09mW7GZRo5rILUkiOsGCsXYC26AjsX6EqTFsjVOf0mC5nRJ2r1k6CHdE05hA1138owFB71/En93rE8XPbVW0XZ5kqzBcaV/+mjKpHU2J3o9OBLchEdOgp3kTXaoN2o2DHR/73d5ugckxiu8CbYypHWh4GSzjk/Arf3A9DZja+Z5LeAP2vg7Uv+79Jn/sXdU2ggoJDa1RuVkU+BMfC6AdVkBUUSXiQifxOF+JI+wHLb1/WPIdOR+G5/8QbdoyKyrVVVVSu26etSmK/xj/XMevRNHO9Gku4apFRnud/f+Vy8b3Zpfz7u9/q7X55xT6Gd4zh7M4xON0efjhkZ0atJqar9sCra7JY8Meh9K2aDSs8pJbp1646veMTNS14TuNba4hTkxQVFE0TFAkXzFYrUeqK7qSaGIpTX0kWLP07vDQYXhkGLw5S1XiLa26MdpeH/UezsGfvI+TgEoIPraA4Yx9pWfn1GlueUswhqsO8v6XVYYlqdRWALRmmLVQByMK74eMb4cf/QK8rod+1TeuZFJEKUz/1XTlnCYfLX4O4HurfrgrY/omaZjv7TzD0dtWBvOAg7Fqk8mIAQ3g8h4bN5ujkJeSf/Si55/6Lw1N+pKjzJMJtTbjhhiXCuH/439epcmVaY9mSVUK0P6HxKjBpTmEJMPbv/vd1uwRC46lwuXnjh/3+jwFeXrGXEruL7BIHf/qgfhPTCpeHP32wlZwShwr8f3zOf3uNta9A0eHjfy3ilCAjO6Lp4nrATd+qJoPpW9RNpffVKlenOYeyxYnhKIOVT8PGN2u2eVywea668V/6IgRFUFaYQ8yO/xG+9l810yEGMwXnP0uh6SKio5r5BtecojrC9O9Va4a0n9ToS/dL1Wqs2omtYUlw1TsqF81Zrka3gmOa3j3daIbUs+GW5WqKSvOo5wlLqMn7KMuFmI6w6H7Va6tKXHe44Ek1rWRLxhZkJqhNCjklseRGdsegU7WH6jXadJSoaZef34eio9DtYmgzuKaflk4HncbA5PfVSrT8/SoAO+sWGPJHn+mzYwqJg4ufhc9n+G7X6eHSl5oWODWG3gDdLgLLPFjyiAoIrTYYchsMugmCo3CUO8ksDtyQN7vEgdPt5Uh+BRUu/yUG9ueWUVDmJNZbDD+/F/h6tn/ccD0sccqTYEc0nSlI/VGd8gk4S1Qdj5CYwJ/8xKmlLBs2z/G/b9dCOP9RyvWhGDO3Er7mKd/9HieR395BceJKPBFR1Q0zK5xu8kqdODxeQswG4sOt6FqyW7vRBIl9YPK7ajm3TqdGH8y1asM4y+DXL1WLhdrCk+GGr9UqnqbQ6VSwHyjgd5apG3ftQAdUovCKJ1V/rEpmo4HkyPpTitUcpWoxwJENqiFp0gCVS/f1vTD+aYhMVccFRaigIXmgGlkyGNVITFMTb01WNf13c1f48Vn1GhL6wtl3q0KFJ+J7HRQJPS5VK9hcdnXNofHVeVOhFiMjOsX4tOiobWiHKMKsJpyeBvKWAI+mAZoK+AM5VpVzccqTYEccv5Dopn06FKcGe2HDLShKs9FMkdjWPxvwEOuWN3ElPoPBYiGzqILnvt/DrswSgs0GSuwubhzRnvO6xdU002wpDS0tLs2CL2bW3158FL77P7j8Vd8WDb+X2w6Z2/3vO7zON9/HWa6C0uJ01YYkLKGyo3nl1FpZDoTFq5VJH9+ovp8RbVU39n3Loc+VvoFdWPzvv35rOKQMhEmvq5u/OeTkfMAJUFTTaNBz9VltmLv6IGVO35Ebi1HP9BHtMRv1tIsOwajX4fYz9RoXZiEy2KQ+sHUeG3j1WpcLfvfLOJNomkZ6ejqbN2+ufowaNYq77roLo7Flwg4JdoRoQHGFC7fXi81qwmBoJSlupmNUvg2KwOR1qpt+AOaig3g0J7kl8NrKfVzQM4HEiCByiu30SrFh0OtYtSeXCX0SW3aEpyGH1gRerbR7kZrSa85gp6qFQ8D9lVMy5fmwaS6s+EfNaENQpOpn1XaYmjIry4Xv/go5u2q+vvAQfDULLnlRjWaZj/F9Pk7lmoUKzUgIRvyVEswpsXMwr5ylv2YRbjUxrmcC8eEWwqxNX8adUVjBjvQiNhzIp11MCGd3iiEhwoq5Mp8qJTKYj2cM5y+fbWfLoUIAeifbeOLyXrSJUiNjMaFm7h3bhae+3e3z3DodPDGpN/HhVij2qum9A6t86xYBtBvZ8Kq2QIqOqGn+Q+tUMnz7cyA8pem985pRqd1FVrGD73ZmUVTh5LxucbSPCSU2rHGLDrxeL3v27PEJYjZv3kxhYeExv/bLL7+kW7duXHTRRb/zVRwfCXaE8COnxMGmtALeXLWfMqebC3om8IcBKdV/QE9rITHQdrj/FXWxXSEkBrMpBG9if/RFR/w+haftMAzmYPIKy+iVHMEt8zbWfHJeB22igvjnpD5kFdtJsJ2i05v2EtAbcHW+mJyeN+DRBxFUtIeYzc+rOi7N3YA1JC7wPr2hZpT08HpY+pjv/ooCePcPMHOdWj1Wnusb6NT247OQOqJZLrm2EruLrKIKHAVHMes8ZGgmwmKSibMFEWRSwUdWsZ0739vC+oM1S/+f/nY3f53QnasGtqmpfdMIaXllTH59LRlFNXk5ZoOeOTedxeB2URgNegx6Hd0Tw3n7hrMoLFeBYXiQb/PYYIuRa4a0pUdSOM8v3cORggp6JoUz6/wudI4LVcG40QKb34Gr34FtH8D+lWokq8/VquDjsaow15W3V63sKsms2Wa0wtTPIeWsFgl4SuwuPt18lEe//KV626sr9zMoNZJn/tCT3MN76wUxbnfz/Q6kpqYybJifcg4niU7TpMd9cXExNpuNoqIiwsOlau2ZLq/Uwf99voNvdmT6bI8OMfPpzOGkRp+EnkAnWmEavDdZ9R2qEtkervtYraoDPBnbMLw+qv6nWlMw3tt+Qh/dge1Hirji1dU43PU/+Z7XLY5HJ/Y4dd+vjB1kFRTy9m9W3tmcS5nTQ+e4UB45N4Z+eYsIGzpNJSw3l4pCWDgLdn5Wf1//qXDhP9VU1zuXq55N/ox+SC1VX/EkrPhn4HPdvl4Frs3E4fKQm3WU0N8+w7bpv2pkyZZC/pAHqGg3hqTEZLwavL5yX70RlCrfzhpJ14TG/X0tqnAyY/5mVu+rv/Q8xGzg2z+dQ0pDOU0BFJY7cbi9BJsN9Uea9i1T1Zl7XFqT47TzCzXCecvyxldsLs+H9yerqcm6rBEw46eaJPITrKSkhK1bt7J582ZW/LSOr5evxpWbduwvPA4dOnRgwIAB1Y/+/fsTF9eMvz8BNPb+LSM7QtRxMK+8XqADkFfm5KVle3n80p4EVXZ7ziyqYF9OGTvTi2kfG0L3hDCSIoJO7NSNpqmhdoO5yZ2rq0Wkqk+ZxUdV4GNLUY9aq2oMMZ3xXvcp+oV31SzJjeuOdukrqhklcCC31G+gA7BidzZ/uaj78V1fMypzuNHrIcjk++cuN6gtd31RyLqDWdXb9mSXMvWDUv439RrOa85AB1Sy8Ph/qhGDn99TU1RGCwy4AUbeo3rKOYrVyqNAMrerEaew5MDHmIJrcnuaSUVpIZEb/kPwz/+r2Vh0hKjv7qJk5CMUhP4RFyb+t/pgwOf4eNNRHr64ccFOfpnLb6ADUOb0sD+n7LiCnQZzyJIGwmWvwuI/w/bKGk0pg+HGRY0PdEDVBvIX6IDKlytIqw52iiqc5JQ4Wb0vF71Ox9AO0cSFWQg/xghYVlZWvVGYgwcPNv4am6BPnz4+QUyfPn0IC2vG6d2TRIIdIer4fEvgXJUvt6Xzp3FdCDIbScsrY8qb6zhSULNSIyLYxLs3D6FHYnjTAx5NU0mzXo9K/PRXxKzwEOz8En77RhWkG3rb8Vd4DYtXj+QB/vebgtB3PBemf6dGJXR6CIpEVysIKLEHXsHi1VSiYkvJKKpg9d48Ptl8BItJz7Rh7eiZZKvOTzha5GLdQf8ref62aA+9UqKJa+4puLAENYIz8p7KYo6hlcUcK89jtEJsNziy3v/XpwxWbQySB6hg118Rw77XgLl5b0YWRx5B2+ZAQm9y+s7EHZqIuXAf0VtfJmztv6noPQmHOYHiisA/DzkldZaJezwqCVvzqvyioIjqXa5jrKBq6DzHLcimGhm3HQr2IrX6Kzi66b9bbkfD++3qZy6/zMlrK/fxWmWtIE3TcBdmcm5MKbGOdHZu/5nNmzeTm5t7PK+mYQYj5viOWBI6YY7vhDWxEz89OZXUOFvzn+sUIcGOEHU0FKLo0IEGBWVO7vnwZ59AB6Cw3MVNczbwxe1nk1C3LkpDSrNVEPPTf9QKnKR+MHa2Wj5dlSSbtw/+N05NIVTZ+RmcfS+MuMvnZtGswhID1lHpnxx4iiolMohwYzPnvTRSRmEF1721jn05NbkWy3flMK5HPE9c3puYMAub0gJU50WN7pXZ7VAV7LidKhC1F6ll2MExx/9+m4PB3M7/vuAoGPNXmDux/j5TMPS4RP1/UCRc9gp8cbua+qrSZggMvKF5p98AQ2k6+ec/y0oG8PyP+RzKL6dzXBf+PHIeA/K/IthRSGh4CsM7RrN8t/82FBf1rvUzVJIBm+fD+ldVPlLqSBj3t8rWGlbCrEZiQs3klvpvG9E14QSNLOj1qoCirYGRs2MJilDfn4oCAFwejZ05XjZneNRj0V/ZvP0P2O3+awS9e/xnJioqymcUZsCAAXTs2BG9Xs/SX7OYPnej368b2TmGiLBWkI/YAAl2hKjjsgHJzFvrf1770n5JRIaYOVpQwaa0Ar/HZBU7KhNzGxnsVBTAkkd9i5od3QxzLoJr3oeuF6m6Kkse8Q10qvz4DPS56sQFOw1I8GRybpdIlv9W/7145Lx44vXFQBO6SrvsKqjI+kXlTCT2UTdua+M/cXo8Xj7adMQn0Kny3c4spg1vR0yYhZigwGGtyaDDVLX4rixXJa+u+nfNSp32o1RdnKp6Nk1RnKGmDgvSVI2aiDa+y6sT+qpAZvGD1aMARLaHK96q7o6OLVmN7kx+D/L3qamT+F6qaGB48vHXvfFWjqjofVce2sNSeWtnKC+trklY351Vwk0fl/DEheOZFBRBmNXEAxd248e9ubg8viN67WNC6JMSof5Rmg0f3wS1u7sfWAFvnAfTl0DyAOLDrPzfxT2Y9cHWepc4sW9io1cPnUhlZWVs27aNzZs3s2nTJjZv3szPP//ciK/c3ORztW3btl4Qk5jYtEKOPZNsdIwNZV+O72ozo17Hg+O7YWtC8vjpSIIdIepIjQrmkr6JfPmzb0+h2FALM8/thNVkwO72X5G1SnED0zv1lGYHrt666H5I7A9el1oOHciexRDXrfHnbCZRWiFPDXbxXnwC/9uYS3GFm67xYfzf6Gj6pb8PnW9t/JM5S2H3t6rIX+3pmSG3qfYPIY2rapxb5uTDjYHL+89fm8ZZ7aLo18aGyaCrd2MGmNAjmiizR00p7vik/uqoAyth/uWq+GBTqgfn7YP5k3zzcqI7wZSPa4oYBtmg91XQYXRlQUS9mk6pW9MqqoMKbiJTVVNTU4iq/GxqwohildIcyNsDG99W7/2AqTVd1IECXRSvrv3V75c+uTyTUb3bkwx0jA3hs5kj+PtXO1l3IB+LUc+VA1OYcW6nmuA/f79voFPF64Zv/gzXfoA+OIpzu8Xy1rRBPLFoF/tySokMNvHHczpwxcCUE1q/KTc3ly1btvjkw+zdu/fYX3gcTNFtMSd0xBxf9eiA3hJCz6Rw5t88hMhmfJ0JNivvTB/MKyv38dHGw9hdXga3i+SvE3rSOS602c5zqpJgR4g6okMtPDKhJ5f2S+bNHw9QandzUe9EJvZNrE6KtAWZCDIZApahT45oQq5HRgOfBouOVE6dBDVc68N9jC7RJ0pUB+I+G8sdsT25+pLpeEw2rIV7iFl1t2rPENqEYnaFh+HT6fWbTq57VU3P9JrU6Kdy+wlgqlRV1E0Igtf+0J4/fnzAp+Bcp9gQ7huVSHBohJpuWfmU/yfK2wf5Bxof7JRmwwdT6icg5+2FT6bDtR+pgEbToOgQrH4Bdn2lpq8G3QS9r6xfnTkkRj0a4PF4yCoooczpwWLUExNqITi41pRFabbqi/bLJzXbdn4OqcPhD/+D8EQyStwB+6GVONwU2DWSUZWfeyXbeH3qQEodbnQ6HdGhZizGWgnTe5YEvtgj61UbjOAobEFmxnSPp29KBHa3B6NeT2yYpbpqd1NomsahQ4fqJfVmZtZfiPB7GQyGmhGYHp0Y0LsbvXr2wBrTrnrEzOXx8M9vdvPWjwf8PsfIzjGEWpr/9pwUEcT/XdydmaM64tE0Qi3Gli/8eZJIsCOEHzFhFsZ0j2dI+2jcXi9hVpPPH9m4MAu3n9vRb8fly/olNa0zuOUYK1QMJnXDa3cOHPzB/zGdxjT+fFXKctWUUUkGhFQmKzc118OWDNd/jnHBtSR+cbXaptNB3ymqW7SxkX9INU1NFQVKaF71b1WU7Rg3doDIYBMT+ybyxir/N5LJZ7XFbNSDLY4R7VwsvaULPx0sJqPUw9CUIDrFWIkPN6paKK6KwJ23ATJ3qKCgMcpyVWsIf45uUrVzQqKh4AC8fq5auVNlySPwy2eqz1V440eS8ouK+WZHJs8sSyO/zIlRr+OSPnHcP64LiVGVP3eZ23wDnSppq1VgMvB6rOaGV3eZjb7TXrZgM7ZAN9GGpluNlnoryWIamLLyeDzs2rWrXhBTWloa8GuOV3h4eL2ppC5dumBoSsPYSiaDgalDU3l//SHK61R/DjEbuGZwW0wnqIipxWggsSkfxloJCXaEaECo1f+viNlo4JohbQm3mnh+6R7yypyEWozcOKIdU4elNm3+O667WoXj9pOw2G6kmsJwlsGIO+HoxvqVeLtfonJ6mqLoCHx0o++qn7geKkcosl3NttJs9Sg4qKZTYjqp5NzaK1RiusC0r1ULA2dZ5WhDrFpi3Vgel8o9CaQ4vf7KI2eZepiC1bLtSmajgeuHtePzremqo3Ut/dpE0CelMv+nJBPLgitJzf6F1PieKi9o1x71Oia9oUZSjBb1/IGqH9d+r8oLVHfsHZ+oFTk9LlUFAKsCSEdJw++Bs1QFV6v+4xvoVEnfogKTRgY7Ho+HRdsz+b+v9lRvc3s1Pt2axYHcCt64rg8xISZY91rgJ1n/GnS7iLiwEKJCzOSX1R9B7BgbSlRTRge6XKjacfjT91oIjsFut1fnw9R+nIjVfUlJSfWCmJSUlBNe+btNVDCfzhjOo1/uYN0BlfM2pH0Uj1/a87iW1YuGSbAjxHGKDrFw3dBUxvaMx+7yYjGqYfYmfyILS1StAD64VuWIVAmNh4nPqU/C9iJVRG7yu6rC66G1asVH32vUUuTD66DDqMadr6IAvriz/vLm7J3wwVS47lOV+1GVx/Hbd/DbYjXC1OMyVZ03piuE1Ap4qpaxH0N2iZ0KpwejXkdMmKVmesNoxtthNPrfFvv9Oi1pADpzZUDjKFFTPz/8W11zbFc4534VdFWuXGsTFcxnM4bz/obDfLUtHYtRz9ShqYztkaDaA4AaQcmurCab9YvvCb9/FNqdrb4HA2+EtS/Vv6igSBWogiokt+rfsKbWcetegY7nw2UvqdyXkBg16uXvhq03QFCU+t7sWhj4Ddz6LnQaWy+B2J+swhKeXe4/0X7LkWLSixzEBOkbbmPhKgevh/hwK69dN5Dr3lrnU1cp3GrkxWv71x99KctV3yedQQXrFrVqr7CwkC2b9rC58EI2L/uUzRleduXWnp59vvLx+3Xp0sUngOnXuxfRFpcKmo1W9Xt3vAGNq1y9Rq9b/cw1Mp+sNoNeR7fEcF6fOojCChc6IDzIdMZMK51sEuwI8Tvo9ToSf28tFqNZBSq3b1AVW/P2quTUtsNqiplZwlRQ897VavnxoJvUSMD619Xxtyxr/PnKclWriLPvUTVFXBUqqTXjZ1j9ohrZCI1VU1yf3VZTUBBUUbuk/mq1UO1g5xhK7C42Hizg71/tZH9uGRajnqvOasPtoztWt5NwdrwQa9BT1Ut2q+n0lI/8C8GWMHQeN+z9Hj66oWZ//n7VwHHSm9DzsuqO3ilRwfzp/M7cMLwdeh31pxaPNrAqpjhd3dCMSWpZf2Gayp+pEhqvkoqrKuHm/uYb6FTZ9z389i0MnKaCnV5XwvYP6x/Xv7Jas6O44UKRppBG36DLHR6/IzFVdqUX0ic1TiVDH/zR/0E9LoNg1d2+X5sIvvvTOSz9NZud6cUMahfJ2Z1jSLJZKS4uJiMjg4zDB8nYtZ6fPnuDl5YFThL/Pfr37cWAQUMYMGAAAwcOpHfv3r45SP6UZqnk67Uvqw8OYYlw7sNqpWNTmxkXHoblT8KOD9WIZFwPuOhfaiGBpenVwhuc8hPNRoIdIU4FpiA15THyHv/7g6Ng/NPw1vmw/WP1qNLlAtXxurGcZXDF/2DT26qPUpXU4Wp5s6NYjVRsW+Ab6FRJ36L6N0V1bHROzoaDBdw0Z0P1vx1uL++sSWP7kSLeuH4Q0SFmXtzs4JrLPyNx5f3oj1YeG9mOnFH/5PWtOv4Y7SDWmwML7/Z/kq8rg7da1W6NBn3gZcq2Nv63g/rkb6h8bWEJapn5mEdUQnJwlMpVCktSgYfbqYLOQNa+DN0uUp/+x/1djeBsfltNdZmCYPAfYejtqrCewaoqKq8M0Api0I2NDnbMRkPAbt8ACbbKAKHT+WplV/5+n/1acDR57S4hY+cuFcjUeazLyOD/Kv+/vPwYTU6PITg42HcqqV9futk3YfrGz+9Dlx5w2dONL/ZXUQjf/p9vkFmSAV/eAeP+AUNurQ6Qj6k4Hd65TH3AqJK9E+ZOgBu/hbZDGvc84qSTYEecGkpzwONQw95hCcc/vNyc3E4oz1HTDubQFqlj4yOuB/zxB1j+Dzi4St00h90O3Sc2bRg9KFLdTOuuiklbrYblL3tNBTy7vg78HDu/UDkpjQh2skvs/G3hL373bT1cyKH8ciKCTezOKuWyjYXcMfRpho3QofO6OVBm5pnlRWSX5DH9XE2NSlXVnqnLUawq8ja2tH9SPxVg+Gvy2H+qb7J2cBT5WggOc1t0Oh2xoRYMVT+jmlvdUANxFNdMT4YlwNjHYdhMNXJkDlGjRFWjOQYDDLgefv3St28ZwIBpKihppJgQIxN7x/LZz9k+2zWvh2BPKWUZe/hq/1YVvGSOIWO7kYwDv5JR7CLDbiGz8AiuPweoru1HWFgYcTGRlJqiKHLqsB/cgj44AktCR8YN78eVw7sw/MIradeu3bHzYYqOwmuz/e/7bbFqsNnYYKcsx/9oGqjfgx6XNP7DQuYO30CniqbBt3+BKR8dXzVzccJJsCNaVkWhyjdZ8ojq4hyWACPvU8PnoU2fB282RUfVtMTmOeqm1O4cGDdblfJv7Aqj5mY0Q3wPuLwyGNEbVCdtfzeO0my1isjrVsFNaKK6kYLKWQiQG8Ph9SpROihSJSQHotc3ui9XucPDwbzAn/w3HsxnYGokE/oksmRnFo8uyah3zOX9k1W/oLJj3CQbuua6wpLgus9UN/HaycOpI9QIm1Hl9pQ53Ow4WsTsr39l+9EiIoNN3DyyA1cOTCEu3FpZ2fgyNdU1dKYKkjQN3BWw/g2I66kaQFYxWRsuRmhLhus+gSMb4Of3VaB91s2qHk+d1Wj5ZU7yy5w4XB6sBi/esgLycrJVALNvJ1p6Htra38jJysJTVoCnNB9PeRFoXi56NsD5AaiZ/oqOjiYxMfGYjyBvGW+tPcI/lmZQt9LPVuDpC3rQvn37hk5ao2p0MZCcXep3oTEK/K/KU+cpCRw8+7P3+8D7jm5UgbMEO6ckCXZEy/F6VK7F57fVbCvJhEX3qYTRsY83qXJusynOgHev8P1kfWAlvHke3LICEnod3/M6K1RgcjxF32qzhPqsPvLh9ULWDlW3JbdyWXxQpOrH1PUitULKWRp4iTeonJnYbtD/Ovj+Mf/HDLyppp/TMRgNOixGfcCGoXGV00yD20WRGh1MWp3AKMhk4I7zOhFsNqoRrOBo/8vBgyKbNsJlMKru1jPWqCXhpdmQ2FvVsqn1PBsPFjDt7Zpk7oJyF//6djcb0wp45so+RIVYoPP5KhD57uGa6aCQWDjv/1S15SZ+zwuNMRTGjSFn8BCc9gq82SXY924nvyqQychgz8HDrPp5D0V52XhKC/Daj7Haqxa9Tkd8tI3Eth0aDGDi4+OxWBoX1Gblu3hrg/+q4gCf7Szhz40dmDJYAidzQ9MCitqBpj/GJnxv6tY5qnueZm7AKpqPBDui5ZRkwnd/8b9v09sw/I6WCXYyt9efQgCVjPj9oyrfpSnXVZCm8ly2faD+GPa7Tn0qbUqeTWMVHVZtJmqPVFQUwGe3wrQv1Y3XEnaMG0m0GrnpfZUaWcjZ7bu/w7mBm4f6ERNq4Q8DUnhvff38H7NBz8B26saVGBHEe7cM5dXKCq9Ot5fzusXxwIXdSI2qzC8JS1AjW+9f7btyTaeHy1+F0ATfEzgrwF4A6FTwYajzJ89gVNNeAaa+sovtPPLlDr/7lu/KJqPIroIdlx0+vtG3fEBZZX7RzUtrqiNX0jSNgoICv7kwBw8fZeOv+8nMyMBTVoDmrKDRDEZiYuPpmJpCYkwEiTmrSAz2kBgVSmLbTiSaikn0HCYuRIdh+iJIHdb45z4Gr97SYEJ0RmmdApxVjW81r/qZrOoBByppuOMY/yMpVpvKF6vN7VR1ikD9/NYedbQlq+99mZ+eXW2GquMbq9vFqpq2v9+dIbeqkVZxSpJgR7ScioKGh6pz96ih+5Pt1y8D79u/QtW0aWywU5AGn96spoeqn3+hWj588bMQ2cwBz2+LA9dz+f4xmPKJ+oPcbYK6jrraDquZPrQlw9TPYO8y1c5Cb1LTKW0G+/ZyOgarycCd53Vi25FCdqQXV283GXS8fv1AEsJrbkzJEUE8NiaBR4aZ1RScNQJTRK2boN6gloTftlrVh8nartoaDLlV1bypCmY0TY2w/PgftYrKYFY5LwNvaFKTx1KHu95IU22bDxXQMyFMBYVuOx6vRk65RkaJRkapV/131jQyYoaTkZ1XHdBkZmbicByjO3YtOpMVQ2gk/bq2p0PbFDxWG0vTXBhCIzGERKn/hkaht4aRYLPy+e1nkxCigxVPqvcAF1BV0FAPEanH19erASEWI0PaR7Jqr/8ijON61AoESjJVkcS1r6i/A+3PUaujojup6VqdXpUTyN/vmzhtCoZLX1IrE6sUHlI/C9sWqMCp1xUw7I6a1xeWpKpTz7tETY9VsbWBy19p2ihReBJMekv9TteuaJ56tkoerx1Me1zqdTpLwBisfq/MTV+tJZqHBDui5Rwr96X2J72TqaEqvdZw3xyZ0hwozVR/cMMSVBPG2oHAnu98A50qe5dA+ubmDXY0zX/PoSrZu9Qyc1uyWtnl9fj222o3svKPf+UnXZdd3Wh2fQUJfUDzqKAnsp36pNyEIfvEiCBemzqQQ/nlrD+QT3y4lcHto0iyBWGuqrWjaZCzC8MXMzFULQuPSIUJz6lVLlU3ClOQ6gM2/qnKZfNB9X+WCg6qxpK1i/P98LRKrL7+84anI2oxGvTodeBxu/CUFaqcl6rcl9IC5u/R86E9n4ydq0nPLSG7TKN+p4qdlY/6IiMjfaaNbNFxfHvATqEWgiE0Sj1CItFb1MjWZSPb8/DFPXhx2R42+qneDaoRrcPtAWOIqmJdXgBb5tXcnON7wVXzGv0e1JZdbCezyE5msZ3kyCDiw63EVC7pDw8y8eD47qx+6ad6rSVSIoPo37YyqCjNhs9nwL5a5RJ2faV+V27+HhL7qkT0D69XU9mapqYZw5PUaOiPz8L5j6viioWH4e2L1IhmlfWvq+/zzd+r43U69ZwzfoKjW1SCcVI/VSOpqe+BOQS6joc7N8GBVWo6tf056jy1E9pLc9To9E/Pq2ljvVEVqRzzyHG97+L3k2BHtJzgaJUzcXRT/X1Wm7rRtYTeV1V+GvbjrFtqhqqLjsCH01RiYpWoDmpFRnQnleS8eV7g82yao6aVgmu6gheWO3F6vISajQQ3tTeOTqduZDs/978/om3NcurQBLjwKdVgsyyvMok5ViUyV8nfB/Mu9Z0uAvVH/rYf603NNCS72M4/vt7Jj/vy6BATSondxdPf7mbODYPolRyBXq9TN67/XegboBSmwbuT4OZl9afOjGb/AbPbrvpK+atCnLtbFWSs7LNVXl7udyqp6nE0PZ2MtCPYS/w8F/Cdn206IC5ER2KYjsRQPYkJ8SQOn0xi2/Y+gU1CQgJWq2++SEZRBSuf/YEQh9vv+Q7ll+P2eukYG7hxoy3IVFPYMjQeLvgHnH23GkU1B0NwbP3k/7I8lcj78wI1ItHnKojp7HMDP5hbxo1zNnAgt2b1Wp8UG69cN7C6F1zHuFA+unUYj3y5gx1HizHqdVzcJ5H7xnWtaVFQkOYb6FTxOGHxX2DyfPU9rKrzFBKj/haU59ckG5dkqSBo11e+gU6V0iz1Ws6+VyXm6/Xq5785po7Nwer3PNDKOLcDNrzpWz7A61ajfyUZqt9YU2v7iN9Ngh3RcoKjVf7FnIvUp70qRgtMfq9p3aSbky0ZLnhCLSWtLWmgmgYxGKGiCL76U02gozeooCB/vyr8d8MilSzsaWCqwm1XfwSB/DIHPx8u4oVle8kqttO/bQR3nteJ1OgQrKbGj6B4el6O4Yen1A2r7r5RD2Kousll7aif22O0wvVfQMpgtZJo5dP1Ax1Qn1S3faimGRpRydfl8TBv9QEW7cgC1HLzKlPeXM83d48gJSoUdn/tP0DRNFg2G658u1HTh1pZPkVbvyQjx0NGaZ0ppVIvGR/eRob3ITIyMikuLj7m81XTGzCERGIIjcQYGsXofl0Y0K09bVKSSQzykPTjAySGQlyIHqNBXzOSMnUedDyv+mncHi/ZJQ7SS9xY7RXEh1kwVAYnIWYj/dpGsGpPrt9LGNUlDqNeT+8UG2EWIyV+gqJbRrYnvnZtoaqE9kA357IcWPIYbJ1fs23zHJ/qzzkldm6et9En0AHYdqSIBz/ZxovX9scWZMZqMjAgNZJ5Nw2m1OFGr9MRFWz2Ddz3fBvwLSbtR9Xp3RKqEn7thWqUp6zO+xHbRa2i2uGnp1eVXz5VxTcb0U+tWZVkwer/+t+3f4UKxCTYOekk2BEtK6az+tR+ZIOagontovJZbMn1k0lPFqtN1VnpOEYNh5fnQ/eLVTuCqimq8hxV6+ac+1UOi71YDXHn7VXD7KWZENsduk6on+BbpeckCI2l2O7irR8P8tLymvodRwsrWLwjk/duGcLg9o3/w3jYE03IJfOJ/ebWmsBBb6DkrLs5ZO1HN6+GoSwbPppWP7fHbYcProM/rlTBm78RtyppP4Lr9sCrwmrJKapgzho/xQlRHbN3HCkkJdysbgSBpG/Gay8ht9jR4EhM1cNu99NnrOaKKh9KUFDQMZdV60MiOFphYvW+PJIjgxjbI4EEm5WgqkDUWQ5n91JJsnqjCmINZvC4VcXpqjOXOHh//SHeXLWfYrsbW5CJmaM78oeBKcSEWggPMvHABV35aW8udWsBRoeYGdVFBatJNpXMPX3uBrIr+3/pdHDFgBSuPqtNdfAEqnp1bqmT3FIHoRYj0aFm4sJqjShl7fQNdKrs+x72LYd+15BT6mRvtv/+a6v25JJX6sQWVDPKFhViUYnb/jT0M2MwqwA6NBFG/Rm+faj+Me1Gqg9CeqPK4QnEFNwyq6McRQ234Cg42Phl86LZSLAjWl7VapjKqYVTgjVcPeK6+d/vrIA/vAUb3oIf/lWzPam/altQUaSmWPpPgW3vq8qrtUV3hM5jAcgrdfLyivqFytxejQc/2c4Htw4lNsxab78/b605ys6jITx00Vck6/PBbacsKIm528pZ/ME+vrozkfiK3HrVcquV5ahRtqh2KrDzN0UAENGu0XV2nC4XpQGmZQD2ZuZzNArSc4LI2O2qMxJT+f/ldrL+rz1ud+DnqctmgcQwPYmhtaaUQnUkTniIxN7nqEAmMoRwXRm6fUvV96jdSLXsPqpdvefrBVzQK8Boo06vRvG++lNNuwtTkKrQi8rxKnW4eG7Jb7xba1VaUYWLJ7/ZRX6Zk1nndybIbKRThI751/fm4a/3V4+kDOsQyewJXUgOUzdvvV5HrzgzX9w6gOyickoqnCRHhxEdZCC81s9KdomdJxft4vOtR6sXEHWMDeGN6wfRITZU5TytfSXwm7j2Zeg8jsKyhhtw1u3c3aAu42HJo/739b4KgmLUB50+V6uAZuWT6gOHwQx9JsO5D9WM1gy9TZWF8GfoDDU928zKHG6yiu0s351NfpmLUV1iaBcTUhNAmoIbXu3YkvXDzmAS7AhxPIJs8MP7sG+p7/b0LapA4pVz1b+jO8K0r9Qc/s7PVYXo3leqKrmVOS+/HC0K+Hdxf24ZRRVuYhuRq61pGoXlTjYdLuaK94oxG/QY9DoqXOrmGmI24NU0v1NcPqqKCp7zALx3pf9jBt9yzBL7drudjIwMdvy6G9Oh9eTlZPkk93rK1H/verqIO4/ZzbpmSXNsbOwxR2ISgjWCv7wF0uuMTvW/Hs6/Xd0s7SWwf7laMl45nciaF9Vo47UfNqlaMYWH4L2rfKf9XBWqhUVMF2g/ktxSJ+9v8D/C9b+fDjBlaFvaRhkJSl/H8KUP8+HZ91IU2gGjHiLTV2J770a4cZH6mXJVoNu7hMSPbyARnQo8nWWqgOGUD8GWgtPt5fUf9vPZlqM+59qXU8aUN9fx2czhJFjdarVQwLe9FLxu4sIDryIy6nWEWZtwKwlLhLGzYUmdzucRqTD6ATBX5vaERMNZ01WrDWeZmmYNiavZD5A8CLpNrN88teN5KnCtzetVI64eV2Uj0GM3rq2rzOFm0fYMHvhkW/Xv7EvL99K/bQSvTBmg+ryFxKrO7ru/qf8E4cnqIU46CXaEOB4eZ+B2Clk7wFUrtyG6o1qFMfiPgE6txqiVWHusLun6Wou/HC4P2SUOCsudWIwGokLN1athdDodl/RNYuE2VYHY6fFCrXvv6K5xhFtNoEWrqrxOP9MSBpNa5QKQMkhN0636d/WnVE1vpGT0k2TkusnYvaLBqaTCwsIGX5fPaQ0G4uPjSIoMJtF9mMQQTY3GhOlJHHgxiefdSmKH7sTHx2MyNbKP0TXvqppJW99TU4wDpqn6LFX5EqWZ8MlNNYFOldw9sHQ2THi2cS1CvB6VbO4vvwnU8u+E3uSVejEb9Vw/rB2D20fhdKt/r9mXx/y1aRSUuWhryYPlsyH3N2IX30q9MYDtH8PoP6tE149vqDmns/I1ZP8CK/8F4/9JdqnG/LX+u55nFNlJyysnoX0U9Lg8cCPQrhdDUCTReji3ayzLd9evVTP5rDbE1m2y2hBruAr2O45WCfwlmar1SNuhNY1Vq+gN9bfVFhqnvk9DZ6jvgeZVzx3Xvc7qqGzY/pGaYi7Lhcj2cP6jlQsEGr/0PLPIzv0fb6u3fcuhQt5Zk8assV0wWcNVY9DiDMjYWnNQWKKqjC2rsVqEBDtC+OMqV4mGR9arfJy2Q9Ufqapl2c5y3zobddVNqDQFBVy91D0xPGDDxt7JNiKC1c09v8zBe+sO8cKyvdXViLvGh/HSlP50ilNDP71TIuiaEMruTN9AxmrS86exXQixGMGYAGP/pkYdKmmaRl6FRkbXKWSs3kZG7srKLtZHyTg6gozDB8jILSQjt5DyR29t8K2rzWKxkJiYSGxMFB5rBAcdIXitERhCI+nZqS0PXtiFAd07EdO2CwaDQS13L81SRR1dFWrJe0isGklrqrBECEvEmXoeOp0OU91E78NrA49y/fqFmi5pTLDjdvgvQlklfx+4KwixhPDitQN4d+0hXv9BTSPqdDCuRzz/vaY/wSYDeMpVs1FQvdDaDFGB9d4l6oaduU0FZwd/DBxcbXsfzrkPuysCuyvwz2haXjlDOkRD1wvhp+fUz3PH81SAcXCVmjo6azoYzUQa4clJffjnN7+ycFsGHq+Gxajn2iFtmTG6Y9NXDgbZIKi3Cgq8nt+XWxMapx5tKwsk1k2atxepBPfNc2u2FRyAj25Qta4GTGt0fuC3v2QCEBFs4oJuUYSZYN0RO9uPFjFvTRpTh6Wq0R1bG7UqszhdBc+2ZDVy1YQaT6J5SbAjRF3OclWc79ObfW8oXS+GCf9Rw9+WsJoVWP40YSVZTKiR2Zd048HPf/XZHmox8tSkHkSFWNA0jSU7s/h3ndoqu7NKmPz6Wr6442ySI4JIsFmZc8Ng5q1J4731hyi3OxmSaOQP3YL5Zc0ylmdnVQYxB8k40JOMfdvJKCgns1TD5dGA/1Y+GhYWFtaofkkRERGq6aOrAldRBtkVeko8JiwGiNQKiIiMg7Ban8Cr+kY1puBdWY6qnGsw+82DyCiqYN3+fD7ZfARL5YhKj8RwYqpWKpX6X/EEqIDiWNN9VYwWVbdl/3L/+2O7gSmEcKuROT8d5Me9NefVNPj2lyw0DWZf1ktNr7Q5S023FR2GvUtVoHz+46qmi8ej8lhK/VQDruJ2gNdFkMlAiNlAWYB8mg6xlVNTthQ11Xp0o6ry7fXA8LvVNFBku+rjE2xW/nF5b/40tgvlTg8hFiNxYRb/qwUdpSpRF52aemoomGiuJOJAKwNLc1SdIX+WPg6dxzW6eWxOqYPHxyYwNraIuJ0vYCwpJL/PeDLOH8ktn2f61liqCsKS+jXpZYgTQ4IdIeoqPqqmN+rmkez+GlKH1zR77DMZtr5b/+tTzvIdQj+GYHs2F+fPo/e0K3n753KOFnsYmmzk8i4Wknc8BzH3k+Uw8eySmkBHc7uq818OleXz5L83EqmrqRmTnpFBZno6uTk57PV68XOVfjW26WNISFMrwWqYnEUkL3sUDq1ROTPD7oTI40hKL89XtXKW/R3yKqtsn/t/6ntTOSWRUVjBtLfX81tWzQjX979mc1HvBP52SS8V8DTUKiGqQxOq3epUILzmJTUKU9eQ2wAdFU6vT6BT25Jfs3joou4QHgUXPAkLrvXtrr17kZrqOf9x9e/U4YEvJ647mEOJC7Iw/ez2/HdZ/eT31Ohg2lS14CjJgkX3w95aVYP2LYXEfnDN+z7TLiEWoxodDMTjVte9fDbsWaLew0HTVXXhlpq+KTgQOFnYXlS5arFxwc6NA2xEbZpH6KpXq7dF7V9BVHgyH03+hBCz9MY6VUmwI04PzjI1jJ/1ixr7j+uhAooTUX79l88C/3Fc8yL0/oMauRnziPoUvP3Dmimt9qNUOfum1PbI2U3Y+v/Qc8trPNx2HGkEU/DTdtbM2axWJH2dxZ6sErat+7U6qbdu08eXPgv89Hq9nvi4OBKTkpqt6WOTZWyDt8fXvE/F6WpZ8YEVcOnLjX+/XA5VnO3bv6gpnu6XqOD0gykw9u8w+BY8BiufbD7iE+hUWbQ9k+uGpqpgx5aiOpyn/VT/POP+0fh2Cm67KlEw6Q11XcWVCcHWCDj3L2rKKakfhRWB31tNg+IKlwoWtn3oG+hU2fkFDJmhpkND41SRxapK07WN/guYgzEZDEwdlkqJ3c07a9Oqp0n7ptj47zX9iQ+vXD2UvsU30KmSsVXlpZ11c03V8OIMKDoEhUfUdYQn+yb65u2FN0arKciq9+aHp9VI6bUf1uSDnUzHqsRuaPzPfJIuH+PmV+vvKD5K4s8vor/43028OHGySLAjTn0VhWoEZclfa6aN9EZVGbbP5MblVTRFwcHA+8qy1aoOUEuzL/43jHpAfUK0hKmbdp3lrg01fczIyCBjz89kHCwlo7SYUqef4fZvX/d/LQajKnIXEkXfru0Y1L0DiXExJBoKSfxtHonBbhJDdarp45ApKrG1KV3Bq3hcKgdJp1evr6nTDqU58PW9/nOcfvtWVaJubLBTmqlGOaZ8pEZ3cvdA2+Ew8l746QXocSl5hngWbAiwZB6YvyaNs9pFYdIZYMQsVfPk5wWq7lBcDzh7lpoa83obVTQRg0W9tpVPwejKPB/Nq6bCNr6tfmaNQYRbdA0+TahFr6bmtrwT+KBNc1SQt285jLxPNcrc9oH6MJDQW72eXxeq9gjmUGLDrNw/Ko4bB0ZQUFpOsMVMdGgQUVX3f2eZaq8QyMb/QY/L1DRh7l6YP0lVta4S30uN/kS0VVNXy2fXBDq1ZW5TyeItEezYUtSIn78+fMkDmlTgz/jr5wH36bd/qIJbycs5JUmwI059ObvqVzP2uuGbP0PSAFXUrzl1Hud/egog+SyVQwF4PB5yCsrIyCgmIyOTjIwtfoOZpjZ9DDHVqg8TYSFx6JWEJnVif5mppvljZdNHnU5HuNXIazcNpn/bSHXzf2kwdNSAWkHJhjdUa45+1zTtvShIU8vmd3yiVmoNmKbqnzTlD7qzRK1QC+TAD43Pa3CUqmmhD6/3vamutcKk18FRghYcj8sTODHX4fGqgbv8fap7epcLVKKq0aKWkK/4p1qpdstKsDVi6sVggIHTYP2r8OUd9fdf/yUERRBdnsOAtjY2Hyqqd8jITpFEGx2A5n8qrEpVV3VnKXw4VdWsmfi8Cs7yD6hE3IIDcN7D6rjcPQS/fSFty3KpbpSg06mWBV0vUkNK3gZykzxOwKumut6/2jfQAfV9/XwmXP2OynXbsyTwc+34GLqMC7z/d7AX5aCzFwIamjUCq63WNHJYEkx+H9653LfYX2g8XPZa07qeuxv4Pfa6gWOVUBAtRYIdcWpzlsGqZwPv/+k5NX3QjNNZzrg+ZHnjychIJ6PEW9lyoPK/keVkvDKO9PR0srOz8XgaX0ytbtPH6ofVQWLaZySW/UJip76ERcWr6YDCNDj/Mej1B4osCazem0eb33L4aOPh6uq6iTYrf7+sF6GWysBm24eBV4mt+jd0GtP4fKLCNHhrrFodVWXp4+oc133S+IBHZ2g4mbt2CwiPWy2rLklXyccRbSprq1TmlxhM8M0D9UcP3Ha1/foviQw2MaFPEm/9eIDwICO9k224PRpbDhXi9Hi5elAbzEY9ZPys3qvd3/ivieJuoApuXRFt4ZoP4JObaypXG61qai2xLwBR5Qf57/kh3LlEY8vhmjYVQ9vbeGqkmYiKIxDbVdWNCZRQ23eyGm3qNAa+f1T1htr1le8xbYeBxaaKG341q/7KQE2Dz/4Id2xSU3X9pqiA05+qIn/Zv/ifWgO1cqssV/0OmkNqArK6gmot8dY09T0uyVS/47YUNerYxOa/HrcbT9ZOzIv+hL6qdUtiX1wX/QddfC+MZotqfZK7D674H+T+pgLauO4QHAPFR1RdJV3Do27VelyqprL96TpeTV2KU5IEO+LU5rKrP0iBFB5Wf1wbEewcq+lj1SM3t4FVOvjWI9HpdMRFhZNos6iGj+27k9i2I4nJycds+lit4BAUjVQBwf4V6mbfbQIk9lGVji1h2ILMtIsJwbo/jzennUWp3UWQ2UB+mYs1+3IZ0LaTuoHk+u+EDag8mcauMPK4YOMc30CnSs6vKs+lz1WNe66QGJVb84ufxCKdvqb4m8uunvfjG9W0IKjgZvTDauQkOErVL6pbjbpK5Y3TbDRww/B2nBXrpndwPhFpX+A1WCk85yJW51jo2yZCHR/ZQCNTc0iTcjkwBUGHc2HGj2oUxOtWeV2h8WqFGYDJQsq7E3lzxF/JO38oBXaNKKuOmMxVRH4yG6Z/B45i6HMF7F6EJ74PhW3Px+CxE7H7QxUIGMzq+xyerKZwty3wvQ6jFS56WjWXzdsXuH6Ox6WCvchU1bU7rkf95fPhyWok0GDw37OsNmeZej8HTVc5Ov5UjSp6Perc70+u+fnS6VUfq1EP1ltZZ3d5KHW4sRoNhNYpXugtSMM890J1/ioZP2OaexGuW1ZBfBeV6/fVneq8sV1V8LznOxX0hMbDH1c0Pnk6sr0qGPjbYt/t5lAY82ij2qeIliHBjji1WUJVY8qsX/zu1lKGUFTuJiPt12MGMU1p+mg0GkmIjycxPprEuFgSk5JJbNvBJ4BJspQT99U0jI58wA6kgSkbpt6jVmQ1Jt8D1DB69i9qWqJ2MBKeDFM/q84B6hwXyrTh7Xh15T7W7ssjPMjELed04LZRnWr6EHU8N3DX88S+NSMkx1KerxopBrL1Peh2ceNG1MwhahXRkY31209c8mJNgmvRkcoqxLWK/HlcsPQxlVfT5YLAieNVKke12piKSfntcXT7vq/eFbbuWa4ccQ96452AVeW4WG01gVVtg25q0oo6QC2vtrVRD3/0ZohoQ/TSe4kGFchVfb/bDFF5aJoX1rzCkWlr+XRrBl9vLSTIbOCGQRMZ3sZC3LonocNoFfiNm61ajqz+r1qW3m4UjJwFEZVBXKCRtCpVRSXDk2DKx2qqcvMc9XW9r4IBU2u6hFf1hPP7uk0qT8lgVKuufluscnRqO+f+mucqPgpzJ/oWtdS8aro0uhMMvhX0epxuD4fyy3n9h/1sPlRIks3KzNGd6JYYRkSwGY/LhXfTXN9Ap4rbjrbmJVzjn8SUf6DmvcjZ7durrjRL/aw3NtgJjYWJ/1Wr1da8qH52Oo+DYXf4LNMXpx4JdsQpyePxsHv3bjZv3szmn4rYvLiczeluSirTGYa3MahppYoXsdufafTzqqaPCSTGRpMYY1OjMSmpJLbr4hPIREdHo28oWCnNgfmXg6NO0qOrAhZcA7euavw0T0UefHxT/VGX4qPwzYOq23dQBEaDng6xofzt0l4UV7gw/n975x3fVL3+8U/2apLuprtQStkb2UuGIogKIuBAURxXVFC8P/WqV71Xxb03KkNA8CoiKluUrSzZexe6R7qTNMn5/fG0adMkJYGmCeV5v159ied7mpycpDmf84zPIxEjXCN3/p2WQ0gc1cxnqsuwl7yfFSQSUxQBoP9Gt6ULRu4hujBJFZSe8pawZODeVTTw9cgKSk91mkCCrkYw7Vno6mZcwx+zSEBqImn2kLtBizIV3bUDwNGVTkKnBvGWd2ioqzqcnnvyT8DCW51TPemj6OLl5ewvr7FV0Xuw6imqrap5v2Pa09BLuxVQhSKj/yyM+3KvY8AnAMzIMGJASz3eHv0MomsKxEOigI63ksC1VVHqqu4oBaWOIhFFp90fT3z32n/r4+k1d55IglId4eyNo46iGp+jK1wfp8d9tcJQF0ddVzkHyO1ZHQ50nkTvd81n7+w29+7dALDpbUoV6eKw73wxJs3+s9r/CTiRW4aNx/Px1PXpmNwnBRJzMZQZmzydbcgvbIOpsgQyqRxQhqKo91MoMPRHuVUEndSGyDPLod3xge8F99oYoMvtJHKq3zNIvZtdxwQOFjtMk2IymbB//34SMXV+7HbPBaXu2JpRc9dKFwS9Xu+VP4xOUgXRrq+pfqWm2DC8JXD97XTR8TZ3X1lA3SXuqCigVIu3Yif3iOcpyafW0+PV6ThTyiTujdwAEhVTVgE/TSOTOIAu6qPeotfnLZpIoOf91H0W340moItlZLF/5FdKS8l8/ILXJ9BP+1tc16yWhl2Ii85QujIkhtIFq55y3WfIs3TRLcsF/vzY82PtmE0F0WIpYOgMPLCR6pMqCimyEBLt0wgBFyzlJAjr15+ow4Cl95JPkzqSOsu0sZS2XPMccOcPsIgU+OrvMiehU8OmU8U4VtYKLvEmmRoQW1zFmdZAoxQWjHWNiHW9q1YY1iAWe45mqcPosdSR5NBsqyJxec1DQJ9/OE8f18XST/WgWxfyjrjfDlA3mq0KeaVm/N/3+xxCpy5vrj6KGzrGIlqpgC0kFp6kij3EAJtYAYSl4Py4nzFjXQl2rqLIokgEjGk/Av+67TrE+FKgXBdf7CWYgMNih2kUjEYj/v77bycBc+RIA19ql0FayxQ8+39PoFWHbo56GLWavmwFQUBuqdlhZx9Rf2bPnkXA7684bys8BcwdBTy0qTbUfjGsDXTMAA0PV6zPxeohGurOcUd0G2rNriigO09lqO8tvyIRjRFY9x/nqe4AtXlHeZgGf6lI5dRVV78WoobodtURnUq6qN/8CfDX51Q0G55Kc8fsNlq329ynpmqoKKBCaLGULvD6+MZpFy7NATJ3Uyu31Ux3/y2H1D62Nha4/k1g4TiKJih0tcc5+SdAG4tCYzmW78uGTinF3d0jMChZgSob8O3BCqw4VIAlOy+gb6sYiMUiEmd5R2kyeXkukHYd0GEcfYZrRHtiL+C+dcC6F+nYQmKA/jMpJaj2cSK4Nha44XVg4EwS57IQinL4GgGL7+Z5LTQJkCpgrLTgVL6b9BQAuwAcySpFeMtw4JpHoDrqfkaduddjsEjVqLQq8eDKUziYWfs3KQjATwcKoFDE48WUcHiZ3GWuYFjsMB4RBAGZmZkuUZjz5xsoGL4MunTpgm7duqF79+7o1q0bOnbs6JNTb36ZGSv3ZeKTDaeQVWxCu1gdnhmZji6JYdCqZFTA+vur7n/ZZCTfFm/FjiqMLlZmN3VAIrFv+XtDJ89rujjnbiVvUYdfXnQCIMO6A/9z3b7pbUpp+CgQLFYb8krNMFZWQSmTIEIjR6i6ThoufRSw8S33Ua4BMym6lX+cOozCUqiLSB9PUbRNb1O6JrkvEJoApA4D9i5yfyDtx/oelboYZTnA8keB46trt53dQhPP71pGxymW0Iy1h/8Edn9DqZ64riSKQhNJoNir0DU+BP/pr0T09lmQLVsHSFXo3GESpt1zH+YfsFDUqLKMHJs3vUURBrmWUn1bPwDuW0sdRgClCBN6ABMWUMRJIiXBc6nI1JdfmxLblTqvyt2MvLj2eUBrgKjSQ5qrGpEI0ChlOKdIhmHQ81BufNkpemXq/TgKtG0Qo5DhuLHMSejUZenfmZh2bRqSfZ3txVxx8Dt8FWK323HixAns2rXLScT4MqXaW9RqNbp16+b006ZNG+8nV3tJSWUV3lp1BIt31gqxQ1kluOvrHfhgYmeM7hQPsc3iWiBbl8w93ncYaQ3UFl5nmKaDnlOpxsFblHqg7Y1kBlefYS8BIQ0Uh/qLikJg87ue1//6nERanentDVFYbsb3u87j/XXHHbOaeqSE4e3xnZEcoSEDv6MrgXFfUkqnkAZlQh1ORn1nt1JBsalaXBadcY3QARQpkbUGBjxBhdr1hZM+kbqPLhWrhQpy66c7s/c7C50a8o+R6V+/6SR2ZEoSIsNeBGxm6viqUxsWoRDwzjAt9N8Mq22vt5RBvXs20s+ux1Pj/wexREIpsNMbSMRUFtH7FZlGz7fuJYp8KXW1x6EKbXzzzUslNAGYsoLq1GpSwfIQMuRrNZR2UcvQOibErQu2VCxCG4MOYrEIUnUYfteOwaAHxtDQXsEOJF6DrTkStFaFQyYRI7vEjclhNVa7gHKzhzoxplnBYqcZYbFYcODAAZdITFWVl+3GPhAdHe0iYlJSUmjoYwDIL6lwEjp1+e8vR9AzOQyxUjnVr9TY+dcntoEIS30kMqDDWLpD/e1FavPVxlLXSdsxgNIHv5DKQmo1j0ynbpjyfErb9HuMutCS+zW9K6vNQukeT5Rl0z5eiB1BELD6YA5eXeGc1tx5pgh3fPkXvn+oDwwaCU0h/3s+1bRoDXThslWRi2/uIZrAXfcC7o6a9bAWwP3rIaz9N0Qn1gISOYROkyAa+ATVDfmK8RwZ5h1fQ4KpxxSKAiq0lLLa8ZXn3909n6JQdccqiMWAWOWyq0ymgO6vd9y7EBechCZvL2BIpfEbvR8GfnzIudi3xSAS25VFFz9XgaQm4lWRT5YD6giKOFV/niJDFHjz1s647fNtMFud6/n+fWM7RGppv4RwNaz2eDy77hjyy9IgEgG6k+V4Ylg6EsPo/Bp0nqN4ErGo4VlfTLOB3+UrgNLSUuzZs8dJwBw40IAj7WXQsmVLJwHTtWtXREf72ILrI1U2O3JLzKiwWKGQSRCllUMl8+2jeTzHc1t5XpkZJRVmxMbFUJTAncutQkdmbL6gCgPajQGSelXf8UspCuOr4MvaQy60Kf2BoS/SBdR4FtjwBkU4Ot7a9GJHoQdSBgJ7PThJp43w2sgxp8TkNMS0LueLKnEitwyGtChKYx1bBax40nXHNqPpPZKpgZbXUuF2fVIGOsZhCGIJzkuTcLTdq4ju8iIEAHnWELQXRcPngQX5x4E51zt3bO2YTc7FHcdTV5qnLjLAN2ddczFEJ3/zuCw5tBRofxMQkUqzxuob+J3eQBGeup1WwYomssEi3/ZxOqyaMQAL/jyHnWcKER+mwgMDU9EySgO1vPb7ISVSg1du6QhjJd3U6VUyJwETpVWijUGLI9muqaybusQhsn5dH9MsYbETQHJyclyiMGfOnPHLc3Xs2NFJxHTu3BlarW9upf6goMyM73Zm4JPfT6LUbIVMIsLYrvF4fHg6DHrv6ypCLpIVk4mF6qLbkcDA/wO2vFvb+huaROmAuv4oNU6+xRlU6xDekrpX3EVsLqcGAqjtZDmz2b0JnC8t3o2FXEUzog7+4HpBVYdT9MpLUWeqsiPPTXdRDfsvFKN/WhS1UGsNVFtVF4mMUhw1hm03fUTdZqd+r90nZSBwy6eOOqVzhRW46eMtMFY4RzXTDSGYN+UaGPR01y8IArJLTMgqNsFYUYWkcDUiQ+rUElUWAyv+z9WFGAB+eZxSYuEtaYzGcTfDNAHyrFF72bljqyKx66loXRlGNWF5Rzw7Fe9dTBPlr3CkEjFaRIbg6ZHpKDfboJCJPd4EqRVSqD1EaKK0Csye3AOPLNqNvedrC9ev72DAU9e34cjOVQK/y37EbDbjySefxOLFiy/iyntpyOVyl1RS+/btIZd7V0cRaCxWGxb8dQ7v1rnrr7IJWLLzPDKLTXh/YldXHxkPpIQroZFLHPUgdemWpEeYovrOWhMJ9H8c6HoHeeVIlbStbreS1UIplSV31nbLiEQ0cXrAEz4P08wvM+NMfjmW78mEVCLCTV3ikRiuqjUCjGpDbbzuUhcpA6ieIRCEtSBX3xX/BDL+onPQajhw3aveTwQHIJeKoVVIUeqhNqJlVPXrC00E7v6VxiAcXUFprLhuwMg3qCW8Bn08cOscEgRVFSQWlaGO7iKL1Y4vN592EToAcDS7DLvOFmFUJxUEQcChrBLcM2eHkxi7oaMBL97YHtE6JaUYT//u8jgA6Pgy/iKxk9Cd5qZd2OG8jy4e6HGPs2dNQ0gV5D+0ycP07HZjAMFGBoyesJQB8M3KIWBUFJLAU4V67OqSSSQIVV9E8Nvt1WnXao+get45ieFqzL23J2yVJRBZTRBkGshVWuhUjVs7yAQvLHb8yJtvvomPPvIwR6UBwsPDXURMampqwyZ3VyC5pWZ89sdJt2ubjucjr9TstdiJVgGfjUvBvd+dcvLmiAyR480bEhAWUqc+Qq4G5Cmeu0pKzgMLxjm3fAsCtfjGdCCh5CW5pSa8sfII2obZMaGVBAKADQdOIs+iwKND06g1XhkKjHqX0mt10yFaAzD0eRf7/CZDKiPX5UmLSfSJRDTfyMdakCitAvf2T8H7v7nOVtIppWgfV/14FYU0d0sXC4yfB0CgFNK2D0jwaKsFqbmUhnhufINaryNa0+R5cRtAqUVRuQWrD2S7PFcNP+y+gGHtYpBfasbts/9CcaWzKFqxPxvJERo8PiwNcsHWsGuzpboAWhsLTJhPU9x3fEnFxx1vqzXU8xa7ldKZZzYCGdud13o9VP0PEbWUeyI02dn3Jhgpy6Uo5rYPgUojkHot1SCFpfhu8ld8gYrRd88nAdrldkov1q3NqjQiLGc/2SgYz9HneuCTgCTVxVU8v9SMMrMVErEIESFyp5QZc+XC76IfufHGG/H88887/j8pKclFxMTG+lxB4HcKyyzIL6M/+FC1DBEhCuj9cAdUarKissqzpf25wnKkG7xLtcl0UeiVWIl1U1Kw9nQlThoF9I6TokeMBPGRKt8GhR751bO3zcY3gFbDnItNG+BYZhFmdq5CzKbnIN7yJwCgbcpgZPV9CWfyy0js6GJpJMYd/wPObKH0WWwnKlgObeGYsh4wLrONXSYR487eyThbUIFle2rnWkVpFZhzT0/EVaeUUHgK2Pg6/Xv7bOcHSewD9P4HeegcWw38cF/tWtEZ4MQa4JbPgQ5jIRLDs+kiALVcArFIhMPZpS5Cp4b5W8/gzl5JiFfo3M+NqiG5b+2/dXFUuNy2OvqiiqC5Ur4gru706jyJCo1Pb6L3P3UIWQGoQimNFd6C6nYK3NwsDH2h4fEOgaa8AFj1DE1Br6HwFKXf7ltLo0G8peQCOZnXHQGx7kVg1zzgnl9I8FgqyF9r9TO1+xSdBg4vB27/H3WAiUSosFix73wx/v3TARzLKYNULMINHWPxz+vSkRge5OKRuSgsdvxI586dIVxslk+QkVFYgYcX7sb+C7W57evaG/DSmPY+1dB4g1ImgUjk+cY5QuNb4aA8PAnJsmxM1RfTwEiFjtq6NT46pOYe9rxWnOEUfck0VuJQVgn2nzciNVqLbkmhiNWrIBGLYKywIE1egJhFNzqlqCRn/kBC9k2QTFyNSksoVHIJEFl9h6mLp9SMUl+dmnEjMmw2wFxMYf9GnPbuT6K0Srw0pj0eHZqGjMIK6FQyxOqVMOiU1MFntwM753h+gO2fk2GezUK1Mu5Y8SSQ3A+RugTc2TvJpfurhrv6JEMmEeNsgeep5uUWGyw2OxAWDYx+F5h7g+usqc63u7cF8PXzVhd1JEXP5DnU3q8OpzRP3hFKv6ojSAyZyynatf0L6hIT7NWGgTPIv6ayyPvRIF5itwvIKq5EvrEEFlM5lGotIvRaxIX6KMaNZ5yFTg2WMmDN8zQexdvo4YnfnIVODUWngYPLKFpUngus+7frPoId+PlRYOpvgC4OR7JKMWn2n47vI6tdwPK9mdiTYcSSB3sjVh/gmw7msmCxwzjIKzXj/vk7XboWVh/Mhlouxss3d2zUYr7IEDmGpEdj/ZFclzWDTom40EsQV1rD5d/VJvejOU3uiG7vqC04lVeGiV/86WTtH6KQYtHUXuiYoIfYboF+72z3tTgmI3THl0IwPAnUGN7rYoGGeoUEgULwexbSBU4dAfR9lFJrl3OBbSL0ajn0ajlSo9zUIAk2qo/xhLmE9qnId2/kCFB6qzwX4tBEjOkcj1/2ZmLfBed9x3dPQKvq528X6zlqGBkih1Ja/b7EdgEe2ACsf4VquUKigX5PUETAVxdigN7HshwSbhK58+e1qpz8g4xnKbKjiaY29cy/gaX3k+9SeEuKZG14g1I2t1WnbyxlwK65lP5Kv953sWOpqH0PlHqncReCICA7Px/iwlNou+8LyI0nURnZEcaO9yHLmoLYyFDvn+eIm/laNZz6jYrBvRE7lcXA3ws8r+/9liJkhadd587VUJIJVBahSBKJl1cccnvjda6wAgcuFLPYucJhscM4yC01uW3PBIDle7MwY1jrRhU7WqUM/725A7Ln78ShzNqLUlSIAvPu7enomGlyWgxoeJimJhKF5WbMWLLHZYZRmdmK++btxPJH+yFaXA5JA4MKNed+hyBMA+BlQXnBceCrEc7HdWItFU4PeurSLrzBgkQGdLjV/aBJgEYhqEKp1qMhRFTXZtArMfvunth/oRj/23kearkEd/RKQotIjWOESIvIEHRK0GNCew36GgSIbSaUibX4ek8FurSIQUyNP4usekL6uGrhKhJf+lyk8nwyT/xjFqVgQpOBa58DUoeSYDWXkoGiuQT4dabr7x9bRRdwsYzEzfYv6MfpHIgA1OmUs1QC5TlUGyNT07HXjxgWnqZjOriUIlitryfjw4g0QCxGYWkZ1GfWIXTFQ45fUWX+DdWBRSga+y2MqkEI9TYS21AXn0jsmFzv1eOIG/g+EkvpNFy0BkiEyiob/j5n9LjH70fyMLxdEKcGmYvCYsef2G3Vd2/OLqnBSk6Jh1ZWADY/OY3Gh6owb0pPZBpNOJFbhvhQFZIj1Ij1NTTemOgTgSkr6U66xuFVHQ6MeNXhX1JYbsG+Om2sdckrMyOn2ITYKAV1brmrqwAgaGIg8tKBGKYSCvG7E2B/fQp0m+widixWO+yC0GD9Cuz2aidfue+FoY1NUm/3dShyDY2LkKmpWFsTSeeh5RB6r0rOAyfXV6csa4u5Y3RKxOiUGJweBTFENE+qDga9Ej9MMEC27H5gw27aKFViVq/HILSb6rR/fqkZF4w27L9QiRidAm1jK2DQKSGV+PB3bSmnIvdNb9duM56lz9nQFyjlIpbS6/MUvdJWj51oNRRYDerUa30dRWGy99PA1rTrKBUGUMfh1g/pM1JTh5bUB7jls9oCfWMG8PV1FG2q4egK4MwmimhFpEJlyod6nRvxZbcibM10lE9eA2i8LMRuNdx13loNrUd6X6Om1FH06+wW9+s97qXoZ1iK527H8JaAOgJiuwhhajkKy93X6l1SlJkJKljs+IOqSko37JoH5B0G4ntUd2Uked+CGgAMOs9fMlI/Oo1GaZWI0irROTHUL4/vMyIRikJSIRr3HZSWAohsFlQpwmBWGRChokLF+q6u9Sk1WwFVFIR+MyA6N9H90/Sd5v0Xu8nofhxBDcfXOAo7C8rMOJFbhvl/nkW5yYqbu8ahV4sIZwFprQKKz1HhZuZuKsLtNrm6kydAX+z6eOCun2hi+e5vyEem9fXA0H9TGzwAhMQCExZSVOPYKiD/BAmkSUvowq+tlwasqoC00kj/1kRRBKmGkkzIFtzsPELEaoJ8yxuANpyGi4olyCquxMMLdzvd+WvkEsy99xp0TQz1XvCU5wFb3ne/tvENMo8MTaLREj9Pd79f98nV58FA50GwA4d/ou+b1tcBg5+m7jSlllI3u74GttZ7znPbqNvwnl+pzufwz5QebHsjCRGxmAqjDy2juqHh/4WkLIvEmjtKMiEzFwHwUuyERJMQ2fm183ZNFNUleZq87o7kPlQkfnar8/a4rmR8CdBrHPMRsHSqc4GgVEFF7doYRNkF3Ne/Bd5c7Vr/IxIBIzsEXyMJ4xvBe+W9UrFZgdMbgW8n1oZjT66nAX2Tl5PbbpASrVOgQ7wOBy643lWO6xaPqKvEabSo3ILygvPQHVkC5b45gKUM4pShKO/1JPLsqYgKDSGXVg++PiIRkBBGokiU0BPoeT857tZl0NNApA+Twy9W5y7QcRSWm/HG6qNYsqP2Av7HsTy0iNRg4dRetcWkmbuA+WNo1AFAn9G/PiXR0HJI4ER5aCKlCvs+Rhcmpb7WTBCongNVAPzv7to6jFO/U63K+Lm0romkiFXRaaprOforRa663U0jJ2pakvOP1QoduYZ+KgooIrvxTaDtjahUGfDe2mMuKY5yiw13f70dax4f6HivL0ppTm1xu7TacqCyiCIuVZWU4gpNouhGu99JbNQgEgE3vF1rfCkSAflHgd/+U7vPyfUkGO6tFsWl2RTVcUfBCaDoLL3ms1uB27+jLsR1L9DrT7+eLAc2vw+YjJBcxD9SfJF1J7QGoOtdVBt34AcS8sl9gRaDAX2SsyC96GPFkufS+R00skOwA93voehVjXeWVEGi+cHNwF+f0WtP6Al0vxvQk1+URCzC+O4J+Ot0ATYeq/VEk4hFeOe2zojlyM4Vj0i40tqF/EBJSQn0ej2Ki4uh013mPBljBvBpX/dh6NBkMmkL4rbQ80UVeOK7Pdh+mtIlYhFwY+c4/OuGtrU1DM2cktwMqH+cDGnWbucFmQrGO9dAHd8eADB/21m8/Ktr59bEHol4dnRbaJXVX9oVRTRL6tQGSkG0HER3m75MMzcV0+DEE+vcrz+0GTB0xO5zRRj7yVa3uzw8OBWPD28NWXkO8NUw98Z0ylDgH5ud3aSDifxjwNxR7mt3NJHAPSuBqNbUyvzF4FpTyBoi0yh6pI8Htn0M++6FyBnwMs4JUSgsr0JquBxR2RsQtulF4OFtyBDFYejbG6gzyw1f3NUdI9p7+fectRdYOJ5GlqjDSYxoYyl99Mcs4O6fgRj6bKG8ACjNpM+MQkvmkiHRtcIv7xjwcU/3z9NmNKWpSjKBj6/xfDxjPqJo0vmd5EhtPOu8rg4HbvsGiG4Hm6kUkk97uU8FhcTAfv/vEPsy0qTKRF1SReeoKFufRDVLvkR16mMpJ4GscFMAX4PVQhFDmdqtoC8oMyPTaMKfpwqgV8vQq0U4orUKqNhrJ2jx9vod0Hdw1qxZWLp0KY4cOQKVSoW+ffvi9ddfR3p6umMfQRDw0ksv4YsvvkBRURF69eqFjz/+GO3bt3fsU+NU/O2336KyshJDhw7FJ598goSESxj4d7mUZnnOtxvP0p1jEIudhDA1Pr+rBwrLLCgzW6FXyRAZokCI8sr5YzdWWGC22qFRSBCi8HCXWFVZbZQncTXtyzvsKnSqf0ezeRZMoz+GVh+Osd0SEK6R463VR5FZbEKYWoYHB7bEuO6JtUIHoFoadRgQ3fbSX5RST87FGdtdP1/d76GWdcApolOfxTsyMLlPCgyV+Z4deE1GikD4Q+wUnwfO/UX1IPoEoPNEep6GLk71qSz2XKRcnl/tqmyiiEZ9oQOQSeG5bUDHW2GP7YIDQ67F3d9noKjinGOXoa274NVxSxEjUcBSZfcodAAgu4E6NxdCYoCxX1DhcUEdg8XothSVUtf5HGoi6MfQ0f1jnXQzG6yGoyvIoFGqIodwT2MlampZcg+7Ch2AHuPoSiCxFyQyNew3vA3xTw877yMSwz7mI4h1cZ6Pxx0yJUWxQpN8+72G8MaGQSpvcHhtRIgCESEKdEzw4UaEuSII6BVsw4YNmDZtGnr27Amr1Ypnn30WI0aMwKFDh6DR0Af3jTfewDvvvIO5c+eidevWePnllzF8+HAcPXrUMdtpxowZ+Pnnn7F48WJERERg5syZGD16NHbt2gWJr6Zel4unFsca6nt1BCFhajnC1F4Uzpbm0IVXIiN/EF8uWn6gqNyCPRlGfLj+ODKNJnRK0GP60DS0jNLU3pnZrGRCt+V94ORvJCL6PkrdMNVGgerjP3t8DtmptbBbywGEI1wjx9huCeiXGgmzzQ6ZRIRorRISn2L6PhCRBjy4kWodTqylItR+02mkgjocgiDA3IBJY5XVDgHCxbtdGhpqeakUnQHmjnauj9nyHnDTx0D7m30YiXGRQLRgp9RQ3a4usZS217zufUuAtjciK6QD7pz7J0pMzq/3t2NGfBmZgH+2ioGm0oYYnQI5Je5ne3WM9+GiKBIDa55zFjoAiY31rwCTFnn/WJ4EDFD9OgX6PHefQunJ+mhjgYiW1P11+CfPj3V0BaUUtTEQt70RQlQbYPM7EBWcgGDoDPSfDnF4S9+H3zJMExNQsbNq1Sqn/58zZw6io6Oxa9cuDBw4EIIg4L333sOzzz6LsWPHAgDmzZuHmJgYLFq0CA8++CCKi4vx1Vdf4ZtvvsGwYcMAAAsWLEBiYiLWrVuH6667rmlflD6B6gPcOfCqw6k74ErHXEYRhpVPUueMSAyk3wCMeAUITwnIIZWZrZi79Qze/+24Y1v2IRPWHc7B3CnXYGDr6rvmguPA7GvJuA+g9t9l/wBa3wDc9CGgiYRI1cAFTKZxKUiNaSyzxdIcilqYiykKoImidusaxNXOuUP/TSJHInfyIxGJRBjbLcHJpbguIzsYEKqWAYjw3FovVboW+V4u5jJg7YvOQqeG5Y8CSX2BCC/Fjiqc0jpmNxYJck216Z6Y0hTtbqLoUVUlCR67jS78Ci0gkuBQbqWL0KlhwY4s3D0gDfGhKjw9si0eX7LHZZ9O8TokhPnQNVieX9vdV5+MP2m9+vuh0mJFXpkF2cWVkEsliNYqEKOrI6RTr6X6Gnck9iZDTamSTAZLs4FDP9auh7UAbl9Sa2ApayAiItfUdukpdRAldKfoVFUlRHKN2wL7CosV+aVmZJeYIJdKEFN97PW74ZgrG3OVDXllZmQXmyAWiRCjUyBap4TMlw7FJiSochPFxRR2Dg+ntsnTp08jOzsbI0aMcOyjUCgwaNAgbN26FQ8++CB27dqFqqoqp33i4uLQoUMHbN261a3YMZvNMJtr79RKSjyknS6FkGjyp1j9L9e1Ue8GdQrLa3IOkEV7DYIdOPIL1STcu5rqIZqYgjIzPlx/3GW7XQCeWbofSx/uixi5BVj7fK3QqcuxFUDRk4AmEvYOt0GyzX1hp63bPZBoL6OuwBP5x6move5df7ubgZGvu35mJDKPPi9tYjTomRyKHWeNTtt1KikeHtyCpkaHGKjY9Yd7XR9g+H8vf4p7fSoKgCPL3a8Jdmpxjmjp3WNZTRCG/xeiX2a4PtTw/0BUZaKhoaPeBs79CXx3d+2NhzIUGPkaENUekEhxrtBN/Uk1lVU2VNnsEIlEGJIehXdu64zXVh5BbqkZMokIYzrHY+aI1ojS+iB03Qm0uljKAFCEcvGOc3hn7THHnLdQtQwf394NPVPCIJdK6G+sw62uTsRSBXDDG7U+OloDcON7wLXPUopdGUrfUTWfKZka6P2Q506/Xg+5ftZqirndUFRuxrxtZ/HR+hOw2unYwzVyfHZnN3RNCgvaCyHjG6WVVVhxIAsvLD8IUxVFTEMUUrw1vhMGto4KynliQfPJEwQBTzzxBPr3748OHToAALKzaZhfTIzzl29MTIxjLTs7G3K5HGFhYR73qc+sWbOg1+sdP4mJjVifIFMBXe6gIsjE3vSl0vJaYOo6mqkUaC+Ty6WiEFj9rPu14gxqYw4Ax3JKYfeQ4bhgrKQJ2KZizwW+AM3KAXDGGobSXk+4LNsj2yKj1R0wmhu5pr8kE/jmFtf0xqFlwMa3qAbFS6JtOfhoQBVeGh6LlpEaGHRKTO4RjZ/viEdyyS7aSSIFWo+gOUQth9BnNKkPdQt2uq3xW88FW8PpW5PR+8eSKpAbMwC543+CLXkAoDXAltQfubf+iFzDYDp2kYieb8PrzhFWkxH46RFHzUaHOM/FjFFahcOfKFQtxy1d47H8kX74beYgrJ85GC/f0t73MQkNuVyLJQ7H493nivD6qqNOA22NFVW4Z852ZBqrPwvqCOD6WcDY2VTUrI2laekPbgKi6s2WUoVSYXaLgTRzrb54jukIdHJjj9BiEH1n+cDWkwV4b91xh9AByJPqrq+2I9PoWVwyVxbHc8vw1A/7HUIHoOj6PxbuxrkGxrAEkqCRX4888gj27duHzZs3u6yJ6uWDBUFw2VafhvZ55pln8MQTtRezkpKSxhU8qlAgdTAQ15kuVHKNz5Oig5aqCmpbBuiuMCKV0gQ1F+oTv5FfRxMjv8gdo0QsqnVc9VRXVT0p+ovthUjR3ICbbrsOkSf+B7mpEHktxuCktBUeWXgWvz6WiNDGPPiis+5TPADw93yqKQpL9u6xDi5FzG//weT4Hrih1x2wS5UIy1gM+bc/Us3P3cspPabQAonXALfNozEBMpVzyqwxkamp0NZTCie5v9cPlYsw3LZ4PyrMNkzu9hJS00U4ZRQw76ciKKTn8MO9nRBTUURCxx12K43bGPYSUiI1aBmpwal8V/+YmSNaI6ZO1EYkEl3c0VsQKHpSnk8CTx1JIqSm60cdCbS7xTmlVEPn2wFNNArLzXhn7TG3D19lE7BszwXMGNaaNoREkzhNvRawVwEKvcsEb68IiQKue4Xa8nfPJ4HY5Q4gqo3XA28BGjfzzlrX6CpAvlSrDmTjwUGpvh9fU2I1U3dceT6liTWRzSMa34iUmavcRtEB+hOYs+U0/ntzR8ilQRNLARAkYufRRx/F8uXLsXHjRqcOKoOBPmTZ2dlO08Fzc3Md0R6DwQCLxYKioiKn6E5ubi769q0zkbgOCoUCCkUTeMaowoDmNk5FJAG0cRTeDm8BZO2h+oCoNuR14u1FuZFpGRUChVTs1uyvjUGLMLUMUIRT6H/vt+4fpFqkJYar8Oba8/homwR9UidCKRNj3/pinC86hxidAuLGLsZ01wlTg9XsPu3mDkEAsvYBAEQXdiLqwk7n9aIz1HpbF6Xetxb4S0GwAQP/CXw/xTXC02qoTwXRBWaJY4Dn2xtdI7cFZjFiFCZ6rZ7IPQTYLIjRKTH/3mvw7LID2HAsDwCgU0rx+PDWGNHO4FuNidUCXNhJ09hLqmumlHrghrfI40WpIzE58jUy/Nv7LYluqYL8fwbMBBQhsJgqG7wzPpxVAqvdDmldR/ZLHV1RF00k/SQ20Kp+ESxWOzIKPR/7gUz3juNBQ0UhvS/rX679mwtvCYyfR/PnrgAX/KbAZLHjTAOf0eO5ZTBV2YJO7AT0aARBwCOPPIKlS5di/fr1aNGihdN6ixYtYDAYsHbtWsc2i8WCDRs2OIRM9+7dIZPJnPbJysrCgQMHPIod5jIIiSbvjZO/AUvupDTL2n8DiycBqUOAtjcH5LCitAq8Ma6TS1OIWi7BW+M70zwkmZocZt0V4PabAVS3z47qFAeRiOo21h/JxYr92ThfRCH4Bwa2bHxzxfAG7nYbqI9wQSSikQueiEoPjDtylZmcmicsoNSIVEmF/IOeovTJ+e1eP5TlIo1kZruIolQNtfnH93AMc00IV+PDSV3x+5ODsWrGAKycMQB39U5GuMbLMR41FJ8D5t9UK3QASpsuvZ+6rWqomU916xwa4Dnuq+oDp3oepUyCNIPnYu1uSWHOQieIECAgLcbzsbePC/J27jObqNay7s1F4SnydfIUeb0KUcslaGvwPES3Q7weKnnwfUYDGtmZNm0aFi1ahJ9++glardZRY6PX66FSqSASiTBjxgy8+uqrSEtLQ1paGl599VWo1Wrcfvvtjn3vu+8+zJw5ExEREQgPD8eTTz6Jjh07OrqzmEbm9B/AqT+ct9ltwMr/Ax7+KxBHBKVMgmHtYrBy+gB8s+0szhSUo1eLcNzUJd7Z4TYshWpVTqwFDi2n2odeD1CKpzqNE6tX4sNJXTFj8R6n2oPr2sdgTOe4xu8qCU0EIluTYV59ev2DCoq9JX0ksP6/7q39h74QmG5ARQhdNH56hNIjXW4ny4L931O6aWoDnjH1CNcoIJeI3XrfyCQiErUqNTDkWXIyr49UCXSe4NQqrVPJoFP54NpbH7sN+Huh+w5MgKaYT/iG0r2LJ9G5+Osz533ObgXuWobQkCg8OSIdt892/TtSySRBPbZAIRVjSr8UPPm/fS5rIQopeiQH8aDaslxnN+q6mEvosxR2V9MeU5CiVkgxbUgrrDyY7TIlXioWYXKfFMia2vLFCwLqoOyppmbOnDm45557ANSaCn7++edOpoI1RcwAYDKZ8M9//hOLFi1yMhX0tg6nUR2UmzslmcDnAyin7Y6hLwADXIt7mxKrjYzglFJJw8LEUk7To92YjJmqbMgtNWPPOSOKTRb0SA5HjE7p+x2/txSdBX58kAzvAOq46jGVzqUvrrJ2G5C9j9yWC0/RNqUeGPEy0HaMf+py7HZy+y04SfUO0W0o1Vk3vXLyD+Cbm1x/N7kfGep5+RpNVTZ8vuEk3l3nWjPw6LWt8PDgVPJUMpVSh9GKJ2tb7EOTKJIS1622jsZuozqb/BPk6BvdliJ/vqSGLOXA4jtobIU7tAbggT/ob+azBuqTHv4TiG6LksoqrDmUg//8fNDRGp9UHYFqH6fzbfhoE2K22rBqfzayik34+PcTNB8OQEqEGs+NbgeDToEO8aGBPUhPFJ8H3m3veb3bPcAYD3PNrkIqLFZsPVGAp37Yh4Lq4akGnRLv3NYZPWo6BpsIb6/fPC4CLHZ8ovg88F4HuEj6GrpPoVZXxncqCmkgo6WCRElItKNo2mdKc+ix7FbypqlbKNuY2O1A9l7qJqvr25PSnzqFapx1zWVkTbDqaRJjCh1wzf3046OvT2G5BesP5+CdtceQWWxCrF6JGcPSMKxtDEV2arBZaUxHRQEVpqsjnItN7TbqHlwwztltueUQ4OZPa2crXfQc2CiVu+0j9+vJ/YCJi4C8o8DXI9zvAwD3/w7EdwNAgj231IzCcgukEhHC1XJEXwHjWi4UVaC0KBcquQwl5RWQSSRQqxQ4X1SJ1imJiAzW+XqlOTT5vei0+/VR7wI93Vg1XMXY7QJySkworLBAJBIhXC1DjE550eahxobFjg+w2PGBikJg0W00eM8dExYBbUc17TExgcOYQdEKd+3j3e4Grn8dkNep0i/Pp5oIkYTEnC9DH2swFQMFp5BTWIQqqQYyawWiw7QQRbTyLXJlPAd80sfhb+NEr4eA4f9x1PZclLxjwKd93Bdb3/0L0GIARdo+7O7ewVoiBx7ZQWnWxqYmemUpp9ejifK+DsxXii9AWDAOojznmXH2Po9CPOCJWv+fYGTfd1RjVR+ZGnh4m3/eG+ay8fb6HZzxUCZ4UYdTm6o79R6WAsR1aeojYgJJ3hHPPjl7v6XUUF00kZRO0sdfmtCxVQEHfwJmD0bMD7cgYckIxPxwM0RfDqUJ2jVT3L0ha697oQMAu+d5nsHljtAkciVW1alLkamA0e/WzrdSR1Hk0x29HwY0fjCrrCig1/L5QBoK+mF34JcngOILjf9ctipg+2wXoQMA4m0fkrgMZlKHAoOedv5camNpQKsuAHMWmUYlKFrPmSDEXEoFlfIQV++OmA6w3fkTJKv+SaF5sQT2NmMgDHsRkgC4JzMBpKGLps0C2HwQH95Qmg2sfsb92prngLTh3g+XbOjiW1Xp27ELdorOjHqHLpZ2W7WnkwWOeV5KLXUD6uKqB5Ua6eah/xPUlXYpHjkNYbcBB5cBv9apobNbgX2Lqb5q0qLLmzJen/I84O95ntf3LArumyFNBI1h6TKJ0loyJUXBtLE8+6sZwGKHcabSSD4kG98k/5fYLvRlHJHqmIOTVSnGC1s0uKHz52gdCtggwU/HzUg8IuCWblXQKS+js4W5sohpoKhTE9nw3KVLoTzPczSmqoKiMd6Knbiunte0sb7VSxmrW89rUlQiUW1d210/kvEfQOKi3wya2WU1V88iM/jHWb00mzrB3HFhB82Fa0yxIwgkEj1hasSxPP5CrgbkKZyyaoaw2GFqsVTQROiV/1e7reAkcPBH4I4fgFbXospmxzfbzmLNoRysOVT/AXLRJzXy6hI7lUYqBK40kiuxOrLhsQDNjbAkwNCJio7rM+TZxh8qejFRIPbhKy28JXkP5R11XRv6b++P3WYDds5xrsWpWwr5x+skrGpSXBIp+Qz5G0sZpbE8kX2gYcHnK6pQMlA86MYhGgA6jW+852IYH+GaHaaW8lxgjZu5V4IdWP4IUJKF/DIzFvzp2fH3l31ZfjzAIKMki6Z2f9gd+HIo1UQsnhT8tQmNSUgMMOlbmjAuqv46UYUBI98E2t7U+K6zmijP9v0h0bTuLVoDifg2o2uPXR0OjH6PLtrepi5sZiDfjWCqwXgGsHo/36zRkCpI/InEsLa6HsV9n4apy5Rax+yaTrnGQq4hgSt3YywY36PhKCDD+BmO7DC1FJ72PDeq5AJQWQhBEYoys2d7/8KyRq7RCFbMZdRufLjeNO+Mv4AldwF3fE8zh+ruX1PIqw6/9JZyL7FY7SgoN0MQyNDtskzzLoY+AbjpE2DYS3RRV2iBkFjAH8Zi2lhyH55/k7OJn0QOjPva90hSaCJwy2eUHrNayABRG+tbWkmqpDELnnx2YjoAMs/OwpeFzUo3KYKdPlN1u500UbD1n4nziWOw+JAJfx43I1Ynw9RRU9EqeyV0UemNfzzhLclTaONbwLFVdD57TqUhpZc6Y6osjwSlWAJoYnhsA3NJsNhharnoF7wIIQop+qZGYvMJ96aCI9pfJUPzynOBA9+7X8vaQ+Z6IVGUzig4Sa7GR36mCEKH8TQqITzFL4eWaazE5xtO4rud52Gy2jCgVST+dUNbpEaFQOaveTWKEPrxNyIRkNCDDPj2fUc+ObGdgc6TAH3ipV0IFVr6uVTEYqrB2fqBa82KSAQM+RcVJzc2ZTk0XNVupfofuYbMHMOSHWNGjrR+CLd+vh2VVTST7G8AKw4Cz91wMyYpotHoDehiCU1YH/0uYHqBPu+a6Et7X0zFwPldwNrngJyD1fVOjwMdb23cWiPmqoDFDlNLaDLdpboLuYe1ANTh0KlkeOaGNrj54y2osjlbNLWL1SK9gZkpl4WplATG+erhlgk96Avvci5Sl4O51L1fSg1lOQA6kDPyl0PrtGfbgL2LaLbY1HXeF9N6SXaxCXd++ZfTJO+Nx/Px18db8POj/dE6JkDny1ssFXTuMv+mguOEnvQ+123plsipYH7w0xTdkcgD3y2jTyI/naX31zpXh0STGV2kHyIo5fnk+vz7K8CF3bRNrqHxIh3GATHtUFhuxtM/HnIInbq8uvIYhrePg0bpJ0dwufryussEATixHvj+ntptZbnUiZe1lwaq1v1MBCuCQEJUIueIVIBhscPUEhIDjPkAWPqA83aJnEL91WHotOgQLJvWD7NWHMGWk/nQyKW4o1cS7umXghh/uLxWFAI7vgT+eLW28FMkAq59Huhxb2C+9BRaumv1JHhCYigluGO2ex+ashzg0E9A72mN+iW4J8PoJHRqMFvteHvNMbx9WyeEKIK0gNxcBhz+merD6przdb8HGPKcc1oQoM+At6Z//kYiJQE+ZRUVBQt2QB1G6Tx/XOQqCoClU50Hj1rKgU1vVbtvG2CskGP/BfeTxu0CsO98MZIj/GQueLmUZgGrnnK/tm8xjVEJZrFjt1Ht3sFlwNnNQERroPvddHPT2BYDjFew2GFqkSmB9FHAg5uAPz8BCk4ACdeQoAirjUDIpRK0j9Pj4zu6odxshVgERITI/Tf8LfeQawutINDgvqS+QHIf/zxvRRFQWUCiRal39tvQRAMdbgX2f+f6e7FdSOxUFlHdgicO/0wuw8rGce0WBAG/7Mv0uL7peB5KTdbgFTvGc8Cyh1y375pLIxc63dbkh+Qz2hj68Tc5B52FTl22fQykj4SAhlPKNrvQ4HpAMRVXR0c9kHOQOumClZwDwJwbam0STqwDtn8GjJ8HtL4ueET6VQSLHcYZRQgQ2wm48X2gykR3IR6cbvUqGfT+LHwF6G5/87ue17e8R8fb2Pb3+SeAnx8Dzm6h/9fFASPfAFoMpvoLRQiNE7BZgMM/1UackvoAY7+gKERlUW3nizuUob61Sl8EkUjkPBuqHlqlFOJAp3s8IQjk9OuJze8AqUN867ZqzrhxKXZQmgXYbQhVydDGoMWR7FKXXUQioHNiqP+O73KRXCS91tDfVaApy6OhvvX9oAQ7bZ/2V6Onr5mLw0lExj1SBaDSX5qlf2NiNdOXtydKs3wbEeANxgxg7shaoQPQXfSSO2noZQ26WODGD4BHdgJTfwOmbQcmLqz9IlOFAX0f9fw8faa5hrQri8i91eKaivKG23p49m+Z0rcFooJ1EKOtCig643m9NNtzp+DVSFRbz2uqMECmRkSIArPGdoTczZT0R4e0QmSIn+p1GgN1OJDsYUK8XENF0MFKZQGQ60GMVlUABaea9ngYACx2mGBHEUIpDE8k92/8IuVzWz3PRVrzvLNRm0oPRLSieo2odJqs7XR8/ciDpj7dpzj7jpQXAMfW0JDVL4cCPz0C5Byi6JoPJISp8OSI1i7beyaH4ZZu8RCLgzSyI5UDrYZ5Xk/oCciDvLjaW2xWoDiD0sTF58mU0Ffiu9HkeHf0nkZdWQDax+uwcvoATOiRgNQoDfqkRmDB1F6Y0r8FtMFs/qkKo/rB+lYCEhkwYSHVQgUr9ou8n409QoXxCp56Dp56HvQUnAA+7efaJSZTAw9tps4cXzCXka9KWQ6NwKg//2bZw8Cehe5/VywBpu+nQZbeUpZHozcO/khpqw5jqU26xhPFVAJseZ+KS52eS0pDCJP7+vTySiqrkF1swi/7s1BqqsL17Q1oGaVBlNYPxeONifEc8MUgKkivi0gMPLCB0pVXOmW5VIO07SOqS1GFUTt1l0m+tVPb7dSVtHgiRb2A6tzU7cCwF6hmrA6mKhvKTFYoZOLgFjn1KT5P7ednNtFNResRgC4+uGteSjKB2de6j0iLxMCju4HwFk1/XM0Ub6/fLHbAYifosVmp4O/nx+gLHiCb+9HvkWGbxIe6l/I8YOtHdLGp6fjRxQETFwGGztQ5s+ld4LcX3f++PpFaxi/VIM0dBSeBj7o7jxioIaIVMGWFy8Wr2ZJ3DPj1ceDMZvr/yDRq307o4ZjNdsViLiUjyp1fu671nU6t9L506ggCXVBLs0gwhyaScL+UepZKIxmHHl1J6cL0kfRZv5pGnzQWggAcXw18O9H1b3rQU0Dfx5rGk+oqgcWOD7DYuUIor55BJQIV92oiffv9miLYn6e7rim0wENbyJCt4CTwcU/34ehR71B3WmMW+h5YCnw/xfP6tO3B3XnS2FQW0Y/dCihCAW0zMZArPEWjRdzZFUhkVPsViAGUFYXUBLD1A+ftHW4Frp/lFHGy2wXklppRZbNDIRUj2h9WE80BSxnNXFv/CtX56RNJ6CRcwwKykfH2+s3dWMyVgybSd4FTl9JsYMPr7tfMpcDZrSR2dPHAxMXA/yY7O+J2vQtoe2PjG9hdrAhcdJWV1qnCgttD5VIpy/Psy2SrItERCLGTd8RV6ADkEN52NND+FgBAfpkZv+zLwsfrTyCvzIyEMBX+OSIdA1tHIUwTxMXOgUAeAsR3B8bPJeEjVTqP8mCaHBY7zNWDvcqzNwlA1vuYRH5DLQdTRCXvKKUIDB2pndwfF2FDR6rPqWukV0NcV/6SbC5czB4hEGm6KhOw7RPP61s+AFoMQplYi4/Wn8DcrWccS+eLKjF9yR48N6otJvdJhlzqJ5+tKxmlrtF8tJjL4yq7ZWSuaiRyGonhifhutf+WyqmFPG040HEcENXaf9EGTRTVpdRHoQXGfOjS4VVSWYUsYyVySkywB7MxHOOMJooGZbojpsPlRS0vFXsVUFnoeb2yCLBVoaDcgvnbzrjd5Z21x5Bbyh1GTHDDYoe5etAagGufc7+mCgMSezXt8dQg1wDtbybn6i53ACkDgMH/ov+PbufYzVxlw8HMYkxbtBuD3/oDYz7ajNmbTiGnxLf2dCZAaGOAid+6dl3p4shZNxCGifIQIP0Gz+upQwGVHllGEzzp6gqLDcYK9kBightOYzFXF6lDgWEvARteq63HiUyji43egyGfIPh/0KRSV+tcbTVTSqPeFPrD2SW49dNtsFZfdXJKzJi18gg2Hc/HexO7IDJYDQOZWqLbAPf/TnUyeUdJzEamA/q4wByPSAS0G0NO5OV5zmtyDdDnYUCqhEresKCWS/m+mQluWOwwVxeaCJoM3X4sUJFPfh2aKNe77Yoi8sbZ/Q05ona4ldJcOj9flCQytwXLheUWvLj8oEPo1GXziXxkFFaw2LlS0CfQT0Mmik1JaBJw3xqaNXd4ORVRpw4FRrzsKJiO1ikQpVUgz026qo1Bi3AuUGaCHG49B7eeM/WoNAJbP3Q1+YtqA9z5g+cIkB/JKKzAgDd+97j++LA0TB/m6pzMMF5jKa82dBTIq6eOX48gCNh3vhi3z/4T5ZZaS4YIjRyLH+iNtJhm4m7NXHFw6znDXCrFGa5CB6DUw19fAEOfb/KZYWIRIJOIUGVzf2+i8/dAVqb5I9d47BgTiUToEK/HqhkDseNMIY5ml6JzYii6JIYiLvQKN3tkrgpY7DBMffYu8by2ex7Q+yH/p7PqER4ix01d4vH9rvNu1we15mngjH+RiEVIDFcjMdwHl2eGCRK4qoxh6mMu8bxWVe5+rIOfUcmkmDEsDUluLjQv39yBnWwZhmEagCM7DFOf9rdQBMcdaSMCZhKWEKbGkgd7Y2+GEasO5iBWp8AtXRMQG6pEiIL/lBmGYTzB35AMU5/otkB8D+DCTuftMhVw7b/J7C9AxOpViNWrcH2H2IAdgwvWKqA0Ezi/Eyg+R/N/IlIbd1gqwzRDiiurkFNiwpYT+QCA/q0iEa1TQK/i7rbGhsUOw9RHawAmLAD2fgts/4Jm27QaBgx+BghPDfTRBRfWKuD8X8CCcYC1jhdLVFvgjv/RJG6GYVwoLDfj499P4qvNp522PzCgJR4anMrt/I0Mt56DW88ZD9htZLQm2KkN92Kzja5GjOeAj3sBVRWuax3G0bgLPm8M48Km43m466vtbtcWTe2Fvq0CMD7kCsTb6zcXKDOMJ8QSivLo4viC7YnsA+6FDgAcWubqysswDMpMVny24aTH9c83nkS52c1gYOaSYbHDMMylU5brec1uA2yWpjsWhrlCsNhsKCjz/LeRX2aBxWZvwiNq/rDYYRjm0onr4nlNF0eDJhmGcUKrlGJgmuc01cC0KO6wbGRY7DBMkJBTbMLeDCPWH8nFsZxSFJVfAVERXTyQ0t/92vD/Atog6hpjmCBBJpHg9t7J0MglLmshCikmXZMImYQvz40JFyiDC5SZwHMspxRT5uzABWOlY9vg1lF4bVwnGPRBbhhYkkVTs3fPo0nyocnAiP8CLQYBqtBAHx3DBCU2u4ATuWV4cfkBbDtVCIBaz/99Yzu0igqBWCwK8BFeGXh7/WaxAxY7TGDJMlbi5k+2IKfEdaL0xJ6JeGFMO6hkQR7StpqpfsdWBcjV7LHDMF5SXGlBcUUVIBJBr5JBz3PufIK7sRjmCuFcYYVboQMAP+w+j7zSKyCdJVWQp05ESxY6DOMDepUcSREaJIWrWej4ERY7DBNgMuukrupTZRNgqrI14dEwDMM0P1jsMEyAaRnluWMpRCGF2k0RI8MwDOM9LHYYJsDEhirRLtb9vK0HBrZEjE7RxEfEMAzTvGCxwzABJlqrxOzJPTGodZRjm1ImxqPXtsLtvZIgk3Bkp9lhtwGWCsDOxnEM0xQEeYsHw1wdxIep8OGkrigoM6OyygatUoYYnRJyKd+PNCuqTDQZfvd8IOcgENsF6HIHEJYESHjwI8P4CxY7DBMk6FQy6Lgbo/litwHntgELbwXs1XOPTq4Htn0E3LUMSO4LiNhbhWH8Ad82MgzDNAWlWcAP99YKnRpsFmDpVFpnGMYvsNhhGIZpCspygYpC92slmUBFftMeD8NcRbDYYRiGaQrsF/FLutg6wzCXDIsdhmGYpiAkGpCp3K8p9YDa8xRshmEuDxY7DMMwTYFYAgz8P/drQ/4FiLlfhGH8BYsdhmGYpqAkCyjPA8Z9CST1oRliKQOA8fOA3CNAWXagj5Bhmi18K8EwDNMUiCXAn5+QyOk0EWh/M1B8HljxJImgHvcG+ggZptnCYodhGKYpCIkGVGFAaTaw5T3nNW0soOGaHYbxF5zGYhiGaQpCDMC4r11rcyRySm1pYwNzXAxzFcCRHYZhmKZAIiWX5H9sA3bNBXKrx0V0vQsITWL3ZIbxIyx2GIZhmgqZEohqDQz/L2AzAVIl1fIwDONXWOwwDMM0NRIJINEE+igY5qqBa3YYhmEYhmnWsNhhGIZhGKZZw2KHYRiGYZhmDYsdhmEYhmGaNSx2GIZhGIZp1rDYYRiGYRimWcNih2EYhmGYZg2LHYZhGIZhmjUsdhiGYRiGadaw2GEYhmEYplnD4yIACIIAACgpKQnwkTAMwzAM4y011+2a67gnWOwAKC0tBQAkJiYG+EgYhmEYhvGV0tJS6PV6j+si4WJy6CrAbrcjMzMTWq0WIpGoyZ+/pKQEiYmJyMjIgE6na/Lnv1rh8x4Y+LwHBj7vgYHPu38RBAGlpaWIi4uDWOy5MocjOwDEYjESEhICfRjQ6XT8xxAA+LwHBj7vgYHPe2Dg8+4/Goro1MAFygzDMAzDNGtY7DAMwzAM06xhsRMEKBQKvPDCC1AoFIE+lKsKPu+Bgc97YODzHhj4vAcHXKDMMAzDMEyzhiM7DMMwDMM0a1jsMAzDMAzTrGGxwzAMwzBMs4bFDsMwDMMwzRoWO03Ep59+ik6dOjmMpfr06YOVK1c61gVBwIsvvoi4uDioVCoMHjwYBw8eDOARN09mzZoFkUiEGTNmOLbxuW98XnzxRYhEIqcfg8HgWOdz7j8uXLiAO++8ExEREVCr1ejSpQt27drlWOdz3/ikpKS4fN5FIhGmTZsGgM95MMBip4lISEjAa6+9hp07d2Lnzp249tprcdNNNzk+8G+88QbeeecdfPTRR9ixYwcMBgOGDx/umNvFXD47duzAF198gU6dOjlt53PvH9q3b4+srCzHz/79+x1rfM79Q1FREfr16weZTIaVK1fi0KFDePvttxEaGurYh89947Njxw6nz/ratWsBAOPHjwfA5zwoEJiAERYWJnz55ZeC3W4XDAaD8NprrznWTCaToNfrhc8++yyAR9h8KC0tFdLS0oS1a9cKgwYNEqZPny4IgsDn3k+88MILQufOnd2u8Tn3H0899ZTQv39/j+t87puG6dOnC6mpqYLdbudzHiRwZCcA2Gw2LF68GOXl5ejTpw9Onz6N7OxsjBgxwrGPQqHAoEGDsHXr1gAeafNh2rRpGDVqFIYNG+a0nc+9/zh+/Dji4uLQokULTJw4EadOnQLA59yfLF++HD169MD48eMRHR2Nrl27Yvbs2Y51Pvf+x2KxYMGCBbj33nshEon4nAcJLHaakP379yMkJAQKhQIPPfQQfvzxR7Rr1w7Z2dkAgJiYGKf9Y2JiHGvMpbN48WLs3r0bs2bNclnjc+8fevXqhfnz52P16tWYPXs2srOz0bdvXxQUFPA59yOnTp3Cp59+irS0NKxevRoPPfQQHnvsMcyfPx8Af96bgmXLlsFoNOKee+4BwOc8WOCp501Ieno69uzZA6PRiB9++AF33303NmzY4FgXiURO+wuC4LKN8Y2MjAxMnz4da9asgVKp9Lgfn/vGZeTIkY5/d+zYEX369EFqairmzZuH3r17A+Bz7g/sdjt69OiBV199FQDQtWtXHDx4EJ9++ikmT57s2I/Pvf/46quvMHLkSMTFxTlt53MeWDiy04TI5XK0atUKPXr0wKxZs9C5c2e8//77ji6V+io/NzfX5W6A8Y1du3YhNzcX3bt3h1QqhVQqxYYNG/DBBx9AKpU6zi+fe/+i0WjQsWNHHD9+nD/vfiQ2Nhbt2rVz2ta2bVucO3cOAPjc+5mzZ89i3bp1mDp1qmMbn/PggMVOABEEAWazGS1atIDBYHBU8AOU992wYQP69u0bwCO88hk6dCj279+PPXv2OH569OiBO+64A3v27EHLli353DcBZrMZhw8fRmxsLH/e/Ui/fv1w9OhRp23Hjh1DcnIyAPC59zNz5sxBdHQ0Ro0a5djG5zxICGR19NXEM888I2zcuFE4ffq0sG/fPuFf//qXIBaLhTVr1giCIAivvfaaoNfrhaVLlwr79+8XJk2aJMTGxgolJSUBPvLmR91uLEHgc+8PZs6cKfzxxx/CqVOnhD///FMYPXq0oNVqhTNnzgiCwOfcX2zfvl2QSqXCK6+8Ihw/flxYuHChoFarhQULFjj24XPvH2w2m5CUlCQ89dRTLmt8zgMPi50m4t577xWSk5MFuVwuREVFCUOHDnUIHUGgltAXXnhBMBgMgkKhEAYOHCjs378/gEfcfKkvdvjcNz4TJkwQYmNjBZlMJsTFxQljx44VDh486Fjnc+4/fv75Z6FDhw6CQqEQ2rRpI3zxxRdO63zu/cPq1asFAMLRo0dd1vicBx6RIAhCoKNLDMMwDMMw/oJrdhiGYRiGadaw2GEYhmEYplnDYodhGIZhmGYNix2GYRiGYZo1LHYYhmEYhmnWsNhhGIZhGKZZw2KHYRiGYZhmDYsdhmEYhmGaNSx2GIa5Ytm6dSskEgmuv/76QB8KwzBBDDsoMwxzxTJ16lSEhITgyy+/xKFDh5CUlBToQ2IYJgjhyA7DMFck5eXl+O677/CPf/wDo0ePxty5c53Wly9fjrS0NKhUKgwZMgTz5s2DSCSC0Wh07LN161YMHDgQKpUKiYmJeOyxx1BeXt60L4RhGL/DYodhmCuSJUuWID09Henp6bjzzjsxZ84c1ASqz5w5g1tvvRU333wz9uzZgwcffBDPPvus0+/v378f1113HcaOHYt9+/ZhyZIl2Lx5Mx555JFAvByGYfwIp7EYhrki6devH2677TZMnz4dVqsVsbGx+PbbbzFs2DA8/fTT+PXXX7F//37H/s899xxeeeUVFBUVITQ0FJMnT4ZKpcLnn3/u2Gfz5s0YNGgQysvLoVQqA/GyGIbxAxzZYRjmiuPo0aPYvn07Jk6cCACQSqWYMGECvv76a8d6z549nX7nmmuucfr/Xbt2Ye7cuQgJCXH8XHfddbDb7Th9+nTTvBCGYZoEaaAPgGEYxle++uorWK1WxMfHO7YJggCZTIaioiIIggCRSOT0O/WD2Ha7HQ8++CAee+wxl8fnQmeGaV6w2GEY5orCarVi/vz5ePvttzFixAintXHjxmHhwoVo06YNVqxY4bS2c+dOp//v1q0bDh48iFatWvn9mBmGCSxcs8MwzBXFsmXLMGHCBOTm5kKv1zutPfvss1ixYgWWLl2K9PR0PP7447jvvvuwZ88ezJw5E+fPn4fRaIRer8e+ffvQu3dvTJkyBffffz80Gg0OHz6MtWvX4sMPPwzQq2MYxh9wzQ7DMFcUX331FYYNG+YidACK7OzZswdFRUX4/vvvsXTpUnTq1AmffvqpoxtLoVAAADp16oQNGzbg+PHjGDBgALp27Yrnn38esbGxTfp6GIbxPxzZYRjmquCVV17BZ599hoyMjEAfCsMwTQzX7DAM0yz55JNP0LNnT0RERGDLli1488032UOHYa5SWOwwDNMsOX78OF5++WUUFhYiKSkJM2fOxDPPPBPow2IYJgBwGothGIZhmGYNFygzDMMwDNOsYbHDMAzDMEyzhsUOwzAMwzDNGhY7DMMwDMM0a1jsMAzDMAzTrGGxwzAMwzBMs4bFDsMwDMMwzRoWOwzDMAzDNGtY7DAMwzAM06z5f7xuK3occJDvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "import numpy as np\n", + "\n", + "model = LinearRegression()\n", + "x = np.array(X['age'])\n", + "x = x[:, np.newaxis]\n", + "reg = model.fit(x, X['chol'])\n", + "pred = reg.predict(x)\n", + "\n", + "sick = np.array(y)[:,0] != 0\n", + "\n", + "sns.scatterplot(X, x='age', y='chol', hue='sex')\n", + "plt.plot(x, pred, color='black')\n", + "plt.xlabel('Age')\n", + "plt.ylabel('Chol')\n", + "plt.title('Chol / Age split by sex')" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "id": "b3d627cf-3ec9-4cd9-bee6-5baeb9d1a22d", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Blood pressure / Age split by sex')" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQDklEQVR4nOzdd3xT1fvA8U920r1bOmjLHmXvIXurgKCgOAEXuFBw/9wDJ24EUUFRcX5BRfbeG0Q2lAIFuvdKmnF/f1waCElKC92c9+uVl+bem3tPBs2Tc55zHoUkSRKCIAiCIAh1lLK6GyAIgiAIglCZRLAjCIIgCEKdJoIdQRAEQRDqNBHsCIIgCIJQp4lgRxAEQRCEOk0EO4IgCIIg1Gki2BEEQRAEoU4TwY4gCIIgCHWaCHYEQRAEQajTRLAj1Anz5s1DoVA43IKDg+nTpw+LFy92Ol6hUPDqq69WeTtPnTqFQqFg3rx5VX7t68mnn35KYGAgFovlisemp6ej0+lQKBTs2rWrClpXNdatW4dCoWDdunX2ba+++ioKhcLhuJkzZ5br86hQKHj00UcrqJWCUDVEsCPUKXPnzmXr1q1s2bKFr776CpVKxc0338zff/9d3U0TqtAff/zBiBEjUKvVVzx2/vz5FBcXA/DNN99UdtOq1f3338/WrVsdtpU32BGE2kgEO0KdEhcXR9euXenWrRu33HILixcvRqfTsWDBgupuWpUqLCys7iaUiyRJFBUVVci5UlJS2LRpE6NHjy7T8d9++y0hISF06tSJBQsWVFg7aqLIyEi6du1a3c0QhCongh2hTtPr9Wi1WjQazRWPPXDgACNGjMDf3x+9Xk/btm357rvvnI47c+YMd911FyEhIeh0Opo3b86HH36IzWZzOO78+fOMGTMGb29vfH19GTt2LMnJyWVqd8mw3MqVKxk/fjwBAQF4enpy8803c/LkSYdj+/TpQ1xcHBs2bKB79+54eHgwYcIEAHJzc5k2bRqxsbFotVoiIiKYMmUKBQUFDuf47bff6NKlC76+vnh4eNCgQQP7OQBsNhtvvvkmTZs2xWAw4OfnR+vWrfnkk0/sx9x3333ExMQ4PRdXQyclQyGzZs2iefPm6HQ6+2t9/Phxxo0b5/D6fvHFF2V63QAWLlyIl5cXAwYMuOKx27dv58CBA9x999088MAD5OTk8McffzgdJ0kSb7/9NtHR0ej1ejp27MjKlSvp06cPffr0cTi2rK+5K3v37uWmm26yP/fw8HBuvPFGzp49az+m5LWbPXs2TZo0QafT0aJFC37++ecrnv/y9yImJoaDBw+yfv16+/Cvq/fQldKuf+rUKdRqNdOnT3d63IYNG1AoFPz2229uz12Wzxtc+bNiNBpp164djRo1Iicnx749OTmZsLAw+vTpg9VqLdPzFWo5SRDqgLlz50qAtG3bNslsNkvFxcVSYmKi9Pjjj0tKpVJatmyZw/GA9Morr9jvHzlyRPL29pYaNmwoff/999I///wj3XHHHRIgvfvuu/bjUlNTpYiICCk4OFiaNWuWtGzZMunRRx+VAGnSpEn24woLC6XmzZtLvr6+0meffSYtX75cevzxx6X69etLgDR37twyPZ+oqChpwoQJ0tKlS6WvvvpKCgkJkaKioqSsrCz7sb1795YCAgKkqKgo6bPPPpPWrl0rrV+/XiooKJDatm0rBQUFSTNmzJBWrVolffLJJ5Kvr6/Ur18/yWazSZIkSVu2bJEUCoV0++23S0uWLJHWrFkjzZ07V7r77rvt15g+fbqkUqmkV155RVq9erW0bNky6eOPP5ZeffVV+zH33nuvFB0d7fRcXnnlFenyPzWAFBERIbVu3Vr66aefpDVr1kgHDhyQDh48KPn6+kqtWrWSvv/+e2nFihXS1KlTJaVS6XCt0gwYMEAaN25cmY594IEHJEA6ePCglJubK3l4eEh9+vRxOu7555+XAOnBBx+Uli1bJs2ZM0eqX7++VK9ePal3797248r6mruSn58vBQYGSh07dpR+/fVXaf369dIvv/wiPfzww9KhQ4ccXruoqCipRYsW0oIFC6S//vpLGjJkiARIv/32m/24tWvXSoC0du1a+7bL34s9e/ZIDRo0kNq1aydt3bpV2rp1q7Rnz55SX7OyXv+WW26R6tevL1ksFofH33bbbVJ4eLhkNpvdXqMsn7eyflaOHTsmeXt7S6NGjZIkSZKsVqvUr18/KSQkRDp//nypz1WoO0SwI9QJJcHB5TedTifNnDnT6fjLg53bb79d0ul00pkzZxyOGzp0qOTh4SFlZ2dLkiRJzz33nARI27dvdzhu0qRJkkKhkI4ePSpJkiR9+eWXEiD9+eefDseVfLmWNdi55ZZbHLZv3rxZAqQ333zTvq13794SIK1evdrh2OnTp0tKpVLauXOnw/bff/9dAqQlS5ZIkiRJH3zwgQTYn6MrN910k9S2bdtS21zeYMfX11fKzMx02D548GApMjJSysnJcdj+6KOPSnq93un4y6Wnp0tqtVr6448/Sj1OkuTAxMfHR+ratavDc1AoFNKJEyfs2zIzMyWdTieNHTvW4fFbt26VAIdgp6yvuSu7du2SAGnRokWlthuQDAaDlJycbN9msVikZs2aSY0aNbJvK0uwI0mS1LJlS4fncCXlvf7ChQvt286dOyep1WrptddeK/UaZfm8leez8ssvv0iA9PHHH0svv/yypFQqpRUrVpTl6Qp1hBjGEuqU77//np07d7Jz506WLl3KvffeyyOPPMLnn39e6uPWrFlD//79iYqKcth+3333UVhYaE/qXLNmDS1atKBz585Ox0mSxJo1awBYu3Yt3t7eDB8+3OG4cePGlev53HnnnQ73u3fvTnR0NGvXrnXY7u/vT79+/Ry2LV68mLi4ONq2bYvFYrHfBg8e7DBLp1OnTgCMGTOGX3/9lXPnzjm1o3Pnzvz7779MnjyZ5cuXk5ubW67n4Uq/fv3w9/e33zcajaxevZpbbrkFDw8PhzYPGzYMo9HItm3bSj3nn3/+iVarZciQIVe8/q+//kpubq7DcN2ECROQJIm5c+fat23btg2TycSYMWMcHt+1a1enIZ+yvuauNGrUCH9/f5599llmzZrFoUOH3B7bv39/QkND7fdVKhVjx47lxIkTDkNelaUs1+/Tpw9t2rRxGFaaNWsWCoWCBx98sNTzX+nzVt7PypgxY5g0aRJPP/00b775Ji+88AIDBw6siJdCqCVEsCPUKc2bN6djx4507NiRIUOGMHv2bAYNGsQzzzxDdna228dlZGRQr149p+3h4eH2/eU97tIvgxJhYWHlej6ujg8LC7Nfp4SrNqWkpLB//340Go3DzdvbG0mSSE9PB6BXr14sWrQIi8XCPffcQ2RkJHFxcQ5J3c8//zwffPAB27ZtY+jQoQQGBtK/f/9rmqp9eZszMjKwWCx89tlnTm0eNmwYgL3N7vz+++8MHToUDw+PK17/m2++Qa/XM2TIELKzs8nOzqZ169bExMQwb948ey5HyWvt6v28fFtZX3NXfH19Wb9+PW3btuWFF16gZcuWhIeH88orr2A2mx2Odfe5uLS9lams13/88cdZvXo1R48exWw2M2fOHG699dYr/ju40uftaj4rEyZMwGw2o1arefzxx6/p+Qu1z5XnZQpCLde6dWuWL1/OsWPHnHpkSgQGBpKUlOS0/fz58wAEBQWV+7gdO3Y4HVfWBOXSjk9OTqZRo0YO2y5PAC5pi8Fg4Ntvv3V57pK2AowYMYIRI0ZgMpnYtm0b06dPZ9y4ccTExNCtWzfUajVPPfUUTz31FNnZ2axatYoXXniBwYMHk5iYiIeHB3q9HpPJ5HQdd1/wl7fZ398flUrF3XffzSOPPOLyMbGxsS63A+Tk5LB69eoyTaM+duwYmzZtAqB+/fouj1m+fDnDhg0jMDAQkAOZyyUnJzv07pTnNXelVatW/Pzzz0iSxP79+5k3bx6vv/46BoOB5557zuG6rtoC2Ntbmcp6/XHjxvHss8/yxRdf0LVrV5KTk92+t5e60uetvJ+VgoIC7r77bpo0aUJKSgr3338/f/75Z3mftlCbVesgmiBUkJIcl8tzJSRJkgYOHCgB0smTJ+3buCxn54477pD0er107tw5h8feeOONDjk7JYmqu3fvdjjukUceqdKcnTfeeMO+rXfv3lLLli2dzvHmm29KHh4eDs+7rPbt2ycB0hdffOH2mI8//tie3CtJF/NVLs3lMJlMUqNGjVzm7DzyyCNO5xwwYIDUpk0byWQylbvN8+fPl3Q6nZSbm3vFY5955hkJkObMmSOtXbvW4bZkyRJJo9FIo0ePliRJkjIyMiSdTieNGTPG4Ryucnau5TV3x8/PT7rtttvs9yklZ6Zhw4b2bWXN2Wnfvr3UuXPnMrenrNcv8cILL0g+Pj5Shw4drpiHU5rLP2/l+azcddddkoeHh3TgwAF7/tSMGTOuui1C7SOCHaFOKAkO5s6da59VsnjxYmnChAkug4bLg52S2VhNmjSRfvjhB2nJkiXSnXfeKQHSe++9Zz+uZDZWWFiY9NVXX9lnWSkUCmny5Mn24woKCqQmTZpIvr6+0ueffy4tX75ceuKJJ65qNtbEiRPtM4BCQkKkiIgIKSMjw36su2AnPz9fateunRQZGSl9+OGH0sqVK6Xly5dLc+bMkW677TZp27ZtkiRJ0ksvvSSNHz9e+uGHH6R169ZJixYtkvr27StpNBrpwIEDkiTJCaPPPfec9Pvvv0vr16+Xvv/+eykmJkaKjo6WiouLJUmSpJMnT0oajUbq06eP9M8//0h//PGH1Lt3byk2NrbMwc7Bgwclf39/qXPnztLcuXOltWvXSn/99Zc0Y8YMqW/fvqW+ZiNGjJBuuummUo+RJEkym81SWFiY1Lx5c7fHjBo1StJoNFJqaqokSReD3IceekhatmyZ9PXXX0tRUVFSvXr1HNpV1tfclb///lsaOnSoNHv2bGnlypXSihUrpIcfflgCpK+++sp+XMnnwtVsqJ9//tl+XFmDnXvvvVfS6XTSzz//LO3YsUPav39/qa9fWa9f4uzZs5JarZYA6euvvy713CXK8nkr62dlzpw5Tv/mHn30UUmj0ThNNBDqLhHsCHWCq9lYvr6+Utu2baUZM2ZIRqPR4fjLgx1JkqT//vtPuvnmmyVfX19Jq9VKbdq0cRmUnD59Who3bpwUGBgoaTQaqWnTptL7778vWa1Wh+POnj0rjR49WvLy8pK8vb2l0aNHS1u2bClXsLNixQrp7rvvlvz8/CSDwSANGzZMOn78uMOx7oIdSZK/fP/v//5Patq0qaTVau1TdZ988kn7L/PFixdLQ4cOlSIiIiStViuFhIRIw4YNkzZu3Gg/z4cffih1795dCgoKkrRarVS/fn1p4sSJ0qlTpxyut2TJEqlt27aSwWCQGjRoIH3++eduZ2O5CnYkSZISEhKkCRMmSBEREZJGo5GCg4Ol7t27O8xAc/U89Xr9FV9XSZKkRYsW2WfmuLNs2TIJkD788ENJkiTJZrNJb775phQZGSlptVqpdevW0uLFi6U2bdo4BdJlec1dOXLkiHTHHXdIDRs2lAwGg+Tr6yt17txZmjdvnsNxJa/dzJkzpYYNG0oajUZq1qyZ9OOPPzocV9Zg59SpU9KgQYMkb29vCXA5o+5qrn+pPn36SAEBAVJhYWGp5y5R1s/blT4r+/fvlwwGg3Tvvfc6PM5oNEodOnSQYmJiHJZxEOouhSRJUkUOiwmCcO3mzZvH+PHj2blzJx07dqzu5tR4v/76K3feeScpKSkEBARUyTUTEhJo1qwZr7zyCi+88EKVXBPkXKeyzDCsKVJTU4mOjuaxxx7jvffeq+7mCNcpkaAsCEKtN2bMGKep4RXp33//ZcGCBXTv3h0fHx+OHj3Ke++9h4+PDxMnTqy069ZmZ8+e5eTJk7z//vsolUqeeOKJ6m6ScB0TwY4gCMIVeHp6smvXLr755huys7Px9fWlT58+vPXWWy6npAvw9ddf8/rrrxMTE8OPP/5IREREdTdJuI6JYSxBEARBEOo0saigIAiCIAh1mgh2BEEQBEGo00SwIwiCIAhCnSYSlAGbzcb58+fx9vZ2uey+IAiCIAg1jyRJ5OXlER4ejlLpvv9GBDvIdY0ur3YtCIIgCELtkJiYSGRkpNv9ItgBvL29AfnF8vHxqebWCIIgCIJQFrm5uURFRdm/x90RwQ4Xqy/7+PiIYEcQBEEQapkrpaCIBGVBEARBEOo0EewIgiAIglCniWBHEARBEIQ6TeTsCIIgCEItZrVaMZvN1d2MSqHRaFCpVNd8HhHsCIIgCEItJEkSycnJZGdnV3dTKpWfnx9hYWHXtA6eCHYEQRAEoRYqCXRCQkLw8PCoc4viSpJEYWEhqampANSrV++qzyWCHUEQBEGoZaxWqz3QCQwMrO7mVBqDwQBAamoqISEhVz2kJRKUBUEQBKGWKcnR8fDwqOaWVL6S53gteUki2BEEQRCEWqquDV25UhHPUQxjCcJ1KCPfhMUm4WvQoNdc+0wHQRCEmqxae3amT59Op06d8Pb2JiQkhJEjR3L06FGHYyRJ4tVXXyU8PByDwUCfPn04ePCgwzEmk4nHHnuMoKAgPD09GT58OGfPnq3KpyIItUJqnpHfdyVy59fbGfnFZl758wAJaflYrLbqbpogCEKlqdZgZ/369TzyyCNs27aNlStXYrFYGDRoEAUFBfZj3nvvPWbMmMHnn3/Ozp07CQsLY+DAgeTl5dmPmTJlCgsXLuTnn39m06ZN5Ofnc9NNN2G1WqvjaQlCjZSRb+LFhf8x7ff9HEnOIynHyC+7zjLs002cTC+48gkEQRBqKYUkSVJ1N6JEWloaISEhrF+/nl69eiFJEuHh4UyZMoVnn30WkHtxQkNDeffdd3nooYfIyckhODiY+fPnM3bsWADOnz9PVFQUS5YsYfDgwVe8bm5uLr6+vuTk5IhCoEKdtS8xi5FfbHG5r2/TYD69ox3eek0Vt0oQhKthNBpJSEggNjYWvV5f3c2pVKU917J+f9eoBOWcnBwAAgICAEhISCA5OZlBgwbZj9HpdPTu3ZstW+Q/2rt378ZsNjscEx4eTlxcnP2Yy5lMJnJzcx1uglDXrTiY4nbfumNp5BbVzRVYBUG4st9//51WrVphMBgIDAxkwIAB9lGWuXPn0rx5c/R6Pc2aNWPmzJn2x02YMIHWrVtjMpkAecZUhw4duPPOO6vlebhTY4IdSZJ46qmn6NmzJ3FxcYC8YBJAaGiow7GhoaH2fcnJyWi1Wvz9/d0ec7np06fj6+trv0VFRVX00xGEGkendv/PXa1UXBezOgRBcJaUlMQdd9zBhAkTOHz4MOvWrWPUqFFIksScOXN48cUXeeuttzh8+DBvv/02L730Et999x0An376KQUFBTz33HMAvPTSS6SnpzsERDVBjZmN9eijj7J//342bdrktO/yP8KSJF3xD3Npxzz//PM89dRT9vu5ubki4BHqvMEtw/ho1XGX+4a3CcffUwxhCcL1KCkpCYvFwqhRo4iOjgagVatWALzxxht8+OGHjBo1CoDY2FgOHTrE7Nmzuffee/Hy8uKHH36gd+/eeHt78+GHH7J69Wp8fX2r7fm4UiN6dh577DH++usv1q5dS2RkpH17WFgYgFMPTWpqqr23JywsjOLiYrKystweczmdToePj4/DTRDqunp+Bib1bui0PdRHx5QBTTBoasxvH0EQqlCbNm3o378/rVq14rbbbmPOnDlkZWWRlpZGYmIiEydOxMvLy3578803iY+Ptz++W7duTJs2jTfeeIOpU6fSq1evanw2rlVrsCNJEo8++ij/+9//WLNmDbGxsQ77Y2NjCQsLY+XKlfZtxcXFrF+/nu7duwPQoUMHNBqNwzFJSUkcOHDAfowgCOBr0PBQ7wb8b1J3hrepR89GQbw1Mo7/TepBVEDdX4VVEATXVCoVK1euZOnSpbRo0YLPPvuMpk2bcvLkSQDmzJnDvn377LcDBw6wbds2++NtNhubN29GpVJx/Ljr3uPqVq0/5R555BF++ukn/vzzT7y9ve09OL6+vhgMBhQKBVOmTOHtt9+mcePGNG7cmLfffhsPDw/GjRtnP3bixIlMnTqVwMBAAgICmDZtGq1atWLAgAHV+fQEocbx89DSPlpLXIQvVpuEQSsWFBQEQU4X6dGjBz169ODll18mOjqazZs3ExERwcmTJ0tNOH7//fc5fPgw69evZ/DgwcydO5fx48dXYeuvrFqDnS+//BKAPn36OGyfO3cu9913HwDPPPMMRUVFTJ48maysLLp06cKKFSvw9va2H//RRx+hVqsZM2YMRUVF9O/fn3nz5l11wTBBqOu0pSQrC4Jwfdm+fTurV69m0KBBhISEsH37dtLS0mjevDmvvvoqjz/+OD4+PgwdOhSTycSuXbvIysriqaeeYt++fbz88sv8/vvv9OjRg08++YQnnniC3r1706BBg+p+anY1ap2d6iLW2REEQRBqk4pcZ+fw4cM8+eST7Nmzh9zcXKKjo3nsscd49NFHAfjpp594//33OXToEJ6enrRq1YopU6YwdOhQOnToQM+ePZk9e7b9fKNGjSIlJYUNGzZUSKdDRayzI4IdRLAjCIIg1C5iUUFZrVxUUBAEQRAEoaKJYEcQBEEQhDpNBDuCIAiCINRpItgRBEEQBKFOE8GOIAiCIAh1mgh2BEEQBEGo00SwIwiCIAhCnSaCHUEQBEEQ6jQR7AiCIAiCUKeJYEcQBEEQhDpNBDuCIAiCIFSpmTNn2ss/dOjQgY0bN1bq9USwIwiCIAjXMatNYmt8Bn/uO8fW+AystsotmfnLL78wZcoUXnzxRfbu3csNN9zA0KFDOXPmTKVdU11pZxYEQRAEoUZbdiCJ1/4+RFKO0b6tnq+eV25uwZC4epVyzRkzZjBx4kTuv/9+AD7++GOWL1/Ol19+yfTp0yvlmqJnRxDqKmMepB+HHXNg6xeQchAKM6u7VYIg1BDLDiQx6Yc9DoEOQHKOkUk/7GHZgaQKv2ZxcTG7d+9m0KBBDtsHDRrEli1bKvx6JUTPjiDURUXZsGsurH7VcXvbO2HAq+AVUg2NEgShprDaJF77+xCuBqwkQAG89vchBrYIQ6VUVNh109PTsVqthIaGOmwPDQ0lOTm5wq5zOdGzIwh1UWa8c6ADsO9HOLWpypsjCELNsiMh06lH51ISkJRjZEdC5fQGKxSOAZQkSU7bKpIIdgShrrGaYfts9/s3fwyFGVXWHEEQap7UPPeBztUcV1ZBQUGoVCqnXpzU1FSn3p6KJIIdQahrrMWQV0p3cGGGHBAJgnDdCvHWV+hxZaXVaunQoQMrV6502L5y5Uq6d+9eode6lMjZEYS6RuMBTQZDwnrX+6N7gt6natskCEKN0jk2gHq+epJzjC7zdhRAmK+ezrEBFX7tp556irvvvpuOHTvSrVs3vvrqK86cOcPDDz9c4dcqIXp2BKGuUSig2c3gEei8T62DG56SAyJBEK5bKqWCV25uAciBzaVK7r9yc4sKTU4uMXbsWD7++GNef/112rZty4YNG1iyZAnR0dEVfq0SItgRhLrIvz5MWA6NB8vBD0BkZ5iwAvxjq7dtgiDUCEPi6vHlXe0J83Ucqgrz1fPlXe0rbZ0dgMmTJ3Pq1ClMJhO7d++mV69elXYtEMNYglB3BTWG0V9DURZINtD7gkfFd0kLglB7DYmrx8AWYexIyCQ1z0iItzx0VRk9OtVJBDuCUJfpfUR+jiAIpVIpFXRr6GLYuw4Rw1iCIAiCINRpItgRBEEQBKFOE8GOIAiCIAh1mgh2BEEQBEGo00SwIwiCIAhCnSaCHUEQBEEQ6jQR7AiCIAiCUKeJYEcQBEEQhDpNBDuCIAiCIFSZDRs2cPPNNxMeHo5CoWDRokWVfk0R7AiCIAjC9cxmhYSN8N/v8n9t1kq9XEFBAW3atOHzzz+v1OtcSpSLEARBEITr1aG/YNmzkHv+4jafcBjyLrQYXimXHDp0KEOHDq2Uc7sjenYEQRAE4Xp06C/49R7HQAcgN0nefuiv6mlXJRDBjiAIgiBcb2xWuUcHycXOC9uWPVfpQ1pVRQQ7giAIgnC9Ob3FuUfHgQS55+Tj6gAR7AiCIAjC9SY/pWKPq+FEsCMIgiAI1xuv0Io9roYTs7EEQRAE4XoT3V2edZWbhOu8HYW8P7p7hV86Pz+fEydO2O8nJCSwb98+AgICqF+/foVfD0TPjiAIgiBcf5QqeXo5AIrLdl64P+Qd+bgKtmvXLtq1a0e7du0AeOqpp2jXrh0vv/xyhV+rhOjZEQRBEITrUYvhMOZ7N+vsvFNp6+z06dMHSXLVm1R5RLAjCIIgCNerFsOh2Y3yrKv8FDlHJ7p7pfToVCcR7AiCIAjC9UypgtgbqrsVlUrk7AiCIAiCUKeJYEcQBEEQhDpNBDuCIAiCUEtVdaJvdaiI5yiCHUEQBEGoZTQaDQCFhYXV3JLKV/IcS57z1RAJyoIgCIJQy6hUKvz8/EhNTQXAw8MDheLy9XJqN0mSKCwsJDU1FT8/P1Sqq58hJoIdQRAEQaiFwsLCAOwBT13l5+dnf65XSwQ7giAIglALKRQK6tWrR0hICGazubqbUyk0Gs019eiUqNZgZ8OGDbz//vvs3r2bpKQkFi5cyMiRI+378/Pzee6551i0aBEZGRnExMTw+OOPM2nSJPsxJpOJadOmsWDBAoqKiujfvz8zZ84kMjKyGp6RIFSRggzIOw9nd4HeFyLag1cYaPTV3bKrYrHaSM41ciajAC+9hqQcI8m5RuLCfYkKMBDiXTuflyBUBZVKVSEBQV1WrcFOQUEBbdq0Yfz48YwePdpp/5NPPsnatWv54YcfiImJYcWKFUyePJnw8HBGjBgBwJQpU/j777/5+eefCQwMZOrUqdx0003s3r1bvPlC3ZSXDIunwtHFF7epNHDrXGg0ADSG6mvbVbBYbexNzObNxQd5tF8THv5xO7lFFvv+ZmHefHNfJyL8atfzEgSh5lBINWTemkKhcOrZiYuLY+zYsbz00kv2bR06dGDYsGG88cYb5OTkEBwczPz58xk7diwA58+fJyoqiiVLljB48OAyXTs3NxdfX19ycnLw8fGp0OclCBXKZoOtn8PKl5z3KZTw6C4IbFj17boGZ7MKGfTRBt4d3ZqX/zxAVqFzd/ygFqHMGNMWL70YeRcE4aKyfn/X6KnnPXv25K+//uLcuXNIksTatWs5duyYPYjZvXs3ZrOZQYMG2R8THh5OXFwcW7ZscXtek8lEbm6uw00QaoX8FNjyqet9kg0O/1217akAh87nolIosNgkl4EOwKrDKWQUmKq4ZYIg1BU1Otj59NNPadGiBZGRkWi1WoYMGcLMmTPp2bMnAMnJyWi1Wvz9/R0eFxoaSnJystvzTp8+HV9fX/stKiqqUp+HIFQYyQoFae73Z52uurZUkORcI156NZmlBDM2CYxmWxW2ShCEuqTGBzvbtm3jr7/+Yvfu3Xz44YdMnjyZVatWlfo4SZJKXW/g+eefJycnx35LTEys6KYLQuXQGORkZHca9q26tlSQVhG+pOebqB/g4fYYH4MaL50YwhIE4erU2L8eRUVFvPDCCyxcuJAbb7wRgNatW7Nv3z4++OADBgwYQFhYGMXFxWRlZTn07qSmptK9e3e359bpdOh0ukp/DkLNZrJYSc01YTRb8dCqCPHRoampSe02G+QlQXEeDP8cdn4D/y4A8yWrp/pGQUSH6mvjVYr0N9A8zJsTqfl0bRDAtpOZTsc8OaAJoT7i36wgCFenxvbsmM1mzGYzSqVjE1UqFTab3J3doUMHNBoNK1eutO9PSkriwIEDpQY7gpCSa+TdpUcYMGM9Az/awOCPN/LF2njS8mpgXkhhJuz7Ab7qBV90gdk3yNtuXwB6PzkxuekwuPdv8I2o7taWW7C3ntl3d+R0RiETe8ZyW8dIdGr5332gp5a3RsYxom0EalWN/XMlCEINV609O/n5+Zw4ccJ+PyEhgX379hEQEED9+vXp3bs3Tz/9NAaDgejoaNavX8/333/PjBkzAPD19WXixIlMnTqVwMBAAgICmDZtGq1atWLAgAHV9bSEGi63yMwbiw+xeH+SfVu+ycLHq45TYLLw1MAmGLQ1pNNTkuDYMvjrsYvbbFY4tBAyTsADa+RgxzMIdN7V185rVM/PwCvDW5CeV0yzMB8m926ITQIPnYpQbz1KZd1aBl8QhKpVrVPP161bR9++zjkG9957L/PmzSM5OZnnn3+eFStWkJmZSXR0NA8++CBPPvmkPSfHaDTy9NNP89NPPzksKliepGMx9fz6cjItn34frne5T6tSsmpq71LzR6pU7nmY01deW8eVCSugfpeqbZMgCEINUdbv72r9+dqnT59SS7eHhYUxd+7cUs+h1+v57LPP+Oyzzyq6eUIdlZrrfqiq2Gojp6gYqCHBTnGh+0AHIGmfCHYEQRCuQAyCC9cdb0PpMb5BU0OGsADUWlCXkpjrK8qiCIIgXIkIdoTrTrCXjphA1z03HWP8CfTUVnGLSuEZDG3Gud6n84awVlXbHkEQhFpIBDvCdSfER8/X93YizMexuGSDIE9mjGmLf00KdjQG6P0MRPdw3K7zgbv+B97h1dMuQRCEWqTG1MaqTiJB+fqUlFPE6YxCzmQW0jDYi0h/A6E+NbS6dn6aXOU8+QB4hUJwU/AJB2UNXRdIEAShCtSKBGVBqE71fA3U8zXQtUFgdTflyryC5Vu9NtXdEkEQhFpHDGMJgiAIglCniWBHEARBEIQ6TQQ7giAIgiDUaSJnRxAqUGGxhbQ8E/vP5lBssdG2vh/BXjp8DJrqbpogCMJ1SwQ7glBBco1m/v73PC//eRCr7eIkx/t7xjK5byMCatKUdkEQhOuIGMYShApyJqOQFxcecAh0AL7elMDu05nV1CpBEARBBDuCUAHMVhvztpxyu/+LtfFkFxZXXYMEQRAEOxHsCEIFMFtsnM8ucrs/JdeIyWKrwhYJgiAIJUSwIwgVQK9R0bNRkNv9HaL98daJFDlBEITqIIIdofrZrJBzFtKPQfYZsBiru0XlplQquKlNOD5654BGrVTwWL9GeIhgRxAEoVqIYEeoXgXpsOMrmNUTPu8k35a/BHlJ1d2ycov0M/Dbw93pEO1v39Y4xIufH+xKTKBnNbZMEATh+iYKgSIKgVYbqxm2fA6rX3Xe12QIjPwSPAKqvFnXKruwmKzCYmw28PXQEOSlq+4mCYIg1EmiEKhQ8+Ulw8YPXO87tgzyU2tlsOPnocXPQ6ypIwiCUFOIYSyh+hizoTjf/f7Mk1XWFEEQBKHuEsGOUH00htL3ewRWTTsEQRCEOk0EO0L18QiChgNc7/MKBd/ISrlskdlCdmExZpMRirLAch0u9mcqgMIseSZcTVNcKL8vVnN1t0QQhDpC5OwI1cfgBzd/BD/eCmlHL273CIC7/gCf8Aq9XE5RMfFpBXy1Pp5z2UY6RXlyd2svos7/iLrpQPCPAXUdTyYuSIekf2Hr51CUDU2HQesx4B9d3S2T25N2BLZ8BrnnILoHdJwAftGgEn+qBEG4emI2FmI2VrXLS4asU5B6GPzqQ3AT8IkEhaLCLlFosvDLrkRe+/uQw3adWsmv42Jos/ouuPkTiOlZYdescQozYfXrsHuu43aPAJi4CgIbVk+7AEz5sOtbWPmS43aNAcYvg/C21dIsQRBqtrJ+f4thLKH6eYdB/a7QcTw06g++URUa6ACk5Zt485/DTttNFhvPLE8jvf3jsGhSrVzfp8xyzjoHOiAHQWvegOKCqm9TifxUWPWK83ZzEfz9OBRkVH2bBEGoM0SwI1wXjiTlOVUjL3E0JY9sv5by6s2FWVXcsip0ZLH7fYf/kvNkqsv5PSC5qR2W9C8Y6/D7IghCpRPBjnBdkCjraG0dHtW1lVKIVJLkW7W5wrXFaLsgCNdABDvCdaF5PR+UbkbGGoV44Zd7VJ79Zah9ixiWWfOb3O9rdiMY/N3vr2zh7d0PXYbGgd6vSpsjCELdclXBTmJiIhs3bmT58uXs2bMHk8lU0e0ShAoV5KXjmcFNnbZrVUreHRRM0K4ZMPwL8KlXDa2rIn5R0Gac83a9H/R/BXReVd4kO88Q6POC83a1Dm7+FLyCq75NgiDUGWWejXX69GlmzZrFggULSExM5NKHabVabrjhBh588EFGjx6NUlm7OozEbKzrQ3ZhMUeT85i57gRJOUY6Rnoyob0f9c8tRttsMPjHgkZf3c2sXPmpcG6XPL27KFuuQdb+HnnafQUnhZdbYSakHIBNH8mJ4vW7Q9dJ4BcDak31tk0QhBqprN/fZQp2nnjiCebOncugQYMYPnw4nTt3JiIiAoPBQGZmJgcOHGDjxo0sWLAAtVrN3Llz6dSpU4U+ocokgp3rS4HJjNFsw0ttRWctBK3nlVdzrmuKcsBmBr0vqGpYIGHKB4sRdN51f90jQRCuSYUWAtVqtcTHxxMc7NyVHBISQr9+/ejXrx+vvPIKS5Ys4fTp07Uq2BGuL546DZ7271CP6mxK9TH4VncL3NN5Ve+QmiAIdY5YVBDRsyMIgiAItVGlLSrYr18/srOzXV6wX79+5T2dIAiCIAhCpSp3sLNu3TqKi50LJxqNRjZu3FghjRIEQRAEQagoZa6ut3//fvv/Hzp0iOTkZPt9q9XKsmXLiIiIqNjWCYIgCIIgXKMyBztt27ZFoVCgUChcDlcZDAY+++yzCm2cIAiCIAjCtSpzsJOQkIAkSTRo0IAdO3Y4zMzSarWEhISgUqkqpZGCIFQwSZLX3LFZQe8tT/MWBEGoo8oc7ERHRwNgK62+jiAINV9eMhz6E7Z+AUWZEN0T+r8EgY3EujaCINRJ5U5Q/u677/jnn3/s95955hn8/Pzo3r07p0+frtDGCYJQwQrS4M/HYOkzkH0aTHlwbCl81RtSDlV36wRBECpFuYOdt99+G4NBXm1269atfP7557z33nsEBQXx5JNPVngDhRrEmCOvbivUXtmJcGKF83arGZY9K5dsEARBqGPKPIxVIjExkUaNGgGwaNEibr31Vh588EF69OhBnz59Krp9Qk2Qcw7iV8O+n0Clhc4PQmQn8A6t7pYJ5XVilft9idvBlAsedbjyuyAI16VyBzteXl5kZGRQv359VqxYYe/N0ev1FBUVVXgDhWqWcw7mj4D04xe3JayHhv1g5CwR8NQ22lLKMKg0oBCTDARBqHvKPYw1cOBA7r//fu6//36OHTvGjTfeCMDBgweJiYmp6PYJ1clmhf2/OAY6JeLXQPJ+5+1CzdZ4oPt9LUeBR2DVtUUQBKGKlDvY+eKLL+jWrRtpaWn88ccfBAbKfxx3797NHXfcUeENFKpRQTrsne9+/86vwWysuvYI1847DIa867zdrz70fRG012lhVEEQ6jRRCBRRCNStvBT4dhBknXK9v/FAGDMfNIYqbZZwjYw5cqLynvmQdx6a3wzR3cE3srpbJgiCUC6VVggUYOPGjdx11110796dc+fOATB//nw2bdp0da0VaiaPQGg1xv3+9veJQKc20vtCWBwMexdu+w5ajxGBjiAIdVq5g50//viDwYMHYzAY2LNnDyaTCYC8vDzefvvtCm+gUI1Uamh/j+svwohOENmh6tskVCzlVf3eEQRBqFXK/ZfuzTffZNasWcyZMweNRmPf3r17d/bs2VOhjRNqAL8oGL8M+r8Cwc2gXhu4+TMYOx+861V36wRBEAThiso99fzo0aP06tXLabuPjw/Z2dkV0SahpvGLgh5PQLu7QaEETzFjRxAEQag9yt2zU69ePU6cOOG0fdOmTTRo0KBCGiXUQEoVeAWLQEcQBEGodcod7Dz00EM88cQTbN++HYVCwfnz5/nxxx+ZNm0akydProw2CoIgCIIgXLVyD2M988wz5OTk0LdvX4xGI7169UKn0zFt2jQeffTRymijIAiCIAjCVStXz47VamX9+vVMnTqV9PR0duzYwbZt20hLS+ONN94o98U3bNjAzTffTHh4OAqFgkWLFjkdc/jwYYYPH46vry/e3t507dqVM2fO2PebTCYee+wxgoKC8PT0ZPjw4Zw9e7bcbbme2GwSSTlFJKQXcD67CLPVVt1Nsku+0K5zWYUUWyq5XVYLZJ+FjHi5LIbtwvUkCXLPy9uzE8FiuvK5irIgM0Fek6gou+Lbmpt0SXuKIT9Fvp91GooLy3YOU758fGYC5KdC9hn5HHkpZXq4JEkk5xgvvD9FFFus1/CEar5ii41zWYUkpBeQnCsWzxSE2qxcPTsqlYrBgwdz+PBhAgIC6Nix4zVdvKCggDZt2jB+/HhGjx7ttD8+Pp6ePXsyceJEXnvtNXx9fTl8+DB6vd5+zJQpU/j777/5+eefCQwMZOrUqdx0003s3r0blUrU+blcZkEx/+w/zyerj5OeX4y3Ts34HrHc3a0+wd76K5+gkmQXFrPhWDrvLD3M+Rwjeo2SOzrV5+E+DQn1qYR25afC7nmw9XN5kT3PILjhaWhxM5zcAGtelwMerSd0mADdH5VXH76czQppR+CfaXBmi7wt5gYY9j4ENb32qd1FWXBiDax6GXLOQts7oekQWP0GpB8DpRriRkO/l+REcneyTsPKl+HURrhlFuz/DQ4tAmsxBDSAoe9BVFfQe7t8eHZhMWuPpPLusqMk5xoxaFTc2bU+D9zQoHLen2qWkmtk1vp4Fuw4g9FsI9xXz7NDm9G7STB+Htrqbp4gCOVU7hWUO3XqxDvvvEP//v0rtiEKBQsXLmTkyJH2bbfffjsajYb5812XLMjJySE4OJj58+czduxYAM6fP09UVBRLlixh8ODBZbr29bKCcrHFypyNJ3l/+TGnfbe0C+fV4XH4GjQuHlm5bDaJhXvPMfW3f5329WgYyKfj2hHoqau4CxpzYfmLsPd75309n5J7Zw7+z3F7o0FykHB5gnbmSZjVE4oLHLfrvOGhjRAQe/XttNngv19h4UPyfb9oGPAK/D7B+djARnDvYvBxsRxAzjn4djDkJMKIz2HrTEg95HzcXQuhUT+nzVabxK+7Enn+f/857evTJJgZY9sQUJHvTzXLKDDx+E972Ryf4bTvg9vaMKpdBEqlohpaJgjC5SptBeW33nqLadOmsXjxYpKSksjNzXW4VRSbzcY///xDkyZNGDx4MCEhIXTp0sVhqGv37t2YzWYGDRpk3xYeHk5cXBxbtmypsLbUFal5Jj5fE+9y38K958nIL8NwTSVIyTPyztIjLvdtjs8gOaeChxAK0mCfm5pf22ZC3Cjn7SdWyENHl7IUw445zoEOgCkP9nwvD5VdrfwkWPnSxfsd7oNNH7s+NuOE6wAG4OwOOdDxCASlxv1xy5+Te7wuk5Jr5L1lrt+fdcfSSM2tns9NZUnOMboMdADeWXqYlDwxpCUItU25g50hQ4bw77//Mnz4cCIjI/H398ff3x8/Pz/8/f0rrGGpqank5+fzzjvvMGTIEFasWMEtt9zCqFGjWL9+PQDJyclotVqn64aGhpKcnOz23CaTqdKCtJosu9BMkdl9nsW57KIqbM1F+UYLaaUEWoeSKvj9yUuS83JcsRhBcpMrlHrY8b4pF06udX+dk+vkoOdqmfIdg4/AhqVXmo9305YjSy48vhEk7XP/+LSjYHbO/8k3WcgqNLt92LGUa3iONVBpn7f0/GIKTNcQwAqCUC3KPRtr7dpS/rhXINuFZNERI0bw5JNPAtC2bVu2bNnCrFmz6N27t9vHSpKEQuG+m3n69Om89tprFdvgWkCvKT229dFX/RAWgFatRKkAm5v4I8irgodIdK7zUuxUbl4Hz6DLjtOBZwhw2OXheAaD+hryO1RaeX0j24UA1VwEOh85yHLFN8L1dr/68n9NuXKb3NF6gsI5z02rUqJQuI8PAyr6/almwaU8H6VCfj0EQahdyv2vtnfv3qXeKkpQUBBqtZoWLVo4bG/evLl9NlZYWBjFxcVkZWU5HJOamkpoaKjbcz///PPk5OTYb4mJiRXW7pos0FNH+2g/l/tCfXSE+lTPl1agl5YhLV0k/wJeOjWNQ7wq9oKeIeDrJpm3XltIdTFko/eTE3kdtnnLK0u70/0xOYC4Wp7B0Gz4xfsH/wdtx7k+VqGExoNc72t9oZhr6mEIayUnNbvS/j7wCnHaHOilpV9T5+1dGwTwUK8GNA6+hudYAzUK8cJL5/o1GtwyjAAvkaAsCLVNmYKdS6d6l0VJJfRrodVq6dSpE0ePHnXYfuzYMaKjowHo0KEDGo2GlStX2vcnJSVx4MABunfv7vbcOp0OHx8fh9v1wN9Ty4zb2hLh51ip3Neg4dv7OlXbrBovnYYXb2xOk1DHoMagUTF3fCfCKrpdPvXgjp/BI+Cy7REwajYcXeq4XesFd/4OPuHO56rXFrq6WEyz51MQ2vLa2qnzgkGvQ3Bz+f7xlRDdA+p3czxOqZarl7tqH8jPa+SXckC0fRbc/Ilz71VUV3nGmdo54PXWa3htREsaXghqGgZ7MW98J9pF+bM3MZvXFx9i9+kssguLr+351hBhPnrmju+EQePYy9U41Iv/u7E5Xrrq6QEVBOHqlWk2VmhoKMOHD+eBBx6gc+fOLo/Jycnh119/5ZNPPuGhhx7iscceu+LF8/Pz7aUn2rVrx4wZM+jbty8BAQHUr1+fhQsXMnbsWL744gv69u3LsmXLmDJlCuvWraNnz54ATJo0icWLFzNv3jwCAgKYNm0aGRkZ5Zp6fr3MxiqRnFPEidR8Dp7PpUGwJy3q+RDuZyh16K8qpOYaOZVRwN4z2UT4G2gT6Uc9Xz3qyhg2kCR5KnfKAXkKd2grudCpb7ic05MRD+f3yDOg6rWTh4iUbj5PRdly8vLJ9aBQQGxv8AoFg2/FtDUvWZ71dXYn+MdAWBsozJCnunsEQf2u8rR4jcH9OYoL5PV0Tm8GjYcciJ3fC4XpcqDjH+2yV+dSKblGzmQWolEpuW/uDrIvy+N5ckBjJvSIxbsaZvRVNIvVRlKOkf1nszmbVUTb+n7EBnoSUgen2QtCbVbW7+8yBTuZmZm8/fbbfPvtt2g0Gjp27Eh4eDh6vZ6srCwOHTrEwYMH6dixI//3f//H0KFDy9TIdevW0bdvX6ft9957L/PmzQPg22+/Zfr06Zw9e5amTZvy2muvMWLECPuxRqORp59+mp9++omioiL69+/PzJkziYoqZc2Ry1xvwY4gXK08o5nHftrLumNpLvevfqo3DSt62FEQBMGNCg12ShiNRpYsWcLGjRs5deoURUVFBAUF0a5dOwYPHkxcXFyFNL6qiWBHEMomMbOQXu+vdZus/NrwltzbPaZK2yQIwvWrrN/f5ZqNpdfrGTVqFKNGuViHRBCEOk+SJLeBDsjDP4IgCDWNmEMpCEKZ+Rg0dIxxv55Wz8ZBbvcJgiBUFxHsCMK1KC6QC2seWwbHV8k1qMzVszhjVfDz0PLa8Jbo1M5/OsZ2ihIJvIIg1EjlXlRQEIQLirJgz3xY/erFhf9UWnlqd/Obr7x4YS3VNNSbJU/cwNcbTrI5PoNATy0P92lIh2h//EWRTEEQaqByFwKti0SCsnBVEjbCdze53vfQRqjXumrbU8WMZit5RgsalUJUAhcEoVpUWiFQQRCQK6evf8/9/m0zwVIxBTKNZiuJmYUcOJdDfFp+jVm8T69REeytE4GOIAg13lUNY82fP59Zs2aRkJDA1q1biY6O5uOPPyY2NtZhDRxBqLMsRsg9635/5kn5GBcrEpdHer6Jbzcl8M2mBEwWeaZTl9gAPritDVEBHtd0bkEQhOtFuXt2vvzyS5566imGDRtGdnY2Vqucq+Dn58fHH39c0e0ThJpJ6wXh7dzvr98NNNdWM8pstfHzjjPMXBdvD3QAtidkct/cHaTmGq/p/IIgCNeLcgc7n332GXPmzOHFF190KMfQsWNH/vvvvwptnCBUKUmC3PNyr0zOWbBa3B+r9YAbprouIaHWQ/t7QHVt+f+peUZmrz/pcl98WgGJWXV31pcgCEJFKnewk5CQQLt2zr9odTodBQUFFdIoQahyhRmw9weY0xc+bQdf9oBNH0F+qvvHBDSAuxbK9bNKBDWB+/5x3HaVioqt5JncB1wnUvOu+RqCIAjXg3L/9IyNjWXfvn32yuMlli5dSosWLSqsYYJQZSzFsPcnWPl/F7cZs2Htm5B1Ega/47qop8YADXrDxBXyNHSFAgwBVyyoWVY6tQqdWukwhHWpKH+RsyMIglAW5Q52nn76aR555BGMRiOSJLFjxw4WLFjA9OnT+frrryujjYJQufKTYf07rvf9uwBumFZ6BXPvMPlWwYK9ddzRuT7ztpxyuS826NpyggRBEK4X5Q52xo8fj8Vi4ZlnnqGwsJBx48YRERHBJ598wu23314ZbRSEylWUBcX5rvdJEmSdgsCGVdokkKd2T+rTkJRcI0sPJNu3R/obmHtfJ+r5Gaq8TYIgCLVRuYIdi8XCjz/+yM0338wDDzxAeno6NpuNkJCK6bYXhGqhvkLQoC+lV6eShfromT6qFdMGNyUpuwhfg5ZgHx1hoiyDIAhCmZUr2FGr1UyaNInDhw8DEBQkiv4J1aykDpWmDL0cVjNYi0HjIefXlPAMhMiOcHaX82O8QsGnXsW09Sr5eWjx89DSMNjLeWdxASjVoNZRVGxFqQCdxsUMsatltYKlSA4IVRV4XkEQhCpU7mGsLl26sHfvXqcEZUGoUrlJcG4X7J4nBy4dJ0B4e9e5M8YcyIiH7bMhLwka9oeWI8GvvvxYj0C45Sv47mbIPXfxcTofGPcLeIdX1bMqu5xEufBo/GqSOjzN9mxf/vg3Bb1GyT3dYmge5kOQ9zUsaGgxQfYZ2P0dJP8LIS2h43h5lplG9CoJglC7lLs21m+//cZzzz3Hk08+SYcOHfD0dEySbN269tUDErWxapncJPj1Xji73XF7bG8Y9ZVjwGPKhz3fwfIXHI81+MOE5RDc9OK2nHOQehiS9kFQY3nRQJ9IUNawqipZZ2DeMMg9S9LYZdy9xMSJVMecoxtb1eO1ES0J8rqKgEeS4NQm+OEWuTeshFIN436FBn1cry8kCIJQxcr6/V3uYEfp4g+/QqFAkiQUCoV9ReXaRAQ7tcy+n2DRJNf7bvtO7rUpkREPn3eQv8AvF9sHxnwHBr+Kb2NlMRth+fOw61ussX2ZGfwSH25Idnnogge60q1hYPmvkXsevuoD+SnO+zwC5CKnvpHlP68gCEIFK+v3d7mHsRISEq6pYYJwTQozYccc9/t3fAUN+4H+wof+zFbXgQ5Awjp5JlZtCnYKM+Tp8EBGkzH8siHH7aE/bDtFpxh/1Kpy9kwVpLsOdEB+/fPTRLAjCEKtUu5gR+TqCNVKkuQkY3esxSBdsgjflSqPS7WtJ1KyDy1JCjXFbhYcBCi2StjK1W97ge0Kr0mte80EQbjelTvY+f7770vdf88991x1YwThigz+0HosrDzgen/bOx17aqJ7uD9Xvbag96/I1lU+vR80vREO/4n/qSXc3PwRvtnhuqTFmI5RaNVXkW/kGSRPtze66DXSelbYCtGCIAhVpdw5O/7+jl8OZrOZwsJCtFotHh4eZGZmVmgDq0Kl5Ozkpcgzf/KSwTcCvMLAK7hizl3RCjOhIE1ePM8QAD4R8nTrS6dn1yQ5Z2HuMMg+7bg9sCHc87f8epcozII1r8Oubx2PVWkovmcpyV4t8Nar8ZdyIe88ZCfKU9ENAXJgdckXe16RmfSCYk6lF+CpVVDPW4NSsnIivRCNRkN9fwMhRQloi7PkulleIW6nxCfnGEnKKSKrsJgofw+CvHX4e2jdP+fCLChIlWdheYXB3CFgLuLMHWsZ9UsK6fmOvV2tI3yYfU9HrFaJM1mFmK02YgM9CfLS4aG7wm8cqwUO/g/+94DzvuGfycGm+hpmeglVIqewmPSCYk5nFOBr0FDP10CYjx6lsob+uxaEq1BpCcquHD9+nEmTJvH0008zePDgaz1dlavwYCczAX4aA+nHLm6L6Ahj5oFv1LWfvyLlJcM/U+HI4ovbvMPgzt8hNK5mBjzGXDkw++9XOPKPvK35cGh1K/jFgN7b8fiCNDi9VS7sWZCKKbwr6e0e5YX1+ag1ej4bFoxh0XgU5/dcfExwUxj2AfjWh4AYMvJNfLL6OPO3nbanAPkY1Lw1shU/bj/NtpOZGDQqPrilCX3j38fjyO8w5B2Iu9Wp1MTR5Fzum7uTpByjfVv/ZiG8PaoVoa4WC8xLhn+mwZG/5fthrWDQW3BoEaQeIbHPDH48ZGbxwXR0ahV3d67H4LgI9p/L44lf9mI0y0NdaqWCqYOacEfn+viVFlgBGPMg7TCsewfSjkBgI+jzPIS0KL10hlAjpOUZefOfw/y577x9W6Cnlrn3dSIuwlcEPEKdUaXBDsCuXbu46667OHLkSEWcrkpVaLCTlwrf3yx/QVyuYX+49duakxBrMcGqV2HbTOd9HgHw4Abwq2HBGUDidvh2sDybqmE/QIITqyBhAzy4Tp4yfpnUPCNr9hzFoLKyJ9nKr/9mUGS28kLfejyQ/BqKhHXO1wltCV0nITUZxk8H8nlxofPQmU6tZNZdHRg/bycgx4bL7oul6W995Nd34kqI6mw//nx2EcM/3+TUEwNwV5f6/N9NLdBfuiigxQSrX4etnzserNJA69uhw30QvxZzYRZZPs1QWosJPP4b5ps+pfknJ7C6SOn5fkJnejUpYy+jMRfMhXIPVTWuJC2Undlq4/M1J/hk9XGnfV46Ncum3ECkKCIr1BGVNhvLHZVKxfnz5698YF1XkOI60AGIXw2F6TUn2MlPgd1zXe8rzIS0ozUv2DHlw4YP5UTlk2vl26U2fwYjv3AaPjqVXsBzS886nW5AtBLF1nWur5VyEDyDSS2w8PmaE66bY7Hx79lsWkX48t+5HCQJfjho4pVGQ1Af+RM2zYDR38i5LkBCeoHLQAfgt91neah3Q6ICLvkiyk91HoIDOUl573yI7AQ7v0KTn8qlmTTSv7/QtcEgNp/IcHrop2uO0ybSF98r9e6APKtNL5ZjqE3S8kx8u8n1rNl8k4X9Z3NEsCNcd8od7Pz1118O9yVJIikpic8//5wePUpJBr1eFGWVvt/kpuBkdbAYL5ZbcCWrBi4zYDE65+pcKuuk/JwuC3YuHTK6lNpSWPr1jLlYbZLbxwOcyypyWLwvPsOEqV6E/I8r65TcngvBztks99czWWyYLJfNdLKY5J4Vd3LPgUeQHBRdQpd5lGDPG92212ixIfpp6iaz1UaeyeJ2f0JaQRW2RhBqhnIHOyNHjnS4r1AoCA4Opl+/fnz44YcV1a7ayyvU/T6lumYNBWg85eGqQjdJ5aEtq7Y9ZaH1lMtCuOs9i+gIWucaUrFBni4OBqPKS14N2N10a4MfWrWSJqFeHEtxHag2DfNmz44z9vsdIz3Ql7QvvINDexqHel/+cDsfvRoP7WX/JDUGuZxFoXMPDSDn0uQ696gWRXTj1H7XAVrLcB88dWIF5LpKp1YR6qMjJdf1sgtxkaKnTrj+lHteqs1mc7hZrVaSk5P56aefqFevegsm1giewXJujivt7gbPGjRt1zsMej3jel9gIwiIrdr2XCo/Ve4VyTkLlkuGfTQG6PG4HDheTqWFLg+C2nl4pp6vnpbhzn/kfz1iwtp6nOs2NOwPuUkEeWh4fmhzl4cEeGqJCvAg/sKvZb1GyaiGClQJ6+Q2dn/UoZZUpJ+BxiEuCnoCk/s2IuTyelalvkcN5XWFjNmO23U+qJrfyJHkXKeHKBTwRP8meOk0rs8p1HqhPjqmDmrqcl+En4EmpQTcglBXXXPRH6vVyr59+8jKusLwzfXCIwBGfA4tR4Piwsur0kKnB6DPc6Bz3cNQLZQqaHUb9H/ZPswCQGwvuOt/4F0NwaspD+LXykU5P2kDX3SG1a859l74x8LdCx1ntvnHwj1/yrOxXAj21vPVPR3p2zTYPsFMr1EiaTzI6/4sUscJctIvyK9LixFww1RoNAA8/Gkf7cf7t7bGz+NikNAy3IePb2/LO0vlXpwGQZ78MrEDkXs/lFcYvnuh3K5LhPjomTu+Ezc0DrJvM2hUPDmgMbd2iHRe7VipkmeZ9X/Fsccqthfc+QcYAuUA236BFjB+CUq/KH55sBsNLunRCvXR8c09HWkYUoM+g0KFUygUDGgeyks3tcDrkmUGOsX489MDXajn63o5BEGoy8o9G2vKlCm0atWKiRMnYrVa6dWrF1u3bsXDw4PFixfTp0+fSmpq5amUdXZM+fK6KMUFoPUG71C3a65UO0sx5CfLi8ipDfKictWVRH18Jfx4q/P2qK4wdr7jgna5SVCUCSjkINNVxfPL5BaZScs3kW+04KFV4aVT4++pRY9JnuJdlC2/T1pPeZ0d3cVfwVarjZQ8E9mFZrQKC/7nN2DVeJGhDEClVOCfe4TgA1/DyFny40ppT26RmYx8E0VmGz56NSE+OrTqUoaWHN4j/YX3yB9sNnk9p6IsuSfJI9BhPae0PBNZhcVYbRL+HlpCfXQoauJyAkKFM1ttpOYaySmyoNcoCfDUXnnJAUGoZSpt6nlkZCSLFi2iY8eOLFq0iEceeYS1a9fy/fffs3btWjZv3nzNja9qohBoDZGXAvOGysU7Xbl/NUR2rNo2uVJcBEumwb4fXO8f+j50fqBmrlEkCIJQh5T1+7vcw1jp6emEhcm/WJcsWcJtt91GkyZNmDhxIv/999/Vt1gQzAXuAx2A01uqri2lMeXIRUTdOfpP6TOoBEEQhCpV7mAnNDSUQ4cOYbVaWbZsGQMGDACgsLAQlUrM8BCugVIt5ze5U1NqMinV8hCSO54hoBQJwIIgCDVFuYOd8ePHM2bMGOLi4lAoFAwcOBCA7du306xZswpvoHAd8QyGVmNc71NpoH7Xsp/Lagaz+7VxrolnEHR/3P1+NzPCqoLJYi21ErogCML1qNzr7Lz66qvExcWRmJjIbbfdhk4nT5VVqVQ899xzFd5A4TqiMUDf5+H8Hkg9dHG7Ug1j5ssFMK+kIEOuSbbjKzDlysFTTE/H4qAVoUEfecbdwT8ct/d+Vp62X8WSc4zsS8zi111n0aoU3NUthmah3gRdPpVdEAThOlQhtbGys7Px8/OrgOZUD5GgXMPkJUP6cTi1EbzDoUFveRr8JevVuFSYCWvehF3fOG4PaAD3/i1PB69IBRmQmwjHVspVwBsPkttZxYUyk3OKeOD7Xfx3znFdnaFxYbw+Io5gEfAIglBHVVqC8rvvvssvv/xivz9mzBgCAwOJjIxk//79V9daQbiUdxjE3gB9X4CO98mLG14p0AG5vMXlgQ5A5knYPlse2qpInoFQry30flpe6DCkWZUHOpIkseRAslOgA7D0QLLLhQUFQRCuN+Uexpo9ezY//CBPuV25ciUrV65k6dKl/Prrr0ybNo0VK1ZUeCOFalKQDtln5GKbWm+5wrh3qMPaM9WmKEteaPDEKnnxxhYjYe+P7o/fOx+6TgKf8NLPm3teHkI7t0fuEYrsJPcIKWtm8n1GfjE/bnNfK+y7LQl0tu5D5xcGPhHyekQVKC3PxJnMQracSCfAU0uPRkGE+ugwXF72QhCE65bVasVsNqPXl+FHayUp91+kpKQkoqLklWsXL17MmDFjGDRoEDExMXTp0qXCGyhUk7wU+PsxOLbccfvQ96HN7dVbCbsgHda+7diLc2aby5pYdhaTXCm9NJkn4bvhkJN4cZvWU16ZObwDKK95wfEKZ5MkTKUkJJssErbjK2H3bLlcSf9XHBYdvBbJOUYe+2kPO09fXD1dqYCPb2/HgOYhznW+BEGos3Jzc1m7di0rVqxgxYoVnDhxwumY3bt30759+2po3VUMY/n7+5OYKH8ZXDr1XJIkrFY3xRSF2kWS4NAi50AHYOnTjsFAdTi3x3m46uxOObfHnWY3lT5dvCgL/nzM+bkVF8BPYyDPudhmTeDvqeWm1u7LetzWTIfh9Fr5zt75kLi9Qq5rttr4fusph0AHwCbBEz/vdVuEUhCE2ishIYHZs2czevRovL29USgU9puvry8jR45k5syZLgMdAK22+lbwLvdPr1GjRjFu3DgaN25MRkYGQ4cOBWDfvn00alT1s1CESpCfClu/cL9/7w8wZPpVnDdFTj4uSJeHk7xC5PIGICcXF6TJhT89AuW8HVflFoy5sPlj1+e2mOSyEonbHPfpfKDPs6D1cN+2gnQ4vcn1vsJMeTivohOcK4BGpeSuLtH8sfscafmOAUbTUE86+WTKs9NKbP4YYnqUHviVQXq+ie+3uh4+kyRYfTiF+29ocE3XEAShalksFnbu3Gnvndmy5doWcm3Tpg0DBw5k0KBB9OzZE4Oh+komlTvY+eijj4iJiSExMZH33nsPLy956CApKYnJkydXeAOFaiBZoDDD/f7cc3JNpvIM62SehAW3Q9rRi9tiboBbZss5N38/Accv6UkKaADjfoGgJo7nsRa7b9vyF+C27+RE5R1fQXE+NL1RrjzupkConeUKPRFF2aXvr0aRAR78b3J35m89xd/7k1CrFNzZ2pcR0cXU++sOx4MLMyokUdtqk8g3WdzuT86tpDWOBEG4Jjk5OaxZs8Ye0Jw8efKqz6VUKhk4cKA9oClZf68mKnewo9FomDZtmtP2KVOmVER7hJpA6yOvTXNsmev9zW4qX6CTlyIPBaUfd9x+aiMsfRaaDnMMdEAOjuaPgokrHJOKdT5yJfK0I87XMRfCuV1wwzPQ8haQrHIPhroMSXF6X9D7gTHb9f5qWDunPKICPHh6SFMm9oxFkX6UoA0vody2wfnABv3k53qNPLRqWkf6sv9sjsv9vRpXTF6QIAjlFx8fbw9mVqxYQWHh1ZevCQ8Ptwc0AwYMIDQ0tAJbWnWuKoNw/vz5zJ49m5MnT7J161aio6P5+OOPiY2NZcSIERXdRqGq6b2h30vyTCfbZb/efSMhunv5zpef7BzolDi6GNqOc70vJxGyEx2DHbUWOk2E3fPknhuHdvvJ51Kry19awrse9Ps/ucDn5eJGV1hSb2XSqFSE+hrA5g9pB1wc4AHdJslrAl2jAE8tL93UgjGztzrlfTcO9aJpWA2YsScIdZTFYmH79u32YGbbtm1XflAp2rdvbw9oevToUa2zpipLuROUv/zyS5566imGDh1Kdna2PSnZz8+Pjz/+uKLbJ1SXoMZyr0rEhSrjSjXE3Qb3/VP+3JX8VPf7JAlspQyr5Jx13uYXDfevknspQK4u3nggTFwp77saKrUc1Iyac/H56f2gz/MwePo157hUKf9omLASmgyVhwgBYnvJr9mVhvPKoWW4Dz8/0JXm9eTARqdWckenKL4b35lQn7r3x1IQqlJWVhZ//PEHDz30ELGxsQ7JwBqNhp49e/L666+XKdBRq9UMGzaMjz76iAMHDmCz2ZAkyX7bvXs377zzDv3796+TgQ5cxQrKLVq04O2332bkyJF4e3vz77//0qBBAw4cOECfPn1IT0+vrLZWGrGCcikKM8CUJ39pGgJB51n+c6Qcgi+7ud6n0sBt38PPd7je/+A6CG/nel9RzsVhJ4N/xU2Hz00Ci1Fum1eYHAjVRsZceZYZkhy4Gfwq5TLp+SYKTBbUSgWBXjr0mpq5JpEg1CSSJHHixAmH4Saj8epz3SIjI+29M/379yckpIYUTq5kZf3+Lvdf8YSEBNq1c/7y0el0FBQUlPd0Qk3nEWifMZVnNJObJY/9+ntqy76OilcI1O8OZ1xk9re/z33BztBW8kJ47hh8r27FYptVnr1lNcv5PN6XjUH7uJ/KXavofapkPaQgLx1BXjoozJJntSmU4BFUtlWvBaEOM5vNbNu2zR7M7Nix45rO17FjR3tA0717d3ttSuHKyh3sxMbGsm/fPqKjHYcLli5dSosWLSqsYULNYbVJnEzLZ/qSw6w9loZSoWBoXBjTBjclJrAMPT2eQTD6a1gyVU56liS516TdvdDraXkYqvtj8gyqkllRDfrB8E/Ln3tzJfkp8O8v8hTswgx51tfA1+WE7No0VFWTWEyQehiWPQdntso5Qa3vgF7TwC+qulsnCJUqMzOT1atX2wOaM2fOXPW5tFotgwYNsgc0zZo1q7Gzm2qbcgc7Tz/9NI888ghGoxFJktixYwcLFixg+vTpfP3115XRRqGaJWYWMvKLzRQUy/lZVkli8f4ktp3M4M9HehDhX8r6NSV8I+CWr+S1dIrz5VlVXqEX177p+yJ0uh+MOaDxlAOkih52KcqGla/Avwsubss8Cb/cBcM/hzbjQCWGYMot/Th8M+DilHaLCfbMg9Mb4d7FVy7RIQg1mCRJHDt2zGG4qbi4+KrPV79+fYfhpqCgoApsreBOuYOd8ePHY7FYeOaZZygsLGTcuHFERETwySefcPvtt1dGG4VqVGyxMXdzgj3QuVR6fjFLDyQzoUcsSmUZfn2UNqyiMYB/zLU19koK0hwDnUutehka9q2RCwfWaMZcWP2q67V7MuLl1a5FsCPUcMXFxWzdutUezOzateuaztepUyf72jPdunWr1pWDBVm5gh2LxcKPP/7IzTffzAMPPEB6ejo2m+26SYS6HuUUFbPuWJrb/csPJjO2UxTeek0VtuoqXbqS8OUKM+WeHxHslE9xHiS4WM+nxKE/oflNVdceQXAjIyODVatW2QOas2ddzPQsI71e77CYXpMmTcRwUw1XrmBHrVYzadIkDh8+DCC6364DGpUSP4MGd3W1Azy1aFQ1r0CmS1daTK8C1p+57iiUcq5TXrLr/a5KfghCJZAkiSNHjjgMN1ks7lf5vpKYmBh7QNOvXz8CAwMrsLVCVSv3MFaXLl3Yu3evU4KyUDf5eWh5oFcDHv1pL+G+errF+mGTJDbGZ5GeX8yEnrGOU41tVvmmVMsLEqov6b6VpAszoLRIkoTZKqFVKzFbbKhVChRWs5y4XPILyVIsn6dktWarGRSqS+5bQIF8zKVsVpBs8rlALm1hs8hr8LhbJbl+t4t1ukqurdLI17ykDcXFxahUKmwoUCkUZRu+u/y1Ubvo0r7ktXHF/hpV5q9HSUKyFmNFg1p9SQBrMQEKx/emhGcIdH5YHsoq4R8DUV3AZkFqeydWmw21uxW3S3tNrqTkPbpOflHbbBJWm4RGXTk/Liw2G0igrsE/XkwmE1u2bLEHM3v27Lmm83Xt2tUe0HTt2hWNphb0UAtXpdzBzuTJk5k6dSpnz56lQ4cOeHo6zsZp3bp1mc+1YcMG3n//fXbv3k1SUhILFy5k5MiRLo996KGH+Oqrr/joo48cSlOYTCamTZvGggULKCoqon///sycOZPISDEcUVG6xAbyz/jGBOUdIfTEt1iValJvupMMj6aEh1xYKbcwU072TTsqT+U+uEjOkWl+M8T0khcO3PUtxSoPzjUbz5ZEE43DfNlwPJVD5/NoHurB6GZ6ItK3oKvfXl5McNc3ENQU2t8DSf/Cgd/l3pkO40Glg40fyF92HcZDSHO5lyHjBOz8Rk6C7jFF3r97njwLq+3dMPZH+HG0vI5OCe96MOJzORDKOgUnN0BQQ0jcKU+X94vB0u4eDhd4ky15cDazkNVHUvHWa7i7azSxQZ74e5byZV2UJZ935zfya9JiJMTeIA+ZmYvklaL3/ghphyGqG7QcCX71kRRKzmYVseJQCptPpBMT6MHtnesT6WfAQ1eBa/8U52PLSoQ936PMiscY0ROp2XAMSguqA7+hOL9Hfh9ajpCnlHvXuzitXKmiOG4s6uMrUab8B8Peg+JCiF+NpNZTlJPKv8kgeQTRJNSbIG/dJZ+XBPk9LsqElqMguoecyF4am01+vQ7/JZcbCWwsfz58I0F7FWtA1QIFJgtnswr5eUcipzML6dU4iP7NQ4n0N1RI8JuWZ+RoSj4Ltp/GKsHtnaJoUc+HkGpaGDItLc1huOn8+fNXfS4PDw+H4aZGjRqJ4abrVLkXFVS6+IWmUCiQJAmFQmFfUbksli5dyubNm2nfvj2jR492G+wsWrSIV199lbS0NJ5++mmHYGfSpEn8/fffzJs3j8DAQKZOnUpmZia7d+9GVcaZNWJRwSvITUL6/T4UZxxX6pSaDUdx04eg1MhTuY058pDGphmOj/eJgOGfYVv3Hts7f8Rra9J4cmBTnvh5L0azzX6YWqlg3pgYuu6cgrr9nXBwIXSbDMuel4OYS7W/FzyD5YAH5JleZ7bIgQ3IAZBHAGz80PFxzW6Cvi/A8RVyQBXaUv4CD2kBliJ5ZtawD+B/D1xYkO8CpYrE+w9w34JjxKc5ric1oUcMj/Vr7DrgMebAtlmw7m3H7X715ZlK6cdhwRi5d6OE1hPu+4eTmsaMnLmZ3KKLXfEKBXx6ezsGtgitmMX7zEako/+g+GMi9roPIS3klaP/d79jgVSVFm6ZBT6RENEBVGrOZRcxfu4Onujqx8BYPZpFD6BI/tfhEkUtbmdx6MOsPG3lrVviCFYXweZPnT8n/rFw79+lT1dPPgBzh4Ip9+I2hVIuANtkcJ0biiwyW1l2IJknf9nnsN3XoOH3h7vROPTaynKk5Rl57o//WH3EcZXz7g0D+Ghsu0pZCVuSJA4dOmQPZlauXFmu743LNWjQwGG4yd9fLCFxPanURQUrytChQxk6dGipx5w7d45HH32U5cuXc+ONNzrsy8nJ4ZtvvmH+/PkMGDAAgB9++IGoqChWrVrF4MGDK6yt17XjK5wCHQDFkb+gw4Vf1Vs/g9sXyAU/L5d7DvZ8T17/6Tz6wzmmDmrKG4sPOQQ6ABabxKN/nWXJyOcI//tOuOt/8N9vzoEOwJ7vYOwPcr0nlUYeBikJdJQqaDYMfrzN+XFHFsvDUsHN5F6oY8vlnoLhn8H2WdDqNjmAujTQAcyNb+SHHeecAh2Abzef4pb2ka6DndzzzoEOQPYZ2PC+PCxnu+wPfXEB/O8Bzvb4ziHQATkemfbbv6x6qjdRAWWY8n8l+SkoFk3CocBVt8mw7FnnSvDWYrlw69B3wTeCYs9wvlofz7GUfOb/p6Fn4Sq0lwU6AIZDP9Oz2RjeXm/lv7M59AvMdg50QK5Wv+UTGPSW66AlPw0WPuQY6IA8ZLnwQXhkhxxE1iFpeSae+d35Nc0pMvP8wv/4+p6O+Hlc/UyfvWeynQIdgC3xmWyJT+eWdlfXQ240Gtm8ebM9oNm3b99VtxGge/fu9oCmc+fOYrhJKLdyBztVmatjs9m4++67efrpp2nZsqXT/t27d2M2mxk0aJB9W3h4OHFxcWzZssVtsGMymTCZLv4hz83NdXmcgLwi7o6v3O/fPkten6ZeG0gsZXXQI4vR3PACGQVJBHppOZtV5PKw7EIzqcpwwi1F8hfegT/cn/PEKojpAWoDHF16cXtYGzizvdS20HIkrH/n4jaPAEg5KPdobHjf6SEZTW7n58VZTttL/L77LK0iXCRAH/7bfTv2/yL3lOyZ57wv/ThROtevkcli42hKXsUEO6mHnYMavZ8cpLlSkCb38OQlkyEF8ttueUbLHS30+O7+3u1lQg7Pp2/jR5m75RRdu2bgtuV7f4QeT7oezirKhBQXBU5BHg7MiK9zwc7BczmYra4733edyiKrsPiqg518k4W5W0653T938yn6Ng1xe/7U1FRWrlxpD2iSk90kqZeBl5eXw3BTw4YNr/pcguDKVQ38Hz16lM8++4zDhw+jUCho1qwZjz32GE2bNq3Qxr377ruo1Woef/xxl/uTk5PRarVO3ZahoaGl/sObPn06r732WoW2tc6SbPLwjjvmogsJyZrSj7NZKPmTbbWVPnJqtklyj4ckOebWuLq2Siv37Fx6nEp9xbbYC2Tat13oZXIzqiupNBjN7rvaC4xuZn0Ul1JCxXYh4bq0drphKqUt5eLq9ZVsztsuZbOCtRgJeR0mAK1SIb8fbqisheg0YDRbsVpLOb/VBLj5fJTyegClXr+2MlpKf59tV3irSmO1SaV+jozFVg789x/bN62zDzeVM+vBQcOGDe3BTN++ffHz87vqcwlCeZU77f73338nLi6O3bt306ZNG1q3bs2ePXuIi4vjt99+q7CG7d69m08++YR58+aVO6GsJH/Ineeff56cnBz7LTEx8VqbW3cZAuTkUZVGHh66XJs7ILgxpB2BqK7uzxPdHZvVil6jxGaT8DG4jrN1aiX1tCb5C1ehgEYD3J+zQR84u1PuUWrY7+L2lIMX26JQygERyOdT6+SZV8n/OZ7LapITb/OSIPDCr0q13v4Y38TVDGwa4LYpI9u7SaxtdqPr7QCxfeH8Xtf7PIPIwnU+hk6jpEV4BeWWhcY5z2ZSKEHnJhdEY5A/Cz4R+Og19Gsmr7G14lQxhY3cP9fUhrey9VQeo9tH4h1cSk5O48Hulwgw+LtfoFChhJBm7s9bS7WK8HO7LybQA283/47KwkevZliLQIoS9pK19lvOf/sop9+9yX5bObUPN3TtyLRp01ixYkWZAp0ePXrw6quvsmXLFsxms0Nl7RMnTvDll19yyy23iEBHqHLl/pfyzDPP8Pzzz/P66687bH/llVd49tlnue02F3kSV2Hjxo2kpqZSv/7Fbmmr1crUqVP5+OOPOXXqFGFhYRQXF5OVleXQu5Oamkr37t3dnlun04kCaiDnpRSky2ukGPzkOlRelxXFtBZD67EXZjup5CBk20w5yAhsiKXRYFLNOlJGrCbCSyKoyRCUx5Y5nkOtg+6Po905i+f7TuDHHWd4ckATXvv7kFOTnu4dRuC/X0DnB2Hfj9BpIpxcJ8+uulRkR7lt+RfyDXQ+cnX083uhuADJmEvyHStJtXhQZFFSL8ifQFsaXpmH5edy5G85eLNZ5S9773C46SNY8ybZI74no0jCpPVHpfMgLaeAAGUBj3uHsO5ENvkmxx6G9vX9qO9vwGK1OU/b9Y+BhgMgftVlr4keBrwCCetdvzfDPkThVQ+F4hSSBEoFPNI9hFFNdATa0vEyHYfcMPdFS63FkJcCeefln/8+4fJ7e3lxTq8QpC6PoDjwG2k9XyfNN44ci4aQu7YTePx3/La87dj7c8NU+dyewXhp1Tw9uCkbj6ez+GAGT9x3PzFHFzrlO9lC4ojXNQfS6dUkWH7uMb3g1GWLEWo8oP8r7gMt73pw40fw8+3OPXA9poBHsOvH1WIh3jru6RbN91sdV7pSKuDtW1oR4n3lBOLk5GT7cNPKlStJSUm56vb4+PjYh5sGDhxIgwYNrvpcglCVyj0by8PDg/3799OoUSOH7cePH6dNmzYUFhZeXUMUCofZWBkZGSQlJTkcM3jwYO6++27Gjx9P06ZNycnJITg4mB9++IExY+TE2KSkJCIjI1myZEmZE5Svy9lYeUmweCoc/efitsBGcMcvEHThvS3MhL0/wJo35C84kPM5hr0PVjPFDQayI1XJIz/tIafIjEal4Ntbo+lo3Iph15dyjkVsH7kgZEEGrHiR7Ca3ciBoGP9mKIgJ9GDellMcT80nOsCDp7r708a0Gz8fH3nIYunTcrX0Xs/IeUPHlspfhJ3uh8jOsPABeW2adnfLs7MUCtj/G9Yz2/mv3Ss88EciaflyPopSAeM7hTA54iSByx6CFrfIK/vu/VGenRUs9wqk5Bp5eWk8Q1tFsuJQMkv+uzgc2qdpEM8Oac7XmxJYeyQVT52KkW0jaF7Ph9f+Psh7o1vTpUGg8yypvGQ5T2jrF/IaPzE3yO1d/y406i8HRNu+lKenh8ZBv5cgtAWFCgMnUvOZseIY97f3olP85+gO/HTxi943Un6/Qls69s4UF8CJ1bBo0sUgUa2XE4tb3OJcKb4wk1PZFu7/+TAnUi8GlX2bBjG9l56whWPALxK6Tgb/BnJ7PeQfFxarjTOZhXyx9gQJafl8NjSA0INfoz7yF6j15MXdzdn6I1hzTsXI9pFE+BkuviaH/oLtX8oz1hoNlD8n/rHyMKQ7pny5F3HNm5C0D3yjoPczcm+dZ91c5DQj38SW+Ay+WHuClFwjbaP8mDqoKQ2DPTFo1UiSxP79++25M6tWrbrySUsRFBHDjUMGc8vNQ+nbt+/18zdRqJXK+v1d7mBn2LBh3HbbbYwfP95h+9y5c/n5559Zvnx5mc+Vn5/PiRPyTJt27doxY8YM+vbtS0BAgEOPTomYmBimTJniNPV88eLFzJs3j4CAAKZNm0ZGRoaYel4acyEsfU6e0XQ5v2iYsFzuMTi+En681fkYpRombyWBcAZ9tMEpgbJVhC+zR0UR7q2RhyRK1j8pSJeDJq0X2TY9xRYrEvKyBTos+CsL5XN7BspfaqZc+b5XCBQXyYGCQinft5rlquUK5F/0JV+QNhuJmfkM/nQLhS7qeb01OIJxJ6ahOLcTej4FPZ6wFxwtMlt44+9DZBQUU8/XwDwXyZsd6vvx0k0tOHA+F+OFacG7Tss9GWqlguVP9qJhsJfzayZJcjBzapPcK/bfb/L7APIX/JB3ICwOtF5OBVALjUb02z9FufYt5/Ma/OGhjY7TtVMOwqwervOPJiyH+o7Djam5RsZ+tY2EdOf8opFtw3lrSCSeGOVA001x1sJiC7lFFpRKCNaDoigLK5Cr8KNYUhDoqXXu9ZIkuWdOsl34nJQj4booB8wF8hBlHQ1yLlVUVMTi5atZvWolG9et5tDBg9d0vhtuuMGeP9OxY0ckFGQUyD9oAjw1aERBXKGWqLSp58OHD+fZZ59l9+7ddO0q/9Hctm0bv/32G6+99hp//fWXw7Gl2bVrF3379rXff+qppwC49957mTdvXpna89FHH6FWqxkzZox9UcF58+aVOdC5LuWnwr8/ud6XfRpyzshDT66mTIPc67LvJ/b6T3Q5U+S/czk88IfE/ImdCdBeMlx4yZeSn8sTXzJ8ofOSbyW0BvlWQq11PYSjVLLtVI7LQAfg063p9B/4KGHn7pV7izpOsH+Bp+UV89vus8wY05Zn/9jv8vE9Ggfx6t+H2JeY7bTPYpP4bVcizw5p5pwzplDIiy7+9ajzSbMS4I+JMHmry2DCw5QOWz932R6KsuT8o5Jgx1Isr+vj7jfM+vdhzDyHoaLkHKPLQAfg7/1JPDmwCZ6BpQ8ReWjVeGgv+XOiqYcKKHXFE4VCXoDyahh8nXuoarnz5887DDelpbmvSXclfn5+DsNNMTExV3xMZaypIwg1xVWtoAwwc+ZMZs6c6XIfUKYFBvv06VOu7P5Tp045bdPr9Xz22Wd89tlnZT7Pda+40HWV6hLZZ+XhgaxT7o9JOUiB3v3slzMZhfaZOlXtaHKe230puSYsJbkdxfkO+ShFxVbMVgmVUuE2WArx1nMm0/1Q7ZHkPIqtNnRqF8G2q/WCShTnO08BL2Etlod63Ek/CgyT/99ivHDfjayT8qylS4OdXPcz3qw2ye1rIZSPzWbj33//tQ83rVmz5prO16xZM3sw06dPH7y9r22BQUGoy8od7NiuZa6jUDNoPeVZNe6m6gbEysmiwc3h9GbXx0R1wdfL/fL8jcO8KmaF36vQJsrP7b76AR5o8y5UOzb4y6/DBR5aFQaNCpPFhq9BQ06Rc0B4NquQJqFebDuZ6fL8Her7o3VXWyikhftGX9YWB2qdvFp0gZtf+mGXlGjRGORE7UQ36wyFtnQqqxDh7+a6yLPjPCuyNEUdV1BQwIYNG+y9MwevcbipT58+9oCmffv2osdaEK6S+Ct2PfIOk2c7bf7EeV9oS3lBN4OfnCg7d4jzMRoDxI2mLf54aFUuf/k/PbjZFRc7S801Yrba0KiUFVqHp319f/w9NGQVOgcrT98QSMje/5Pv3DANvC4OhYX66LmvezQL95zl7m7RfL7GuSdmS3wGLw5rztivnFeU1muUDG8b7n7Zg8BGck5Utosa8jdMdWiLA6960PtZWDLNeZ9PuD25GpCnhXeaKNecurz3TqGAXk87BTuh3nriInw4cM55cc1xXeoT4n2NMxdNBWC8MENL74dJZSAzvxgb4K1T42OoXavhnj171mG4KSMj46rPFRAQ4DDc5CpXURCEa1fuBOW66LpLUAY5b2fDh7D7ki/FmBtg5BfyFzKAMVcup7D06YvTif1jYfQcqNcOC0oOJeXy2IK9nM6Qh3Z8DGpeuaklg1qE4u3mSyyzwMS6o2nMWHmMs1lFRPgZmDKgMf2bhxJQWkHNcjiWksdjP+3laIo8pOWpVfFUrzBGqTbiv/kN6PYYdHkYvBxzUdLyTMxcd4IGQZ4kpBfw4/YzmC4Mx7WN8uPjsW0J9NKy9kgqL/91kOwLAVVUgIFPb29Hqwjf0qtGZ56EP+6Hc7vl+2qd3JauD8u9N+4UpMsBzKaPLvbIhbeD0V/LQdSlLCY5CXrhQ3L9L5DPPfxTiO3tsmDmuaxCnv1jP5tOyF/caqWC2ztF8cSAxgSXYXqzWxnxsPZtOLQIkJCa3kRWt+e4a2E6h5Pz6NkoiBeGNadRsFelVfMuL5vNxt69e+3BzNq1a6/pfM2bN2fQoEEMHDiQ3r174+XlIoFdEISrUmmzseqi6zLYATl3Jz9FzgfResoFMT0uSym1WiA/WZ75pFSDR6DcM3SJ1DwjWQXFmK0SAZ5aQr11qNx84RvNVr7ZmMD7K5zzSp7o35iHezfAoK2YDsf0PBOZhcUUW2z46RWEKHLQGjPkISNXa85cUFhsIT3PRPGF5OvCYgseWhUBnjp7MGax2kjNM5FZUIxKqZCfd1l7pwoyoDBdDlqu0BYHZqP8fhVlyb1rHkHyzDV3cpPk60jShfetHrgo5Fsiu7CYzIJiCoqt+OjVBHvprq26etZp+LqfHKhdyuBPwqh/6P/tKWySPFT292M9aXKNRS3LIz8/n/Xr19sDmsOHD1/T+fr27Wuf3dSuXTuXBZMFQah4Itgph+s22KkGiZmFDJix3t5bcimtSsnqqRcKXFqMcs+SSut2unOlMhfK09/VetBf3Wcis8CETZJ7SWwS+JKPSrLIaxWpK6YHq7oYzVbyjGZ0apXrYSibVe6FWvOGy8fndX6cqak3suKI3JM0NC6M929tjZe+4oa0EhMTHSprZ2W5r212JUFBQQ7DTZGRV1cgUxCEilVpU88F4VpkFhS7DHQAiq020vJMRNnOy6s0J6yTey96PgmRnapmPRWzUZ4KvuljOLcTvCOg11Q5CdjDfbmIS6XkGFl7LJX5W09jNNsYFhfKra38CFj/JKQfg8YDofND8nBhLesBMFvkRQTnbDzJ9oRMAj21TO7bkLZRfgR4XpLbY8x1XLDyMt6nVtKjyUhWHJHvbzyeTp7JUq5gx2q1smfPHnsws369m9WoyyguLs4ezPTq1QtPT/cJ+IIg1C5lCnbKUxVc9IwIpdFeIS9Dr7TC7J4X81Iy4mHB7dBxopwwffkwW0U7vxe+u+li0cmMeLmsQb+X5BwfXen5Fim5Rh79aQ87T1/sRfhsbT6/7tbx+63PEvVzP3m15L0/wgOrIahJZT6bCnckJY9bv9xiD1gT0guYMG8XE3vG8nj/RvgaLvRYqbSgK2UdHL0fucUX7/oaNKhcJHbn5eWxbt3FQpRHj5Yyrb4M+vfvb8+fadOmjRhuEoTrRJmCHT8/vzIX47zS2jrC9S3QU0v9AA+Xa9VE+BkIzD10MdAJbgZhrcCUJ9fJ6vxA5QY7eSnw1yNyoBPeXi6bUZAh169a+xbEjb5isHPgXI5DoFMiJdfED4fMTGt8I5qjf8mrQ696FW6Z7b4WlBtWmw1VNXxJZxYU8+LC/1z2zH2zKYE7Ote/GOzoPKH7Y3DSdXJvaqsH+XWtvHaQJSeVhrYkHpk4i5UrV5CTU8qaQlcQEhJiz50ZMGAA4eFuCodeh2w2CaWyfEWVBaGuKFOwc+lshFOnTvHcc89x33330a1bNwC2bt3Kd999x/Tp0yunlUKdEeKjZ9Zd7bn9q23kGi8W1PTSqZk1rjWhfw6Sp1MPeVdeyfnMNjmB99ZvITtRLuJZWYqy5CTscb9A0n5I+hcCG8gzpfb+KK9UHBDr9uHFFhu/7Ex0u3/RoRwm9LuZ0KMXVhk/uhSKsssc7JzLKmLbyQxWHEqmnq+B2ztHEeFnwLsC81xKk1NkZv9Z94HIjoRMGoVcEgzWaw3t78W6ax67zltZEW9l5UkLG89Y4bXRDo+dX452tG7d2j7cdMMNN+DhUY4yE9ehpOwidp/J4u9/kwjy0nJH5/pEBXjgW8um/AvCtShTsNO7d2/7/7/++uvMmDGDO+64w75t+PDhtGrViq+++op777234lsp1CnNwnz454kb2JmQyX/ncmhRz4eu0V5E5B2QZxCNnQ9/P3Fx2jTIdbwGvCoXfNRX0qwdlQYGvQX/e8CxcvfOb+DGD6+Ys6NQgKqUX84qhQKkSyqmK5Ryba8yOJ1RwJjZW0nJvbjK8rwtp3hjREtGtYvEU1/56XeldQrYTIXs3biSLfPlKdvHjx+/pmuV9M4MHDiQVq1aieGmq3Quq5A75mx36En9cfsZpg5swr3dY2rdGkeCcLXK/Rdy69atzJo1y2l7x44duf/++yukUULdplQqiPL3IMrfg1HtI+Wp7wvGQWQH6P0c7PneMdApsepVaHZT5QU7aj2sm+4Y6IBcqHLZ8/Cwm9WkL9ColNzZpT5LDyS73D+mlS9Bxy8psdLiFjBcOek532Rm+pIjDoFOiZf/OsgNjYOrJNjJTjlLUOJ6Du/aTNGpvUjFjitwf1COc4WFhdl7ZwYMGEC9em4WVBSumtFsZebaeJdDxh+uPMbguDAR7AjXjXL/hYyKimLWrFl8+OGHDttnz55NVFSUm0cJQikK0uH0Jkg9CPf9A2ted3/siVUQ1Lhy2mEuvLjY3+UsRsg8IefxlKJpmA8Dmoew6nCqw/aYQA/GNJJQ/bJa3uAZDP1ecLnA3+WyCsysOOQ6gJIkeVXnmKBrnzlksVjYuXOnPRl48+bSg7sradOmjb13pmfPnhgM7stSCBUvq6CY3/e4+NFwwdL/kqp0bSNBqE7lDnY++ugjRo8ezfLlyx2qnsfHx/PHH39UeAOF60DJzKeiLLlHx2Zxf6wpv/Lb4Y67WmKXCPbWMX1Ua+44m828LacwWWzc3CqM3rEehG15CSI7Q7OboeUI8CtbaQCbJGErZTWsAtMV2n2JnJwc1qxZYy93EB8fX+bHOlEoiYrrwq0jhjH65mF079SuzBMZhMonIS/n4E5eOT43glDblTvYGTZsGMePH2fmzJkcOXIESZIYMWIEDz/8sOjZEa6O3hcCGsilFM7vkdfUObvT9bGN+ldiO/zkau85bpKMQ1uV6TTB3jr6Nw+lW8NArDYJjUqJxWpDcfPHckCl9SrX+jreerXb2lUA3Rs5rqIcHx9v751ZsWIFBQUFZb7W5cLDwx2Gm0JDQ4GSaugWtColumoq+CqUzlOnpmejIDYeT3e5f0jLMJfbBaEuEisoI1ZQvmY2G+QlQUGqXJfJu548TKMtxyyZ+HXww0jwCpOTgX+717mQZeNBMOhNefq3V+mlD1zKS5Erh5vywCtEbuPlqyMfWwELxsjjQ5fq8hD0fVEOzFyxmiEvWS6tAfLz8A6V15upAHvPZHHbrK1YbBKSzYrp/FGMCXvRpx4k5cT+azp3m7ZtGTJ4MAMHDqRHjx7o9RVXlLUqFZosZBaYKCy2kVFQjIdWRYiPjjAfveseJ1efW68Q99Xna6EjSbmM+GKz03IB3RoE8Okd7Qm+1iKvglDNKrVcRHZ2Nt988w2HDx9GoVDQokULJkyYgK9vKYuI1WAi2LkGFjOc2wW/3i0HEiDPaur9HHQcL9dkKoviAkg7Cqtfl4tjdnkYdnwFpzfL9aPajpOLkP45We6BGfsDRHQEVRk7J9OPwYI7IONCJXOFAlqNhYGvy0GJvR35kHoEVr8G5/eBTz25UniDPu4LdZry5Vyivx6VAymQe29u+hiaDr3i2jyuZGdns3r1anvvTEJCQrnPUUKtVtt7Z6Jbd+XdbQWk5MnJziqlgvt7xvJgrwYEetXeL76MfBP7z+Ww6Xg63205heXCuF+wt47Zd3WgdeRlBVqtxZC4Qw6qS2p3qbRyQNv+njKvll3TmS02TmUU8NGqY2w6no6PQcP4HrHc1Lpe2Wu5CUINVmnBzq5duxg8eDAGg4HOnTsjSRK7du2iqKiIFStW0L59+2tufFUTwc41yEyAmV3lBN7LjfkeWowo3/mKcsCcD0qtXBwz/Tic2QoH/nBMHlbrYfK2Ute9scs9D1/3l/97ue6PQb+XnWtVFWWDuUBuh5ebIKdE0n74qpdzbxDAg+vk6uSXkSSJEydO2IOZFStWUFR05ZwgdyIjI+3Ttfv3709wsHObEzMLGfrJRvJd5Gq8fUscd3SuXytzbiRJYtnBZJKyjby++JDTfoNGxfIne1E/4JKexsyT8EUXOei53B0LoOmwSmxx1SswWcg1mlEpFQR76Wrl+ywIrlRabawnn3yS4cOHM2fOHNRq+eEWi4X777+fKVOmsGHDhqtvtVD7HP7bdaADsPZtqN/9ysHCpQy+8g0gPxUWPigHPJezGOVF+bpNvvI5M0+6DnQAdn4NnR90ThY2+JWtAKm5CLZ85jLQMVslts15jpXF7Vixeh3bt2+/8vlK0aFDBwYNGsSgQYPo1q0bOl35emJ2JGS6DHQAPl19gv7NQgn1rX2/9lPzTGQXmJm35ZTL/UVmK+uPpnJ3t5iLGw/8z3WgA/LnNrJz1dRiqyKeOjWe11LBXhBquXJ/+nft2uUQ6IDcTf7MM8/QsWPHCm2cUAsk/et+X+ZJ918oZWE1yz1H7pzfW7bzZJ50v89cVKZZVm5PnXKeNcs3s2J3ESviLZzOuTzoWXHhdmVardZhMb1mzZpV6C/wI8nua9wl5xox29zP3KnJLFYb3ga1y/VkShw8f8lzt9nK8Ll1XtNIEITaq9zBjo+PD2fOnKFZs2YO2xMTE/H2Fms2XHeiusCB313vC24q599cLbVWPkfKQffXLovAUtbl0XmDxn0itSRJHDt2zGG4yWS6+i/CqKgoezDTv39/goKqrvegdaSf232R/ga0qtq5SrFGrSSnyEzDYC/i01wvTdCuvt/FO0olRHWGw3+5PmFQU1DXnSRlQRCuItgZO3YsEydO5IMPPqB79+4oFAo2bdrE008/7VBCQnAjP03+1ahUyzWfauvYeXERFGXKU8E7PwT7fpCTjC/V7+UrDgWkZ+VQbAO1AkICHBPcTZIKbd//Q/Gzi8+V1gsaD3BsC5KczKz1lHuFCtLkkgzeYTDuNzi7XV6dOf+SBf+6PoLVI5izp08Tf2AX8fHxfPzlNxw6cuwqXhRZp3AlgxqqGdhQS7dX1qANbSK3T7Jh03hgtlhRSFZsqsuGlPKSMZvNmCQVuSo/dAorgcpCUCjIVPhiNNtQKRQEe+vsBR1zi8zkmywoFHKRVa36smngZiMUZgASvaI9iPDTcy7bedhx6qAmhJQxYTWzwITRbMNmk9BqlNhsEsFeOlTugiVzIRReWJXa4Oe4kKLVIs+GkmzydoNzoVdj1nmUkgWbUovez3m6dIi3njAfPRN7xvDCwgNO+330ano0vOxz2OxmebjK7KI3qP/LdSZBWRAEWbkTlIuLi3n66aeZNWsWFov8x1qj0TBp0iTeeeedcucR1ARVkqBclC3P/lj1CqQeAp8I6DVN/qNbnpyWmiDzFGx4Hw78Jn9JNbsJOoyHpc9A2hE5EBn4OsSNcvnlBZCdk8u2hCzeX51AfFoBUQEGpvSOpm/TYDx1ShSph9CsfhlF/a5y78vGGfJMKZBnZd02D8Jay8VCN3wA//0GklV+Pfs8ByfWgF+UPJvr3wUU5WVxUteK+MC+xG9dTPyxw8Rbw4nPVnDqTCJms9llO13R6/XycNPAgQzs0pImkUEoMk/Iz79kRppnEAx5D+q1gp1zLwSD+UgxN6Do9ihs/RybuQhL/9dRBUSjOLkO5fp3IPs0BDUhq+tzJPl3BK0n2QVG3l6ZwIFzuQR76XiwdwOGtwknq6CY6UuPsPF4Gh5aNXd0jmJ8j1jC/S70SmSfho0fwf6fwWpGajoMS5//49FluSy/sMKzXqNkSv/GjO1UH3/P0qfJ55ssHDiXw1v/HOa/czkEe+kY2zmKpqHenMko4LaOUc4BU2YCrH8PDv4hf1aaj4S+z8vrKuUlwc5vYeccMOVA/R4w+E0Ibg4aPaacVDi+At2m9y68Lo0x9f4/pOie6H0cg5esgmL+O5vN3sRsZm84SWGxFZBXrv7izvY0D/NxrPhttUDyv/DbePncIH/OBr0lJ9WXJV9LEIRqV6lTzwEKCwuJj49HkiQaNWpUqysPV3qwY7PC/l9h0cPO+zpNhP6vuF+/pabJPgPfDJTXlLmU3g8mrpB/KXsEyb0pKtd1d4pNJn7afopXl5xw2vfIDfV5uL0O76+6yF+OIK+v0+4uUOnk1yknUZ4KbjHa2yJJEhlFEvGZNuLzDcTXv534zf8j/mwq8Zk2kvJL/5hrlBAbbMC7QQfiU/PRFKZTFNISfUw79NFtUBnkIdr+zUJ4/7bWBHjq5C/yrAT4YyL4xUCXB+VAD+SepXpt5KnNyf85XkylkafOL5oMTYciGQJRbPnEqU15N81mo7YXk39yzk0aGhdG83o+zFjp2APVJNSL7yd0IUxKg7lDnRdI1HljfWA9JywhmCxWAjy0BHvryrQw4KrDKdz/3S6n7QOahxAX4cuuU1l8fHtbgkqmsGefgTn9LgaAJQz+cP9qWDhJ7m27lFIFE1diCmgKG95Ht/Vjp+uZBk5H2WkCGq1jYGUyW8ksNJFvtJJrNKPXqAj21hHiXUqPVV6yPPXcZr7i51YQhJqn0mZjlfDw8MDf3x+FQlGrA50qkZcMK15wvW/Xt9B1cu0IdiRJnn11eaADYMyGvT/IQwBX+LJIzSvivVWuE49nb05kbLMYvKVLkmWPr4DjK7DYJM72eI/4314mvvEDxP+3g/g9J4nPsnEyy8bFOpmFwBdO5/bVQcMAJQ3DA2nYZxwNm8XRMNSLhhufIEJfRNrInxm+VMtHfRsxb3MCpzKchzhWH0klOcdEgE4B8Wsh/SgUZsq3hZcEs16hMOwD50AH5EBo60w5gIvujuLncS5fi0KFJ28tOeJy39IDyYzuEIlGpcBsvRjIHUvJ50xmAWGZq12vBG3KQ7XtC5oOeRvUZc+xS8k18upfrnOnVh1O5fbO9fli7QnOZRXJwY7NCv/97hzogFwWZO8PYHDxh8lmhWXPox45G9X2z11eT7f+LYqbDoOgGMftGhX1fD2gPP+UvMPkmyAIdVq5gx2bzcabb77Jhx9+SH6+PKzg7e3N1KlTefHFF1GWd1Xb60HRhS9DVyQJ0k9AYOkFJmsEU577pE6Ao0vkdWu8Qko9TVaB2T7McLliUxGb9x1m7zEb8Rlmuacmy0Z8lsSpbBsW26QLR77t8vER3goa1vOlYUx9GpqPysGNv5KGAUr89VyY3WSCJ6aAf4y8cOBuI6AgRxNCal4KId46l4FOid1nMmnh5w2WIji10fVB9VrDiZXuX4RTG6HjBPk1tbl+LfJ0oZzLdhEsXHA8JY9wPwOnL2vr+bRMOLLI/bWPL4fez5TrSz7PaOFslvtZa8eS84jwM7DtZAZtovzAmAtH/nZ/wmPLoMVwOO7iNUrcjsJS5L5WWXH+hRytmDK3XxCE61u5g50XX3yRb775hnfeeYcePXogSRKbN2/m1VdfxWg08tZbb1VGO2s31RXymK5ihd1qoVSDrpRhPr2PfEwpJIuZ/MwUTOeOYM5OwpKdjCU7CUuW/F9rQRbjZrh/vFajIjZAS8OmLWmoz6ahItEe0MT6K9GrFXKeTLObYK2bz6JaB4oLwzaXlHPQXtikVChQKnBbfNNXr73weEnO83DFXFR6b53OWx6GK6XquUYp56+7G2j20mkochE0qtUaeVjR7bV9Lj7/MtKoFKW2xVuvochsxc/jQq+eSlP6Z0Xn7X7Kv8YgJ5aXpoLKcAiCcH0od7Dz3Xff8fXXXzN8+HD7tjZt2hAREcHkyZNFsOOKRyCEt5eLXF5O7wt+0VXfpquh9ZCH3I67WTem66PgEYDFYiExMZH4+Hin28mT8eTllV653NfHm0aeBTQM86Fh87Y0aBZHI28TDfN3EHHftyg3vg8D35CHaeaPdD5B8n65VMO6t11/O7e+4+IsMY9AiLsVJBv+ecfoEhvN1pMZ9G0WwurDqU4PVSsVtI3yBYOnnGTb6jY4s835Gonb5STtLZ+5fpKtboNDf0L7e+UyFCXDPVFd5OT1nET8M3bTq3F71h9zLuSoUysJ89WRmuc8Db5JeCAEPgiHFrq+dtfJ5U6K9/fQ0rtxMOuOOfc06dRKogIMdIz2p2/TC716Oi/o9gicXOf6hF0elkuDuNLubqxaH5ReIY4z50oENcZmKGMZEkEQBK4i2MnMzHRaYwegWbNmZGa6Gaq53nkGwi2zYd7Qi3V4QP51OvZHuQBhbRHWCtrfQ8G27ziZdWGIKdNGvFSf+E2fE3/qWU6fPm2fqeeKQgGhoWHk6YLBJwyNfz3UfmF4BkXw3WOD6R7riybjKEm6WPaeL2TJ8QLOe+kIbRdKftIafLxCwJgDQU3kYGHPdw7nNzcailEbhOdNn6D8+3HHiwc1lmfBaQzyjBxzAYS2hKR/8StO4p3hA7nvhwO8MSKOo8l5DkM3SgV8Pq7dxRlHER3BtkMuLXB0ieN1WoyUu4b6vyLX2br8NYwbLQ/HpByBkTNhy+fyEOCZbXL9roZ98WjSl9eb1eP2r3eRlHNxurhKqeDzO9qx0UUQ9MzgpoT56sHWVA4ots9yPKDRQGg80O17446PQcNrI1py+1fbnNry6dg2tLAd43PdXNgUAO3ullekDm8HbcbBvz85nqzlKKjfFXo8DoufdNwX3Bx6TEHlFUrxrT+g/XGEYw+Q3g/zLXPR+9eifzOCIFS7cs/G6tKlC126dOHTTz912P7YY4+xc+dOtm1z8Su3hquy2ljZiXKdp9Nb5MXymgwG38ga2SUvSRIHDx5kxYoV9gX1bDYb3bt3J/7ECVJSXfzivoROpyM2NpaGDRs63ryLiVlxL7p6LTnX7xO2pqrZm2qjeaCS3hEQ7u+JWqPnXGYed/4vzSl35oWB0dxRMB/vPbOg26PQ7RGsuclY9/+G1WImq8Fwtmb68Nzy80ztHc79rXWoDy+Ue06aDJEDDZ9wuccncTt8P8Kx3EVQU87ftphDacV4GfQk5RjZeSqTKH8PhsSFEeZnwHDpzKX8NChMh5xzcGwpKDUXptz7wd6foGE/+f8P/A+KMuTCoJ4hkHUa/ne/POOs9Rhoexf8NMaxLRoPrHcvIsMQw67zZjbFZxId6MmglmGE++rJKTJzIjWfpQeS8DVouLlNBPV89fgYLgwlFWZCzlk5UdhilNsV0OCKOVXunM4o4GhyHkk5Rg6cyyHYW8eI1iHU3/0uht2XBVV9XpArxdus8tTuA7/LwV+r0XKulGeQnK+Uex4OLpR7cJoOhdA4ufgqYLGYkbITsR5bhTrtIJbwDihjb0ATEI1C5AYKgkAlTj1fv349N954I/Xr16dbt24oFAq2bNlCYmIiS5Ys4YYbbrjmxle167UQqNFoZNOmTfZgZt++feV6vL+/v3Mwc+EWHh7uOlk95xzM7nkxYTukOfhGyTO8ss/ApK0Yjyzj9dNx/LTHdXLuqvHRNPqll/xF+sBa9hVH8sHqBFRKBXvPZJFrvNir9MrQBtx3Q1PnL8fc8/BVH8hPcb6AbxQ8sOaqgwIn6cdh8RS5Nyn5oNyTs+D2i4HNyC9h1avu23L/ymrv/cspMjP5x91sPpFB/QAPGgZ7ERfmwcOW+Xju/tL1gyZtkXvNBEEQKkmlTT3v3bs3x44d44svvuDIkSNIksSoUaOYPHky4eHh19RooeKlpKSwcuVKe0CTnOxi2ngZ+fj48OWXX9K0aVMaNGiAv7/rBQNL5R0GI2fDgrFyr0bqYfmmUMprz0gWMj0a8Mf+DLenWJFgplF4ezi7E2n3PHb6Pc6mE85DOgDzdiRzU6t6BAf4Oe7IT3UdXICcC5SfUnHBzolVcGqT/P8egXJQd2kPjs679LYUpFV7sJNVWMzmE/J7ciazkDOZhTzQtj6ey35w/6D/fhfBjiAINcJVrbMTHh4uEpFrCEmS+O+//xxqN12LJk2a2Ctr9+7du+J7upQqiL0BJm2W15pJOSj37nR7RF4ZuSAVSanGZHFflDLPLIH6Qt6MMQeru2lTQGGx1fWsKusVVky2us85KjdjzsX/V+vlPKFLuZl6XiltuUoWq/OLqFXhutxCCaP7wqOCIAhVqUzBzv79+8t8wtatW191YwTXioqK2Lhxoz2gKc/74UqvXr3sAU379u1Rqco3DfmaaQwQ0gJu/BCKC0FruBi8WHzwzDtFl9hYtidku3x4/2gtHJQX61O0HkujYvdT+wc1DcDX08UKul4h8hR0i4uinlpPOam8ojQaAOumy/+fl+S8ppJKIz//S3t7HNpSdcVC3fHRq4kO9HBY02fjGRNtY/ujjncTYLcY7nq7IAhCFStTsNO2bVsUCgVXSu9RKBRYrVf4lSq4lJSUxKpVq+y9M6lXSAAujZ+fnz2YGTBgANHRNXRqu1rnXBXdIwC/6Fa87Kdj5Jkch9WBAbrG+BFdeEBesTmkJYS3paXFk4bBnsSnFdAk1Iv/6+VHQ0MRSslCYIgfWpWLz61XCPT9P1j5kvO+Aa+BVwWuqusXDQ37Q/xqeeju5Dpoczv8+7O8f/8v8kysDe+7aMur8mrM5WW1QH6ynECNTU6K9g696mT4EB89b46M455vd9hn82dadJweMIucdknoVRCYf4zQLa/LJTQiOslJ+IIgCDVAmRKUT58+XeYT1tgv1lJURYKyzWbjv//+swczq1atuqbzNWvWzGG4ycurlixMWBZmI8XZ5ziZq+TDDSlsOpmNr0HD+G6RjAxNI3TFw/KU5vb3gm8EAOczcll/OIkBgakEL3lA7kEBOZjq8yK0v9u5knVhJiRugzVvQWa8PJW930sQ2dFtAdOrlpcMB/6AbTPlCuCjZstlEzZ/DLlJcgFKz0C5aGZJW/r+H0R2Ao9ytsVcBAkbYOFD8jVArtl14wx5mry+7GUiLlVYbOFYch7vLDvCja3qcTw1n5+2n8FyYZwwKsDAVyMjaZazBUXTwfZZVYIgCJWl0guB1iWVFewcPXrU5ZpEZdWnTx97QNO2bduqH26qbsZc8oqKybcqUapUBHtoUBqz5GRmz2BQOXZMSpknUXzZ3fXKvGN/hOY3ub5OQbo8nKXWVe6Qkc0GBalyjo7OW15xOj9F7oXReMhBTUW0JfUwfNn9YiHVS92/Sg6grkGesZg/dp/j1b8POe3zNWhY8nhPIvxFvTxBECpfpc3GysjIIDBQzmdITExkzpw5FBUVMXz48Fo57bwy/fbbb6XuDwgIcBhuioqKqqKW/X97dx7fZJU9fvyTpEm6pfsOZZN9h6IsooIgoIIiuIEoLjPuKKOO29f5qTPuM+roKO6KO664MOiAiiCisktZBdnpvqZJm6RJnt8fly5pktJCd8/79eqL9nmeJLdJaU7vPfecdiI0Ckso+MxDmGu9idrzVXCgeSE0Bt3OpTWBTmi0arTZZbQKLjxOsBdBRJ3ZHTjxAMeWD45iQK9mhPR6KC9UwU1YjFoyc1jVMY+rpl1D8f6jLSOOBj4NHYumqZkip1Xl+4Qn1Nze7YJfXg4c6IBaKpv5euNalHgq1eNV2iEkDLsugedX/B7w0tKKSn49WESnMHfNmIQQopU1ONjJzMxk2rRpHDp0iF69erFo0SKmTJmC3W5Hr9fz9NNP8/HHHzN9+vRmHG77csstt+BwOLDb7UyaNInTTz+diIjgvZBEA7ldqpv4l7dA7lZ1bMytYD2iPrekwvnPw8/Pq2UjTVMtGCY/oor8NdWbsNsF2ZvVOPJ2qGNpw1Xn928fhKxNKm/l3KdUh/TVT6rlpIvehF/fV8X0vG61HX38/8GA6erz+jisKufn67vV96vTqarI5/xTFetzV0Be4O7kgKr5U1ne8GDHlg+b3obVT6vg6oy7cfWcTb4tQGL3UTsOZnNO1vNwyjXto8GtEKLDa3AZ0jvvvJNBgwaxcuVKxo0bx9SpUznnnHMoLS2luLiY6667jscee6w5x9ruREVF8dBDD/H0009z9tlnS6DTVEoOqNYbVYEOwIEfat5YJz+sivjt+bamN5b1CHw0Fw6va7pxFO2FhefUBDqg+p99MEfl/uj0kL9LVWnuMhKMEXDmffDdQ5D5UU1X7/JC+O9tqlfWsbahH14HH15eE9hpmupV9uY0VbDRGA4p9eyITOyrrmkItwPWvqQCN6dVLX+FWjDn/kqSJfgOuAEJRti1BN44W9UJEkKIVtbgYGfdunU8/PDDjB07ln/9619kZWVx4403otfr0ev1zJs3j507dzbnWEUHVGBzkl1aQX5ZgG3XATgc5Xh/et5/y/iRjdA5QyX2OstU4b5Alt13dIfSCXJVqOTiQPV6XDbYsxxOGq++9rph41sq0EkfBWNuhlPn18zipAyGKY+p5ajSwzX3Yz/ahqLsaMFBWz787171eVisqk008zU4/zk1g5STqZa1TvmzqmcUyOl3NHxWpyzXt5Hp8Lmw5j8kbX6O+acGXm6LDTcyKMqunn9bHuxb3bDHEkKIZtTgZayioiJSUtR23MjISCIiIoiLq8l/iI2NpaysrOlHKDqkknIXGw4U88TXu9iTb6NrXDjzJ/ZibK9E4iL8t0d7vBr7C+wcPnKQMw7+FPhOv39MtV7Y/F7g8wB529VSz4lylaneWsEc2QidhqvZpZBQtXssewu8d5HaBdZltApS3E4V4Kx9Wc1YJfVXzUPDE+DLeWq8MV3h9DvV7FD+Tug2Fk69FX5+Ud3ObIHBl9QETzFdYfbHsPjamm7qoTEw9WlIaMR2cEepb+2f0Cgoy0FXlsPk/r+SM3YgL/6Uh8uj8oN6JETwwvROdPp6Vs1t9nwLQ2chhBCtqVEJyjqdrt6vhWiISo+HJVuyue+zmmWovQV2blm0mVsm9OL603sQbvb90TxYVM55z63myhEJjI1MxZAfYBbxyAbYuxIS6skTCYsF/XEVDvdlMKnWF0V7A5+3pNZs+574APz0HBz4seb8/h9UB/aQUJVXVCUnE969ECY9pMbq9ajH+Ox6mLtENfI89VZYdJlKdgYVPP38Ahz4CWZ/oMbVYxxcu1I1KdU0FQhZUv12sNWr7nKXplUXYoxfdgs3DryMi+ZcRZEnlFADxIaHkLTsepUXVCX+pIY/nhBCNJNG/da/8sorMZvVWr3D4eD666+vzkNxOoMnLApRW57VyaNLdwQ8t2DFHi4c3okutYKdCpebF1bswe7y8OGWEi6fdiMp+1YEvvP4Hmr2wmAMvMQ0et7xFemrKywGTrtddbAPZNCF8NkNaueVJcU30KnS52x475LAt//hSTjnX6peTpXVT6kk65+erwl0asveDHk71ePp9aoGkSlcBSlhsSqZuTEi4qH7GbBvpfp6139h4MzqmbPQre+SvvVd0kElXl/wIhxZX3N7nV51ORdCiFbW4JyduXPnkpSURHR0NNHR0cyZM4e0tLTqr5OSkrjiiiuac6yigygqd2F3BU7EdXs1cqy++TulFW6+26UqSufbnCzJi8c6+k7fN2+dXuWjhISqYGbWItWWorY+U9V29GD5LI2VNhxOu8N3HHoDjL9Xzdw4y1Tfr6xf/W9rilQ5LcG2iFcUq4Cttr0rVBJ27QCorh1fqH+t2bD5fTVL9M4MWPeqyv9pjLBYOO8/KqkZ1O6xvlOhyyjf68xRcNFC+OGpmmMGk9p1FtW5cY8phBDNoMEzO2+88UZzjkP8gRgN9cfY5hDfYESvhwhzCAU2NZvx0Lc5ZJ88kTmzziOi4FdCjQYsXQajMx7taWW2QPfT4cZfVM5LeRGkDVPtEo61tbsxwuPUktLQ2WoJTW+A1KGgN0LWBkjLULk5u5b439bjOvauqLpBmaapZS1ThAqkAgmLVYHOB5fDkVo7z7I2wS8vwhVfVFedbpDYrnDF51BySO0sC42BC15W7TpytqrAMrGPCt6mv6B2o5mjIGWQOmcM0JdMCCFaWBMkLwjROHHhJronRLCvwO53LiHS5LetOTHSzNwx3fh7rYq9r60r4PX10Cc5nZfmjCAqoc62foNJvVHHNnP7ktAo9VE3NyW2S83nPSeB7t6abfBwdBlKU8GDo8T/fpMHQNG+Oo8Voz4yroI1zwYez5BZcPAn30CnSulhFZRZUlUE2VCWFPWRXrvycldIHeJ7XXgsJB1/xXAhhGgujfiNJ8RxqnRA4e9qmePTa0k69DXPXToYS50kZHOInhfnZJAc5TsboNPpOHdQKid3q+kRFaLXcdeUvtw1pR8v/bCXez/dwrr9RRTULXbntKkZiW//AZ9eB9s+a/xyzomypMDUf/sf37oYLn7TvzlnWCxM/LtKOq5iMMEl76gKyyOvV01Q65r4d5VLtCHALOzom+DC11X+zRc3wW/LavqHCSFEBye9sWiZRqB/WO5K2L9SJeJWFdEDvF3HcmTqO/yw18qGA8UM6BTNxL5JpMWEERJkmSuvzMHveTY+35zFOYNSWLTuEEszc3yumTIghX9MH0CiJRRcdtj+GXx2o+8dxXSFuV82/6xPbU6bKgSY+RFYs6DvuZA6DCKP1tbZ+V/I3Q5dx6glOH0I/P6dSoBO7q+uj+5cExhZs1VRxe2fq6W5wRer/Bi9ARbNrkkqBhXogEpsri1lsNq9FZXWMs+BEEI0MWkE2ggS7DSjkoOwYLQqtFdX2nC4fLGajWikb3bk8qc31wc898Kc4Zw9MBUK98JzGYGTgAdeCNOeBXMHrGq99VP4+Cr1eUiomtFZNDvwtaffCWfc1bgt6UII0UY09P1blrFE8yraFzjQAZXMas9r9F3aHG5eW70v6PlXf9hHaUWl2hEVbLfT9s9UDZqOqMto6HyK+rzbqaqwXzDrXzuu10AIIdoT+XNONC+XfxKyj0C1cI7B7fVid7qDni93ufF4vYETf6t43aAdow9VexWVChe/pZay8nbUn5vjsvkmTgshRAckMzuieSX0Dl7MLjLpuJawokKNnDMwNej5swekEh1qVLkvwaQMUlukO6qoVBhyKZx2myoEGEzPs5quC7wQQrRRrZqzs2rVKv75z3+yYcMGsrOzWbx4MdOnTwegsrKS++67j6VLl7J3716io6OZOHEijz32GGlpNQmVTqeTO+64g/fff5+KigomTJjAggUL6Ny54cXMOmTOjr1AfbjsaktwRFL9DSBd5arIXXmhKsYXkaCCkSqVTtz2fPKcJgoqQKfXE28JJzk6DIM+QDBTfBAqilSi7fo3YP2r/tfMfB16TwJbLlSUqvFFJKr6NQFUejzkWZ0U2FxoaITo9ZSUu3C6vXi8GlU/yL2TIokKM2JxZGMs+R2dy6bGsfUTlfQ7Zh6cNEHVrAm1qLo4bqda8nLZITRaff8GM1QUqmOOUgiLBx3qOTKY8IbHk69PJtfqQI+XeLOHZEMZeh2qS7jXq74fS4p/gUB7vvpw2mqCLr1ejaW86OiW9mhwlmH3GCggmmKHRpjJSEKkifjI4F3H8XrUbI69ALW9PRo+nAs5W3yvCwmFa79XhQ+rXrZSK4XlbmwON9HhRhLCjVgsR39unGWqGWlFsarMHJGonqemYjv6nFRWqJ+BiKQG51RVuNwU2FwU2V2YQvTER5pIsjSsxk+u1UGhzUmlRyM+0kRipBmzsYkKTwohmlVD379bdRnLbrczZMgQrrrqKmbO9P3rs7y8nI0bN/K3v/2NIUOGUFxczPz58znvvPNYv74mMXX+/Pl8+eWXLFq0iPj4eG6//XamTp3Khg0bMBj+oL+wivbBR1eq9gGgqgsPnaO6blsCtEqw5asO3r+8WLNjKrEPXPwOJPYGewHlOb+xqjCaO786jLVCXRMbbuTJiwYzumciYbXfHHK2qgTZgt/UrM60Z9XW6x+fgdJDalZl9E3qTT3rV3jngpr2B11Gw4yXIaaLzxCtFZUs3ZrN37/cTvnR6stJFjMPTR9IqNHAXZ9sri46GGkO4cGpfZhU8iGmHx9WdxBiVp3Gx94GX94C3/796HOjU8nKQy9T1Yarvv9up8G5T6nnZOObMO5uFRD+vKC6OaY+pivalFe4d5mTrVllzBycyKMjyjB9fl1NA06zRbV96HNOzQxK4e/w0VzVBwvUDqrBl6jH3L0c+k0DdLDjS/J7zuSZPYm8v2k7Hq8K5/qnRrHgsuF0q1tbCNQY962Cz29Qzy+o3WeXvAtbFsGv76kAq9dZcObfIL5X9U2PFFiZ/1Em6w6UVD81Z/dP5P6p/UgOKYfv/gGb363Jg0obBhe+AXHd/cfRWAV74MPLVRHIqudkxJ/g9L9CZGK9Ny20OVm4Zj8vrdxb3ZS0e0IEL87JoHdyZNAefh6vxtYjpdz47kaOlKjmsKFGPXdM6sOFGZ2JCfdvSCuEaJ/azG4snU7nM7MTyLp16zjllFM4cOAAXbp0obS0lMTERN5++20uuUT1GMrKyiI9PZ2lS5cyefLkBj12h5rZKcuBN84O3KBy9M0w4f+pN/4qXo/akrz8b/7XRybDn78DazZbbRFMe2ufX3qHXgdf3XoafVKq3sj3wuuTat7sQfVzytoEnTLUbEDR77DxbRX4DJypZh7Wv15zfdowmP2Rz5vcT78XMuuVn/2GaDLoeeWKDK5auA5vnbF9clk3Mr6apmZiQAUd619TeSx1DZ0N6NSbOahGml1GqU7qSf0h40r46k7/25kt7Lzga6a+dZDvruxEl0Vn+myxr3b1MtW13JoFr09RHc7rGnm9Oh8aDZ0ycO35nmcibuH5H3P8Lu0cG8bH148hJbrO7EXuNnhxrH9itt4AVy5VPxcGIyT0hdRB1acLiku56p0tZB6x+j3WjKHJ/GOUnoiF4/3HHH+Sul9Liv+5hrJmwasT1db8usbfqwLUujNjR2maxntrD/J/i7f6nYsNN7Jk3ml0ig0LcEvVXHbKv1dVB8+1vXR5BpMHnMD3JIRoER1yN1ZpaSk6nY6YmBgANmzYQGVlJZMmTaq+Ji0tjYEDB7JmTZAGjR1dycHgnbjXvwZlub7HynJUg8lAbLmQu43ynJ28sL4sYB6rV4PXV+/D6T76hpGT6Rvo6A3qL//Mj+Dru+GTa2DFIyrQAbUrqudE3zvN2uSzQ6ik3MWTy3cFHKLL42XV7gJGn+TfBuLfv5RSNvhK9UVVl/JAgQ6o8fU5u+brIZfC2pfV58OvUDM8gTjLSMj/mTmjOhO/6/3AgQ6ooMlhheL9gQMdgE1vw4AL1AxMRCJ5A67hjXX5AS89XFzBwaJy34NuhwpcA+1A83qOdl5fA5/8Cb76a01XdiDfXhkw0AH4fEseBeYgLSYKf1etJE5Ewe7AgQ7AmufUz2gQuVYnz3yzO+C54vJKthwuCXrbFTvzAgY6AE8u2+VfoFII0W61m2DH4XBw9913M3v27OroLScnB5PJRGxsrM+1ycnJ5OQE/wXpdDqxWq0+Hx1GsEAHVC5EZZ3dUW6Hz5uen7ztOM3x7Mp3BL1kR04ZFVVvGrl1/sI2WdQyWTBeT+AAodYbnKPSw+95QbavA3vz7aRF+//1/nt+BeVRPdQXYTH170ryVPoGCcbwmmUgS2q9z6ulYAv9EkOJKNoW/P4LdkFlORTuCX6Ny66CQ08laB4qdGFB34wB9hXUeU5c5WpmJ5jCPTV9sQp+Uz8PR+WVVgS5kVrusTnr2blWvD/4uYbIDxzIAir3yR38Z8/l8ZJXFjwo2ZYV/P/2pkMlQc/tzbdT6Q5StkAI0e60i2CnsrKSSy+9FK/Xy4IFC455vaZpQdfpAR599NHqbu3R0dGkp6c35XBbV335EyGh/s0nQ0JVe4JgEvsS6iymd0LwZM/eyZGEmY7m7CTXaWPgKqs/iVVvUMnDdUXW5BaFGg30SAyeXN09IZzsUv83xB4J4YRbj9bjqShRQUswBqPKbapSWV7zvNhyIDb482qLH8iufCflcf2CXkN8T/Xcx50U/BpjuAr+DEbQGQjD4ZsLVUe3+Do5O6ZwteQWTNxJasmoejw1AWJSgGCxil4HkaZ68t9OtBJ1Yu/g58xR6mc0CJNBT6IleLJ2v1RL0HNDO0cHPdctIQJjSLv49SiEaIA2/7+5srKSiy++mH379rF8+XKfNbmUlBRcLhfFxb4zE3l5eSQnB0jEPeqee+6htLS0+uPQoROchm8Nnkr1xlV6xLeWTXQXiOsR+DYjrvZPUI5MUYm7gUQkQsogwpJ7csOIwMGGXgd/GtMVsz1PzSx0HgHnPQcXvASjblAzOyUHVFJyIP3O9y96lzrUJ9iJCTdx21mB3xBNBj1n9E5kze/+BQJvHRWFJXOh+sLjUstyiX0Cj2PgTPjt65qvf/0ATrlWfb7xbRh5XeDbmSKp6Hwa7/xyiII+swMHbgDj7lEJynHd/ZKvqw27TC3rDbwI7HkkbXudK08OnJzbKSaMrvG1AleXHexFMPYvajlOF+C/9tDZsG2x+nz8//kEuYkRRgamBQ4Mpg1MIt4VZJkprgfEnOAfC/G9ggeio26sNx8oyWLmljN7BjwXHWZkaHpM0Nue2Tc5aDB5+6TeJNS3400I0a606WCnKtDZvXs333zzDfHxvnkZGRkZGI1Gli9fXn0sOzubrVu3MmbMmKD3azabiYqK8vloV0qPqLyXF8fCcyPg85tV3oPXo+qrzPnEN7jQ6WHIbDj1Vv+/kg0GtRNp5PVqlqVKfE+Yu0T1Y4rrQQ9jMc9N70pUaM2beXSYkZcu6UeXdQ/Cy2NVReRfF8GKh2DJfDWmma/A/h9h6tPQaYTvY/ebpgKwTW/XHOt8siqIV2cHzsBOUTw0faDPm1NipJnnLhtGemw4J9Wa+YkwGfjnjP70zf3q6PZr1FZxRxlc+r5KgK5+bnQwYAYMvlSNvYrbqQKgjCshf4ea6Tn1Vt/k7ujO5M34mKWHQlgwJ4NXtnhwXbJI9aqqYoqE859X/a1A9aG6fLHvDIxOr3pbdcoANLUdPywOk97LVV3yuHRoArV39/dJtvDOn04hJTpMbW8v3ANfzofnR8AbkyGuJ1z2cc04QqPh3CdVHy2vB8592q9jeUJsNC/OHsKwdN/Zjsn9ErjnnD5Exqepn6HaM6Ypg9TPWn0zZg0R3QnmfuEbiOoNMOIaOPmaoMnJAHq9jnMGpXLDGSdhNNSMrUtcOIuuHUVaTPAZq7SYUN7/80hSajWeNYfouXtKH0b18M8BE0K0X626G8tms7Fnj8phGDZsGE899RTjx48nLi6OtLQ0Zs6cycaNG1myZInPTE1cXBwmk9oWesMNN7BkyRIWLlxIXFwcd9xxB4WFhY3aet6udmNZs+DtGeoNuDZTJFy7EhKO/pVry1ftEFx2CItTwYM5+JQ+TrtKCvaps1NrFqiyAretiFyXkUIH6HR64u27SVrzd0IOrVFvpls+hEO/+N6vwQRX/w9ie4DmVmNy2lQOTXgioKljFSWqzk54IkQEfqM5UlzOtmwrHq+GQaejzOnm9dX7sDndvHX1KZQ53Hg8bhKch0jc+iqm9AxVK8jrVuNI6APxPWrVILKp2ZaqOjt41dhCo9WslsGkagU5barOTkQCTs1AUV4WHr2R32yhPLyqmN/z7fRJjuSVOcPorCtAr0clI2seVSvGkuzf2dyWV/NcmKPU86AzqDf2qjo75ihw2bC5q+rseAk3m4iPNNXMOhT+Di+PU7kttcX3hFnv13w/Xrf6fiMS1esaEnjWoqjESmGFG5ujkuhwEwnhRqKq6uw4rCr5vKIYTBHqZySi/m3hjWLLVa+LT52dempD1VJeVWfH5sRsNBAfYSIpKvjyVxVN08i1Oim0O6n0eImPMJNoMRMqdXaEaBfaRSPQ77//nvHj/bezzp07lwceeIDu3QPnSaxYsYJx48YBKnH5r3/9K++9955PUcHG5OG0q2Bnx5fwwZzA54bMgqlP+eflNIfMj9SuHlDLIef8S+20CqT76XDx28dVLbmKy+3lkaXbWbgm8E6mJy8awsyMzrB3Jbx1XuA76TUJZr4WuGKw26GW4UwRQQOBcqebexZn8vnmrIDnX748g0ktuV25sgK+uhs2Lgx8/sLX66+eLIQQ7Vy7KCo4btw46ou1GhKHhYaG8p///If//Oc/TTm0tsnrgS0fBD//29dQ8f+aP9hxO9UsTpWUwWpLczD7VqnquycQ7JSUu1i2LTfo+cWbjnDOoFTCtn8e/E72fKNmQGoHO65yKN4HPy1QO8mS+quCh3HdVeBTi9VRyYqdwZtmLt50hIn9ktEHqijdHCpK4Lelwc9v+QD6Tg0avAkhxB+FNAJtT3R6CI0Jft4UETgxtcnHYfDtK+V2+AUGPkJCT3hcer2OcHPwH1dLaIhqW9GY58frgf2r4f1LaradZ2+GLe+r6tG9p4Ch5jF1Oh3hphCsjsC1dKLDjEHbgDULnV4tXxIkADNH++ZhCSHEH1SbTlAWdeh0KmE2mJP/pPIcmpshBE75U83XRzZAt7HBrx8654R7KCVEmrlqTLeg568c0w1TiB4GXRj8TobP9c0xKcuBz673L8KnafD5TWrLeZ0xzBkVZCcVMOuULvWWPGhykUlw8p+Dnz/5muC7w4QQ4g9Egp32Jq6HWmapKy1D9VfSt9BLGt9b7ZYBlfy66ys4/Y4A150EY+c3yVLKxP7JjOrh3yT00pPT6Zl0NJE1Kg3G3+d/48S+ait87Z099vyaVhJ1OUpUEnEtBr2OCzPSGdTJf134z6d1p0t8C+RK1abTqYrL6SP9z538Z5++V0II8UfWZnpjtaZ2laAMardOyUHY9I7KQRl8sSrmd6JbgBvLXqhq6Gx6R+36Gnm9Cra2fABleTBgOqQNh+i0Y95VQ+WVOdida+PTjYcxGw1clNGZrvHhxEXUCqYqSlQ7ik3vqh1PA2eo2j1RdcaRtUntZArmz98d3Q7uK9fqYGe2lc82Z2Exh3DRiM6kx4YTE9FKjSPLclQDzV8/UEt1w+ao5p9BdrUJIURH0S52Y7UV7S7YEU2j9LCqVRSoXYY5Cm5Yc+IF84QQQjSbdrEbS4hWFZmiqj1/OAe/LqfTnj2xTt4NVXpE7QYrPQwJvVURx8gWyLs6XrZ8KMtSDVUtKaqejyWt5ZZPhRDthqZpZJc62F9gJ9fqoGdSJKkxYa1SnVyCHfHHZQiBk8bDtatg9b8hf7sKOMbept7E66nc2yRyt8Hb031zg1KGwKXvts0ZJWsWfHQ1HPqp5lhYrKoInTJEAh4hRDVN09iebeXy19ZSZHdVHx/eJYbnZw8ntZ7q5s1BlrGQZSyBqrdTWa6qR9e3jb6pWLPglTMDd2LvPQVmvBK4+GFrqSyH/94Bm9/1PxcWC9f90DYDNCFEq8gqqWDqf1b7BDpVzh+SxqMzBxFuOvH5loa+f8ufYkKA6hgekdAygQ5AyaHAgQ7A7v/V9PRqK2z5kPlh4HMVxVDw27HvQ9PAmg05mSo5vOSQamgrhOhw9hfYAwY6AEsysymwOVt0PLKMJURrqC+Y0TRwl7fcWBrC7ag/MLEG6YpefftK1Sj246tqrjVHwdmPQ59zISy6/tsLIdqVXKsj6DmPV8NR6Q16vjnIzI4QrSEucN83QM0umdvQEhaoMYX71ziqljyg/ttbD6meZbWDIqcVPrtBtekQQnQovZKDN56OCgshsp6K+M1Bgh0hWkNkMvTwb4ILwKm3qp1ibYklFcbdG/hc2jCIridfR9NULzV3kL/0vnso8PZ/IUS7lRIdyvAuMQHP3TqhN0mWlt2RJcGOEK0hIh6mv6BaaVTt+jJHwYT7YcTVENJKBQqD0RtgwAw4+58qIbn2sUverX+7vMelWooEU7BTdXAXQnQYCZFmnp89nPOHpKm+hagZnb9N7c8FwzoRYmjZ8EN2YyG7sUQrcpWDPQ8qjzZTtaQ0/5b3E+HxgC0bnDbV4DUy8dhJ3ZqmZm9++Ffg851HwOyP6l8mE0K0S+VONwU2Jw63l0hzCMkWM4YmDHSkqGAH5/F4KbC58KIRE24kzFj/S1lod+JyewkNMRDbWm0NGstZBo4yNYMQmYRfS3G3s6a3VXjCic2GlB4BjxMMZojudPz3U8XjVr230CA0FkxBakqYwsHUrf6hlbsor/QQoteT2JRTv5qmavx4PWCObNhWd4NBFT5sDJ0OhsyCNc8ETnIef58EOkJ0UOHmELq0cH5OIK0/AtFo2aUVfLDuEO/9chBHpYeJ/ZKZN6EnXeMi0Ot9A4Jiu4u1+4v49ze/cbCwnF7JFu6c0oeBadFEhbXRGQS3Ewr2wHf/gAOrISxONT/tf35NVePiA/DTc5D5Eej0MPhSGHU9xATvSh6QNRuyN8PKx9X26fiecPpfVU+sur20Gqr0CGxYCBsXgtsFfafCabdDbLdGFd6zO938llvG41/vJPNwKSnRodx8Zi9O75VA/IlWILXlwo4lsOZZtTOs6xiY8P9U81Bj6InddyAx6XDZx2o3VnmROhYSChMfhLShTf94QghRiyxj0b6WsXJKHVy1cC07sst8jlvMIXwxbyzdE2qWFMpdbl5fvY9/LfOvgfLkRUM4f2hai6+bNsiRTfD6Wf6zAD0nwQULVH7Ha2epBpi1RXeGq7+uP1m2Nlc5bHwTvr7b/9zEB2DEnyA0+I6CgKxZqipy/i7f46ExcO0K1bW+gVbszOPqN9f5dbK4YnRX7pjU5/iDVXsBLJkPO770Pa43wFVfQ/opx3e/x+L1qNfMlgfeSpWEHZnUPMGVEOIPQYoKdlBbDpf4BToAZU43C1bsoaLSXX2swObimW93B7yfB5dsI6+sZYs6NUh5EXz118DLHXuWgb1IdfeuG+iA6i+1Y4l/n6tgyrLU7FEgKx9Xsx+NdfBn/0AHwFECa54LviOpjlyrg/s+2xrwW3nrpwMnVpDLmuUf6IAKRpbe0XwFDfUGtUTYaZgKqGK7SKAjhGgREuy0Ix6vl083BS/etmx7LqXlNcFOdmkFlZ7Ab/zWCnfQ6patylkGh9cFP19yALYvDn4+8yMVWDSEvQBc9sDnKisaH+y4XbDlg+Dnd34J5Q3bYm2tqORISfAdStuzrI0bW237VgU/l/2rqn8jhBAdiAQ77Yhep8NST6JXuMlA7ZQd0zGWqIwGXb3nW4VOD/p6UskMRtW/KhhTBOgbuLxzrF1PjU141uvBFBn8vDGiwTk7Bn39r0242dCYkfky1zNGnR50J3DfQgjRBkmw047odDpmjwyegDtnZBefxNXkqFCig+R1dIsPb5u7ssLj1e6ctOE1xyIS4aQzoctoVXl45A3Bbz/qhvrfzOs+VlSQnVeRyY0v7KcPgZOvCXLOAGfeB+GJDbqrRIuZ84cGTpA2h+jpndTIXKLaup3mv7OtSt+p6nkRQogORBKUaV8JykV2F898+xtvrjngc3xgWhSvzh1BSnTNrIfb4+WXfUVc+cZan+WsCJOB968dxeDOMWrnUNZGtbQR1wP6TFHbrwt2w66vICwG+pwNudugaB8MmK52KVUVljtemgalh+DAT3BkPaSPVAFO3nbY+70qutf5FLWF21GkcmHCE2HQTAgJg//eBr9/63OX7j7nYpvwBJ7wxIbtVnJXwuG18O5M36J2sd1g1iIo/B32rYTY7tBzotrmnvmh2uY+YLoKiCISam5XXgTlBbD6Gdj8TvVh2+AryR1yM18f0Mi3VTKhXxK9ky0kR9XJV/F60UoP492/Gu3IBrSUIey3ZHD7skK2HFF5WnodLLhsOGf2TcJUUaB2kO38L4RG17w2ocfoM+W0qe9jyV98j0elwZVL629l0RaUHobD6+HAj5DQC3qepXKBDG0weBdCNKuGvn9LsEP7CnZAbSc/UGTn/bWHsDkqmTG8MwPTokmO9k/2dLk9ZJU4+HzzEbZnl3Fyt1gmDUihU0wYhpL98OZU9eYBagnj0vfh+0fVduzazrwPivfDpnfgtDvUVvATqY2Suw0WnqvaBIRGw4VvwJe31IwF1EzJ9Bdg09u+eSZn/QMSe0NFCexeBjod3v4zOGjuyVmv/c7Efsn8/fwBJFqOkfyatQk2vw8Zc2HHF2pMqUOh3zR4Z4b/WM57ViVH71upjp3zLxhwgQp47AWw4hHY8Lpqq5DQG377CnvKSL7kDO7+fKfPQ/dLtfD6lSeTWis4JSdTPSeO0ppjpkhssz7nn5mhRJhCmDG8M51iQglz5MOHV6hgrbaz/gHD5x67saajTAWbm95W32ffc6Hb2MbX0GlpBbvVc1Q7nyrEDJd9omb+DFJNQ4g/Egl2GqG9BTu1eb2aX22dBl3rKIWPr4Y939Rc0Odstayz7tXAdzD7Q1g0G7xu+PMK6DQ88HXHYstTb1gFR7fEj5mnAo3fv/O/NiQULnxdPW7dsXx5q5oRQoP9q8me/BJTv4BCu4vnZg9j6uB66uRYs+HVCTWNKU++BuJ7q4rAm971mzUKOpYbfoLk/ioYe3NazfHQaOh+OntH/oMzX9wecAjXjO3GXVP6YgoxQFkuvDEFivb6XxjdmV1TF5OY1pW4CLOqYrz6KVjxUODv7YY1x27MWZvX26j6P62mvAjeu8Q/wAPVauOGNaqejxDiD0O2nv9BNDTQ8bu2vND/Db3/+aphYzD7VtXUYFn3qtqqfDzsBTWBDqiAZe+KwNe6Heqv+Mhk/7HEdYftn8H2z6G8kKStrzG1v1pee2XVXkrK69ltZs/z7cC97jX4+i41S7A3QNBVNZaynJrChgA7l6giiD8t8L3WUQpl2SzbWRh0CO/9cogC29Ex2vMDBzoApYeJcBdzuLiiZuzrXg7+vW1+L/i5QNpDoAPqZzZQoANqB1nxvpYdjxCi3Wgnv+VEk/NU+tejCQkDl38Nn2qOUjCGq8/LC44/2PHUqRHj9dRfG6f249ZzzOAsIcqk7sfqcAfddg+obeKBHGssTqvv45YXguYFR4At5cZwiurpb1lR6cFb9Vie+ssA6D1OKlxHn2/N67vUVZc9v977areO8RzhkC3zQojAJNj5ozJH+e9EytkCXcYEv02XUSqvBGDAzOPvRRUe79s80lFaf65IYl+wHvY91mUU5G71OVTc7WzWHFZviBP6JhEdVk/+RmRi4K3nFcXHHkvpoZqve01Sy1t9p/lfm7uN8d2CP0cZXWOJMB0dY3i8up9ADEZsIXGkVOVkmS3QfVzwMQ6YHvxcexYaU/9OscQ+LTYUIUT7IsFOG+T2eMkqqWDrkVJ2ZFvJtTas6m6jRKXC2U/4Htv4lsqfCVTnJnmg+teWq3YrdTv1+B87MkVtL6+y/nU4/c7A1/aeogrd1a6onDxQbZ2uXUXZkkJu2kQ2HCghKjSEy0d3VbkwwUQkwal1diPpDWpWZNLDQcYyuWYs3cbCrA9Ubk7uNuh7jkqQra28kJM4xOBO/uvIBr2Ov03tX7P9PzIZ7Yy7Aj6se8xfiEpIo9juYk9eGSWeUJh4f+DdRwm9VZJ1S/NUQskhyNqsno+y46g+fSyWFJj8SOBzw65QJQqEECIASVCmbSUoWx2VfLcjj/u/2EZphXqD7xwbxn9mDWNQp+im7WXlsKpt58vuUzM2EQkw5XG1BX3532D/alUkb8hs6DUBPp8H/abC2L80vuFmXeVFalfTt39XuSpj5kHXsSrptmoso2+BfufCktvUtaZIyLgKRlyldoxt+xR0eir7X8iRIfOYuziPAWlR3DGpD93i/Zui+rEXqt1c3z+idiRd9CbsWQ7oVDCz5tmasYy6UQVZi2bDiKvV59/cr2aCAGK6woyXYd8PsOpxtdTUZypMvJ/skDTeWnOAt38+gM3p5pRusdx3bn96p1gINRp8xuP9/Tv0Kx5W+ScxXXCMvYttEaOY9c5uXB4voGaEFlw6iGTnflj2N9j3vVqCHH6Feh5bekdVRYnKm1p2X0315fiT1A675EFNmxNUUQKH1qqfz/ydKpfrtNtgwAzVZ0sI8Yciu7EaoS0FO2v3FXHxSz/5HQ816vnfrafTtVajzyZjL1B1ZvQG9eahN6g3cadNfW4MB5cN0KllhKbsZ1SWq3IxDEb1l/uxxhKeoJbPyguhohR04AqNp8ClZjmiw4xE1FNlOugYvB748d+w9iV1LLab2sId14Pq4MfjUsnIpYfhzXP978cYBtf/qJKcQS27HC1wWOnxUGhz4dFUnaOY8ODLWx5rDtlFVnLtHn4tDuXvS/x3c3WLD+fD60eTFOJUAYZOr4KykAbUF2pqu5fDuxf6Hzdb1PMR27XpH9OWrxLG9SHq5yZYkUQhRIfW0PdvKUrRhpRWuHhyWYAmkoCj0suXW7K4+cxeTf/AtQvjVQmL9S0cGBbT9I8LYKmzy6ohYwEVdB3N3zABaeH+N2vUGIr3w4Y3ao4V74dvH6z5+rofIHWwmln44qbA91NZAVs/gdP/6vfmazQYfAo+1ueIO4qJr2ziyYuH8NTyzIDX7C8s52BhOUnd4o5dU6c52QvU7FwgzjI1c3bKn5v+cSNlyUoI0XCSs9OGVLg8/JYbfDfUxoMluNzeFhzRH4jTVv9un5KjScmVFZC3I/h1h9cee9fQMdidblweLwa9DpvTHfS63/NtJ/Q4TcLtVMtJwRz8ueXGIoQQQUiw04aYQwx0iQs+RdE3xdI2m3d2BKYItUwWTFSq+jfErJa4gkkeeMJtC8JNBgx6HZqmli+D6RLXDEuajWUw1v98pA5psaEIIUQwEuy0IbERJv5yVu+A50L0Oi7M6IxOchOOW0GZk5zSCmyOALMlkUkw8KLAN4zvqfpGgWqRMf7ewNfpQ2DoZSecP5IQaWb60DS+3prNzOGBk42To8x0iz+RtbsmEpkU/PkIMauEdiGEaGUS7LQxQ9Nj+L9z+mGqtesqOszI61eeTKeYhuV8CF/5ZU4+3nCIS17+mcn//oH5H2xie1YpjspaRRFNETDxAeh9tu+Nk/rBZR/5Vk3ulAGTHvFNBg6LVS0sok+8XUGEOYS/Tu6Ly+1lVI94pgz07b7eLT6cd/80ktS28vPQ/XQYd49v3aLweJizuO332hJC/CHIbiza1m4sAEelh/wyJ9mlFRgNepKjQkmymJt22/kfRLHdxUP/3c4nG4/4HDfodXxw7ShGdKvTzLS8GMrzVf+usFhVuyXQlubKCnWN9cjRnWSpqn5QEzaiLCl3UWh34az0YNDrKLC5iA03kWAxkXSsJqctzWVXNYqsWao4YmSyChDrWxoUQogTJFvPG6GtBTt/NG6Pl4pKD+YQA6aQmoDO69Wwu9yYDHrMxuN709yVY2Xyv38IeK5vioV3/zSS+MhGbNfWNLUNXx+itpoLIYRoNbL1XLR5Lo+Hw0UVLFp7kE2HSuiRGMmVY7rRLT6cQpuL/2Zm8+3OPOIjTFw9tju9kiLrrU8TyNp9RUHP7cwpw+qobHiwU3IIdi1VBfRCo2HUDZDUP/B2eSGEEG2GBDui1Ww5VMrsV36prgy8bn8xX2Vm8/61o7j8tbUU2Wu2cH+1NYebxvXk2jO6Ex3W8IAnzBR8RkinA0NDk4mLD8AbU9QyTZVdS1U15TP/phKXhRBCtEmSBCJaRZ7VwV8+3Fwd6FS5YHhnnlz2m0+gU+X57/eQa3X6Ha/PiK5xBOsacUavxIbNFFVWwKonfQOdKutfh9KDjRqTEEKIliXBjmgVReUuDhVV+B0f2T2O73flBb3d91sPwKZ3IH+X6pZ+DEkWMw9fMMjveEKkifvP609UWIDO53WVF0HmouDnMz8+9n0IIYRoNbKMJVpFsLR4nQ689aTMVzodqq3D5zfBxAch48p6W1mEm0OYOjiVYV1ieH/tIY4UlzO+bxLjeifRKbYRCcZeT/BztTuyCyGEaHMk2BGtIibcSKLFTH6Z77LUlkOljO4Rz097CwPebnz3UNi4VX3xzf1w0oRj9u2yhBrpm2LkgWn9cXs1jI3dwh8aDX2nwvbPAp8fOKNx9yeEEKJFyTKWaBUpUaE8PnOwX7HhD9Yf4o7JvQkLsNV8xqA4UnNWqG7XVTa+2eDH1Ol0jQ90QHUuP/M+FfTU1XsKxHZv/H0KIYRoMVJnB6mz01rKXW725dv5z3d72JZdSte4cG4+sxf9Ui0U2St5ddVefthTQGy4kesyIjlFv4uEr68HrVZSc7/z4aKFoG/muN3rhZID8MtLsPt/YLbAqJugxzj/zu1CCCFahBQVbAQJdlqX3enG7nITZjRgCa1JGHa6PVhtFRj3fUvM6geh8Hf/G1/4RssuI7mdUFGiigpGxLfc4wohhPAjRQVFuxFhDiHC7P+jaA4xkBgTCZ16q4J+dcV2h/SRLTDCWkLMzT6TY3e6KbA5KXO4iTCHkBBp8gkC27O8MgfFdhcer0ZMuInkqFAMwWoDCCFEE5FgR7R9cSfBn7+D/90L+1apgGPwLDj9doju1Nqja1K5VgdPLtvFJxuP4PFq6HQwqX8yD543gJTo9tuewu3xsj3Lyi2LNrG/sByAuAgTfz9/AON6JxLZQYI5IUTbJMtYyDJWu1FRAk4r6PSqq3YH601lc1bywBfb+XjDYb9zp/VK4NlZw4htZLuMtuJAoZ0p//6Bikr/LfwfXz/avyGrEEI0QEPfv2U3lmg9Xq+qSly0F0qPgKeeWjagtpjHdIHozh0u0AEotLn4dKN/oAPww+4CCm3+VaXbiy9/zQoY6AA8uWwX1gqpVSSEaD6yjCVah71ANdRc+RjY8iAsFk6dD0NnQ2RSa4+uVVgrKustqFhQ5qRnUmTLDaiJuNxeNhwoCXp+Z04Z5S53w6pZCyHEcZCZHdHy3A5Y/xr89zYV6ABUFKsigd8/Bs6y1h1fKwmUpF1bTET7DAaMBh19UoIHaelx4ZhDgjdsFUKIEyXBjmh5Zbnww1OBz214A+z5Tf+Y9gKwZoPL3rDrnWXq+vLAlZyD8Xi85Fkd5FkdVB5rWa6O+Egz4/okBjw3IC2KhEhzo+6vyVSUHn0uio/r5jqdjosy0oPuuvrLxN7ERrTPXCQhRPvQqsHOqlWrmDZtGmlpaeh0Oj777DOf85qm8cADD5CWlkZYWBjjxo1j27ZtPtc4nU7mzZtHQkICERERnHfeeRw+HDjvQbQRFUW+VZBr07xQltN0j2XLg18XwZtT4aXT4PObIW8HuIPkv7jKIWszfHKNuv7tC2DHlypYOoaskgqeX/E7M15Yw3nP/ci//vcbh4vLGzzU6DAjj1wwiJO7xfoc75dq4YU5GS0f7DjK4OAv8OEc9Vy8dxHs+e64gp5OsWG8esUILLVmr4wGHXdN6cPQ9JgmHLQQQvhr1d1YX331FT/++CPDhw9n5syZLF68mOnTp1eff/zxx3n44YdZuHAhvXv35qGHHmLVqlXs2rULi8UCwA033MCXX37JwoULiY+P5/bbb6eoqIgNGzZgMDRsalx2Y7WwvB2wYFTw89etgtQhJ/445UXw1Z2Q+ZHvcYMRrlkOacP8b/P7Cnhnhm+VZoAxt8Lpd0Bo4J+P7JIKZr/6C/sKfGeOkqPMfHLDGDrHhjd42EV2JwVlLvLKHMRHmkmINJNoaeFAx+NWOVWfXO1/bvIjMOLqRieJV7q95JU5yC51UOnx0ik2nIRIE+EmSR0UQhyfdldBWafT+QQ7mqaRlpbG/PnzueuuuwA1i5OcnMzjjz/OddddR2lpKYmJibz99ttccsklAGRlZZGens7SpUuZPHlygx5bgp0WZs9XMyY5mf7notNVIBKVeuKPk5MJL44NfK7TCLjsIwivteW5LAdem6TaQtSl08HNGyD+pIB398G6g9z1SYDvB/jLxF7cPL4nhuPpy9VaSg+r564iwCxOiBluWgexXVt+XEIIUUu733q+b98+cnJymDRpUvUxs9nMGWecwZo1awDYsGEDlZWVPtekpaUxcODA6msCcTqdWK1Wnw/RgiIS4cLXwZLiezwsFma93zSBDsDelcHPHVkPjlLfYxUlgQMdAE0LHJwBNoebTzceCfpQX/yaRXF721pdXhg40AHVMsMa/PsVQoi2ps3OH+fkqLyN5GTf0vzJyckcOHCg+hqTyURsbKzfNVW3D+TRRx/lwQcfbOIRi0ZJ6A1/+hZyt6kgIrEPpA5VNXSaSkho8HM6vfqoTX+MZc8g96fXgykk+N8N5hAD+rrt3ds6/TF+NRja584wIcQfU5ud2amiq/MmoWma37G6jnXNPffcQ2lpafXHoUMB+i6J5hfdGXpPVrkw/aZBTLpaLmoqPc4Ifq7P2b5LWKBmlgLl8QAYTJDUL+CpcFMIc8d0C/pQl4/uSlx7220UHgcxQZapQmMgMiXwOSGEaIPabLCTkqJ+mdadocnLy6ue7UlJScHlclFcXBz0mkDMZjNRUVE+H6IDsqTApIf9j0cmwVn/ALPF93hEApz/PJjr/DzodHD+gnqLHQ7pHM2Evv7nM7rGcmaA422eJRVmvuo/m6U3qOOWJlpqFEKIFtBml7G6d+9OSkoKy5cvZ9gw9de2y+Vi5cqVPP744wBkZGRgNBpZvnw5F198MQDZ2dls3bqVJ554otXGLtoIswWGXw7dxsK618CWDb2mQO9Jqu1EIIn94PofYPsXsG8lxPWAjKvU9fXsPkq0hPLYzEHsyrHx9s/78Xg1Lj2lC4M6RZMcVc9yWluWNhxu/Am2fAiH10FSf/V8RncBQ5v91SGEEH5adTeWzWZjz549AAwbNoynnnqK8ePHExcXR5cuXXj88cd59NFHeeONN+jVqxePPPII33//vd/W8yVLlrBw4ULi4uK44447KCwslK3nwpfHA95KMDYw8NA0lYhrMB47l6cOl9uLDjDWk8fTrlQ/FyaVoCSEEG1EQ9+/W/XPs/Xr1zN+/Pjqr2+77TYA5s6dy8KFC7nzzjupqKjgxhtvpLi4mJEjR7Js2bLqQAfg6aefJiQkhIsvvpiKigomTJjAwoULGxzoiD8Ig0F9NJRO1/DAqI76kpXbpRN4LoQQoi1oM3V2WpPM7AghhBDtT7uvsyOEEEII0RQk2BFCCCFEhybBjhBCCCE6NAl2hBBCCNGhSbAjhBBCiA5Ngh0hhBBCdGgS7AghhBCiQ5Oa76JNsDkrsTs9mEP0xIS3UNPMimJVGdgYDqFSX0kIIToqCXZEqyp3udmbb+eZb38j87CVtJgwbpnQkyGdY4htrk7hFcWQtQlWPg4lByF5IIy7FxJ7gSmyeR5TCCFEq5EKykgF5daiaRorf8vnqoXrqPtTePtZvbl6bHcizE0cj7vsqino8r/5Htfp4JL3oM/Z6nMhhBBtnlRQFm1ertXJ3Z9k+gU6AP/+djeFNmfTP6g9H7590P+4psGS+VCW3fSPKYQQolVJsCNaTUmFixyrI+A5j1djT76t6R+0aD943YHP2XKhvKjpH1MIIUSrkmBHtBrDMZaLjIZm+PE0GOs/r29EZ3QhhBDtggQ7otXEhpvomRQ4ITjUqKdbfETTP2hMOpiC3G9cDwiLa/rHFEII0aok2BGtJsFi5umLhxJm9J1N0engXxcOIclibvoHjUyBC170T0I2hsGMV8CS3PSPKYQQolXJbixkN1Zrcnu8HCmpYPGmI6zbX0SPhEjmjOpCemw44U29E6uKqxxKDsD616HgN0gfCUMuheguYJBqDEII0V409P1bgh0k2GkLvF4Nh9uDyaAnpDlydQLxuMHjhJBQydURQoh2qKHv3/JnrGgT9Hod4aYW/nE0hMhMjhBC/AFIzo4QQgghOjQJdoQQQgjRoUmwI4QQQogOTYIdIYQQQnRoEuwIIYQQokOTYEcIIYQQHZoEO0IIIYTo0CTYEUIIIUSHJsGOEEIIITo0CXaEEEII0aFJrXygqj2Y1Wpt5ZEIIYQQoqGq3reP1eZTgh2grKwMgPT09FYeiRBCCCEaq6ysjOjo6KDnpes54PV6ycrKwmKxoNPpWns4f2hWq5X09HQOHTokHejbGHlt2i55bdomeV2an6ZplJWVkZaWhl4fPDNHZnYAvV5P586dW3sYopaoqCj55dBGyWvTdslr0zbJ69K86pvRqSIJykIIIYTo0CTYEUIIIUSHJsGOaFPMZjP3338/ZrO5tYci6pDXpu2S16Ztktel7ZAEZSGEEEJ0aDKzI4QQQogOTYIdIYQQQnRoEuwIIYQQokOTYEcIIYQQHZoEO6JZPfroo5x88slYLBaSkpKYPn06u3bt8rlG0zQeeOAB0tLSCAsLY9y4cWzbts3nGqfTybx580hISCAiIoLzzjuPw4cPt+S30uG88MILDB48uLrg2ejRo/nqq6+qz8vr0nY8+uij6HQ65s+fX31MXp/W8cADD6DT6Xw+UlJSqs/L69I2SbAjmtXKlSu56aab+Pnnn1m+fDlut5tJkyZht9urr3niiSd46qmneO6551i3bh0pKSmcddZZ1T3LAObPn8/ixYtZtGgRq1evxmazMXXqVDweT2t8Wx1C586deeyxx1i/fj3r16/nzDPP5Pzzz6/+xSyvS9uwbt06Xn75ZQYPHuxzXF6f1jNgwACys7OrPzIzM6vPyevSRmlCtKC8vDwN0FauXKlpmqZ5vV4tJSVFe+yxx6qvcTgcWnR0tPbiiy9qmqZpJSUlmtFo1BYtWlR9zZEjRzS9Xq99/fXXLfsNdHCxsbHaq6++Kq9LG1FWVqb16tVLW758uXbGGWdot956q6Zp8v+mNd1///3akCFDAp6T16Xtkpkd0aJKS0sBiIuLA2Dfvn3k5OQwadKk6mvMZjNnnHEGa9asAWDDhg1UVlb6XJOWlsbAgQOrrxEnxuPxsGjRIux2O6NHj5bXpY246aabOPfcc5k4caLPcXl9Wtfu3btJS0uje/fuXHrppezduxeQ16Utk0agosVomsZtt93G2LFjGThwIAA5OTkAJCcn+1ybnJzMgQMHqq8xmUzExsb6XVN1e3F8MjMzGT16NA6Hg8jISBYvXkz//v2rf+nK69J6Fi1axMaNG1m3bp3fOfl/03pGjhzJW2+9Re/evcnNzeWhhx5izJgxbNu2TV6XNkyCHdFibr75ZrZs2cLq1av9zul0Op+vNU3zO1ZXQ64R9evTpw+bN2+mpKSETz75hLlz57Jy5crq8/K6tI5Dhw5x6623smzZMkJDQ4NeJ69Pyzv77LOrPx80aBCjR4/mpJNO4s0332TUqFGAvC5tkSxjiRYxb948vvjiC1asWEHnzp2rj1ftYqj7F01eXl71X0cpKSm4XC6Ki4uDXiOOj8lkomfPnowYMYJHH32UIUOG8Mwzz8jr0so2bNhAXl4eGRkZhISEEBISwsqVK3n22WcJCQmpfn7l9Wl9ERERDBo0iN27d8v/mzZMgh3RrDRN4+abb+bTTz/lu+++o3v37j7nu3fvTkpKCsuXL68+5nK5WLlyJWPGjAEgIyMDo9Hoc012djZbt26tvkY0DU3TcDqd8rq0sgkTJpCZmcnmzZurP0aMGMFll13G5s2b6dGjh7w+bYTT6WTHjh2kpqbK/5u2rJUSo8UfxA033KBFR0dr33//vZadnV39UV5eXn3NY489pkVHR2uffvqplpmZqc2aNUtLTU3VrFZr9TXXX3+91rlzZ+2bb77RNm7cqJ155pnakCFDNLfb3RrfVodwzz33aKtWrdL27dunbdmyRbv33ns1vV6vLVu2TNM0eV3amtq7sTRNXp/Wcvvtt2vff/+9tnfvXu3nn3/Wpk6dqlksFm3//v2apsnr0lZJsCOaFRDw44033qi+xuv1avfff7+WkpKimc1m7fTTT9cyMzN97qeiokK7+eabtbi4OC0sLEybOnWqdvDgwRb+bjqWq6++WuvatatmMpm0xMREbcKECdWBjqbJ69LW1A125PVpHZdccomWmpqqGY1GLS0tTZsxY4a2bdu26vPyurRNOk3TtNacWRJCCCGEaE6SsyOEEEKIDk2CHSGEEEJ0aBLsCCGEEKJDk2BHCCGEEB2aBDtCCCGE6NAk2BFCCCFEhybBjhBCCCE6NAl2hBAdik6n47PPPjuh+xg3bhzz589vkvEIIVqfBDtCiHYlJyeHefPm0aNHD8xmM+np6UybNo1vv/22tYcmhGijQlp7AEII0VD79+/n1FNPJSYmhieeeILBgwdTWVnJ//73P2666SZ27tzZ2kMUQrRBMrMjhGg3brzxRnQ6HWvXruXCCy+kd+/eDBgwgNtuu42ff/65+rqCggIuuOACwsPD6dWrF1988YXP/axcuZJTTjkFs9lMamoqd999N263u6W/HSFEC5FgRwjRLhQVFfH1119z0003ERER4Xc+Jiam+vMHH3yQiy++mC1btnDOOedw2WWXUVRUBMCRI0c455xzOPnkk/n111954YUXeO2113jooYda6lsRQrQwCXaEEO3Cnj170DSNvn37HvPaK6+8klmzZtGzZ08eeeQR7HY7a9euBWDBggWkp6fz3HPP0bdvX6ZPn86DDz7Ik08+idfrbe5vQwjRCiTYEUK0C5qmAWq31bEMHjy4+vOIiAgsFgt5eXkA7Nixg9GjR/vcz6mnnorNZuPw4cNNPGohRFsgwY4Qol3o1asXOp2OHTt2HPNao9Ho87VOp6uetdE0zS9gakwgJYRofyTYEUK0C3FxcUyePJnnn38eu93ud76kpKRB99O/f3/WrFlTHeAArFmzBovFQqdOnZpquEKINkSCHSFEu7FgwQI8Hg+nnHIKn3zyCbt372bHjh08++yzjB49ukH3ceONN3Lo0CHmzZvHzp07+fzzz7n//vu57bbb0OvlV6IQHZHU2RFCtBvdu3dn48aNPPzww9x+++1kZ2eTmJhIRkYGL7zwQoPuo1OnTixdupS//vWvDBkyhLi4OK655hruu+++Zh69EKK16LTac7lCCCGEEB2MzNkKIYQQokOTYEcIIYQQHZoEO0IIIYTo0CTYEUIIIUSHJsGOEEIIITo0CXaEEEII0aFJsCOEEEKIDk2CHSGEEEJ0aBLsCCGEEKJDk2BHCCGEEB2aBDtCCCGE6NAk2BFCCCFEh/b/AX/g/a2acIxmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model = LinearRegression()\n", + "x = np.array(X['chol'])\n", + "x = x[:, np.newaxis]\n", + "reg = model.fit(x, X['trestbps'])\n", + "pred = reg.predict(x)\n", + "\n", + "sick = np.array(y)[:,0] != 0\n", + "\n", + "sns.scatterplot(X, x='chol', y='trestbps', hue='sex')\n", + "plt.plot(x, pred, color='black')\n", + "plt.xlabel('Chol')\n", + "plt.ylabel('Blood pressure (rest)')\n", + "plt.title('Blood pressure / Age split by sex')" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "id": "3a6dc91a-f3e9-4d7e-9e4b-58c59d24463c", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHNCAYAAAAXN9H8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB30klEQVR4nO3deXxM1/8/8Ndk34MgQiOLBAmxJZbEXiRoUdpSNKil1C4I+aSJvaldaGltRatobVXV2NcElUhQSS2JiFZiJ2KJJHN+f/hlvkaSIdy5Y8br2cd9PJIz5973udNMvHPOuecohBACRERERAbISNcNICIiItIWJjpERERksJjoEBERkcFiokNEREQGi4kOERERGSwmOkRERGSwmOgQERGRwWKiQ0RERAaLiQ4REREZLCY6REREZLCY6BAREVGpHTp0CJ06dULlypWhUCiwdevWF55z8OBB+Pr6wsLCAu7u7vjuu++03k4mOkRERFRqDx48QN26dfHNN9+8VP1Lly6hY8eOaN68ORITE/G///0PI0eOxKZNm7TaTgU39SQiIqLXoVAosGXLFnzwwQcl1pkwYQK2bduGlJQUVdmQIUNw6tQpHD16VGttY48OERERAQByc3ORnZ2tduTm5kpy7aNHjyIwMFCtLCgoCPHx8cjLy5MkRnFMtHZlA5Z3M03WeJ/6hsgar5nSRtZ4ANCo4KGs8a4rzWWN95+psazxAMBKKW+8QbcOyhrv64otZY0HAO5P5H1Tc4zk/Vu0cZkbssYDgP3ZFWSN55yXL2s8AGh/bb1Wry/lv0lR36zBlClT1MomTZqEyZMnv/a1s7Ky4OjoqFbm6OiI/Px83Lx5E05OTq8dozhMdIiIiPSZskCyS4WFhSEkRP2Pa3Nz6f4wVCgUat8Xzp55vlxKTHSIiIgIwNOkRsrE5lmVKlVCVlaWWtn169dhYmICBwcHrcQEmOgQERHpNyHzOPUr8vf3x++//65WtmvXLvj5+cHU1FRrcTkZmYiISJ8pldIdpZCTk4OkpCQkJSUBePr4eFJSEjIyMgA8HQbr06ePqv6QIUNw+fJlhISEICUlBStXrsSKFSswbtw4yd6K4rBHh4iISI8JHfXoxMfHo3Xr1qrvC+f29O3bF6tWrUJmZqYq6QEANzc37NixA2PGjMG3336LypUrY+HChfjwww+12k4mOkRERFRqrVq1gqal+FatWlWkrGXLljh58qQWW1UUEx0iIiJ9Vsohp7cNEx0iIiJ9pieTkXWFk5GJiIjIYOlVohMTE4NmzZqhTJkycHBwwPvvv4/U1FTV63FxcahXrx4sLCzg5+eHrVu3QqFQqGaEA0BycjI6duwIGxsbODo6Ijg4GDdv3tTB3RAREUlAWSDdYYD0KtF58OABQkJCcOLECezduxdGRkbo2rUrlEol7t+/j06dOsHHxwcnT57EtGnTMGHCBLXzMzMz0bJlS9SrVw/x8fGIiYnBtWvX0L17dx3dERER0WsSSukOA6RXc3SefwRtxYoVqFixIpKTk3HkyBEoFAosW7YMFhYW8Pb2xn///YdBgwap6i9ZsgQNGjTAV199pSpbuXIlnJ2dcf78eVSvXr1IzNzc3CIbmhnl5mpt5UgiIiKSjl716KSmpqJXr15wd3eHnZ0d3NzcAAAZGRk4d+4c6tSpAwsLC1X9Ro0aqZ2fkJCA/fv3w8bGRnXUrFlTde3iREVFwd7eXu2YGf2dlu6QiIiolHS0YKC+0KsenU6dOsHZ2RnLli1D5cqVoVQqUbt2bTx58gRCiBI3CyukVCrRqVMnzJw5s8i1S9o1tbgNzozu//ead0JERCQNXS0YqC/0JtG5desWUlJS8P3336N58+YAgCNHjqher1mzJtauXYvcZ4aV4uPj1a7RoEEDbNq0Ca6urjAxeblbL26Ds7wnnLxMRESkD/Rm6Kps2bJwcHDA0qVLcfHiRezbt0+tp6VXr15QKpX4/PPPkZKSgp07d2LOnDkA/m/792HDhuH27dvo2bMn/vrrL6SlpWHXrl3o378/CgoMc7Y5EREZOA5daaQ3iY6RkRHWr1+PhIQE1K5dG2PGjMHs2bNVr9vZ2eH3339HUlIS6tWrh/DwcERGRgKAat5O5cqVERsbi4KCAgQFBaF27doYNWoU7O3tYWSkN28FERHR/+FTVxrpzdAVALRt2xbJyclqZc/OwwkICMCpU6dU369duxampqaoWrWqqszT0xObN2/WfmOJiIjkYKDr30hFrxKdF1mzZg3c3d1RpUoVnDp1ChMmTED37t1haWmp66YRERGRDhhUopOVlYXIyEhkZWXByckJH3/8MWbMmKHrZhEREWmPgQ45ScWgEp3Q0FCEhobquhlERETyMdBJxFLhDFwiIiIyWAbVo0NERPTW4dCVRkx0iIiI9BmHrjTi0BUREREZLPbovIJPfUNeXElCPyXMkzVeuF+4rPEA4KSx4sWVJPRPXpas8ToYVZY1HgDkGosXV5JQn0pNZI1XNk/WcACADFN5/za8IfP/w+s5FWSNBwBdy1+TNd4/mQ6yxpODEFxHRxMmOkRERPqMc3Q04tAVERERGSz26BAREekzTkbWiIkOERGRPuPQlUZMdIiIiPQZN/XUiHN0iIiIyGCxR4eIiEifcehKIyY6RERE+oyTkTXi0BUREREZLL1MdDZu3AgfHx9YWlrCwcEBbdu2xYMHDwAAP/zwA7y8vGBhYYGaNWti8eLFqvP69++POnXqIDc3FwCQl5cHX19f9O7dWyf3QURE9NqEUrrDAOldopOZmYmePXuif//+SElJwYEDB9CtWzcIIbBs2TKEh4djxowZSElJwVdffYWIiAisXr0aALBw4UI8ePAAEydOBABERETg5s2baskQERGRXlEqpTsMkN7N0cnMzER+fj66desGFxcXAICPjw8AYNq0aZg7dy66desGAHBzc0NycjK+//579O3bFzY2Nvjpp5/QsmVL2NraYu7cudi7dy/s7e1LjJebm6vqASpUIApgrDDW0h0SERGRVPSuR6du3bpo06YNfHx88PHHH2PZsmW4c+cObty4gStXrmDAgAGwsbFRHdOnT0dqaqrqfH9/f4wbNw7Tpk3D2LFj0aJFC43xoqKiYG9vr3ak3Lug7dskIiJ6OezR0UjvEh1jY2Ps3r0bf/75J7y9vbFo0SLUqFEDaWlpAIBly5YhKSlJdfz99984duyY6nylUonY2FgYGxvjwoUXJyxhYWG4d++e2uFl76m1+yMiIioNIQokOwyR3g1dAYBCoUDTpk3RtGlTREZGwsXFBbGxsahSpQrS0tI0Ti6ePXs2UlJScPDgQQQFBeGHH37AZ599VmJ9c3NzmJubq5Vx2IqIiEg/6F2ic/z4cezduxeBgYGoWLEijh8/jhs3bsDLywuTJ0/GyJEjYWdnhw4dOiA3Nxfx8fG4c+cOQkJCkJSUhMjISGzcuBFNmzZFdHQ0Ro0ahZYtW8Ld3V3Xt0ZERFR6BjrkJBW9S3Ts7Oxw6NAhLFiwANnZ2XBxccHcuXPRoUMHAICVlRVmz56N0NBQWFtbw8fHB6NHj8bjx4/Ru3dv9OvXD506dQIADBgwAH/88QeCg4Nx6NAhGBuzp4aIiPSMgT4WLhW9S3S8vLwQExNT4uu9evVCr169in3t7NmzRco2b94sWduIiIhkxx4djfRuMjIRERHRy9K7Hh0iIiJ6BoeuNGKiQ0REpM84dKURh66IiIjolSxevBhubm6wsLCAr68vDh8+rLH+2rVrUbduXVhZWcHJyQmfffYZbt26pdU2MtEhIiLSZzra1HPDhg0YPXo0wsPDkZiYiObNm6NDhw7IyMgotv6RI0fQp08fDBgwAGfPnsWvv/6KEydOYODAgVK8CyViokNERKTPdLQFxLx58zBgwAAMHDgQXl5eWLBgAZydnbFkyZJi6x87dgyurq4YOXIk3Nzc0KxZMwwePBjx8fFSvAslYqJDREREAJ5uZJ2dna12PL+xNQA8efIECQkJCAwMVCsPDAxEXFxcsdcOCAjAv//+ix07dkAIgWvXrmHjxo147733tHIvhTgZ+RU0U9rIGi/cL1zWeDPiZ8gaDwBG+k2UNV5XkyqyxktVFP1FoW1uwvzFlSS0/O4ZWeOFuznLGg8ATmVVkDWevVLev0Wd8vNkjQcA/2XZyxqvtut1WePJQsLJyFFRUZgyZYpa2aRJkzB58mS1sps3b6KgoACOjo5q5Y6OjsjKyir22gEBAVi7di169OiBx48fIz8/H507d8aiRYska39x2KNDRESkzySco1PcRtZhYWElhlYoFOpNEaJIWaHk5GSMHDkSkZGRSEhIQExMDC5duoQhQ4ZI+nY8jz06REREBKD4jayLU758eRgbGxfpvbl+/XqRXp5CUVFRaNq0KcaPHw8AqFOnDqytrdG8eXNMnz4dTk5Or38DxWCPDhERkT7TwWRkMzMz+Pr6Yvfu3Wrlu3fvRkBAQLHnPHz4EEZG6mlH4R6TQohS3vTLY48OERGRPtPRysghISEIDg6Gn58f/P39sXTpUmRkZKiGosLCwvDff/9hzZo1AIBOnTph0KBBWLJkCYKCgpCZmYnRo0ejUaNGqFy5stbayUSHiIhIn+loZeQePXrg1q1bmDp1KjIzM1G7dm3s2LEDLi4uAIDMzEy1NXX69euH+/fv45tvvsHYsWNRpkwZvPvuu5g5c6ZW28lEh4iIiF7J0KFDMXTo0GJfW7VqVZGyESNGYMSIEVpulTomOkRERPqMm3pqxESHiIhIn3FTT4341BUREREZLINLdJRKJWbOnAkPDw+Ym5ujatWqmDFjBtLT06FQKLB+/XoEBATAwsICtWrVwoEDB3TdZCIioleno72u9IXBJTphYWGYOXMmIiIikJycjJ9//llt8aLx48dj7NixSExMREBAADp37qz1LeKJiIi0RgjpDgNkUInO/fv3ER0djVmzZqFv376oVq0amjVrprYF/PDhw/Hhhx/Cy8sLS5Ysgb29PVasWKHDVhMREZG2GNRk5JSUFOTm5qJNmzYl1vH391d9bWJiAj8/P6SkpJRYPzc3t8jOrXmiAKYK49dvMBER0esy0CEnqRhUj46lpeUrnVfSBmTA07057O3t1Y7d2WdftYlERETS4hwdjQwq0fH09ISlpSX27t1bYp1jx46pvs7Pz0dCQgJq1qxZYv3idnJtZ1dL0nYTERGRdhjU0JWFhQUmTJiA0NBQmJmZoWnTprhx4wbOnj2rGs769ttv4enpCS8vL8yfPx937txB//79S7xmcTu5ctiKiIjeGFwwUCODSnQAICIiAiYmJoiMjMTVq1fh5OSk2mAMAL7++mvMnDkTiYmJqFatGn777TeUL19ehy0mIiJ6DQY65CQVg0t0jIyMEB4ejvDwcLXy9PR0AICXl5fa8BUREZFeM9DHwqViUHN0iIiIiJ5lcD06REREbxUOXWn01iQ6rq6uEOzeIyIiQ8NERyMOXREREZHBemt6dIiIiAwSHy/XiIkOERGRHhNKTsvQhENXREREZLDYo0NERKTPOBlZIyY6r6BRwUNZ4500LnnTUW0Y6TdR1ngAsDD+a1njraoXKWu8dwvMZI0HAI9k7q/tXNZH1njr7pi/uJLEakDef1Aeyvz/MNncVN6AAGyU8sa8dKWyrPEA4FNtB+AcHY04dEVEREQGiz06RERE+oyTkTViokNERKTPOEdHIyY6RERE+oyJjkaco0NEREQGiz06RERE+oz7OGqkN4lOv379cPfuXWzdulXXTSEiInpzcOhKo1INXbVq1QqjR4/WUlOeSk9Ph0KhQFJSklbjEBERkeGTtEdHCIGCggKYmOhNRxEREZF+4+PlGr10j06/fv1w8OBBREdHQ6FQQKFQYNWqVVAoFNi5cyf8/Pxgbm6Ow4cPQwiBWbNmwd3dHZaWlqhbty42btyoutadO3fQu3dvVKhQAZaWlvD09MQPP/wAAHBzcwMA1K9fHwqFAq1atVJrx5QpU1CxYkXY2dlh8ODBePLkieq1Vq1aYfjw4Rg+fDjKlCkDBwcHfPnllxDPjF8uXrwYnp6esLCwgKOjIz766KNXeuOIiIjeCEIp3WGAXrrrJTo6GufPn0ft2rUxdepUAMDZs2cBAKGhoZgzZw7c3d1RpkwZfPnll9i8eTOWLFkCT09PHDp0CJ9++ikqVKiAli1bIiIiAsnJyfjzzz9Rvnx5XLx4EY8ePQIA/PXXX2jUqBH27NmDWrVqwczs/5bO37t3LywsLLB//36kp6fjs88+Q/ny5TFjxgxVndWrV2PAgAE4fvw44uPj8fnnn8PFxQWDBg1CfHw8Ro4ciR9//BEBAQG4ffs2Dh8+LMkbSURERG+el0507O3tYWZmBisrK1SqVAkA8M8//wAApk6dinbt2gEAHjx4gHnz5mHfvn3w9/cHALi7u+PIkSP4/vvv0bJlS2RkZKB+/frw8/MDALi6uqriVKhQAQDg4OCgilPIzMwMK1euhJWVFWrVqoWpU6di/PjxmDZtGoyMnnZOOTs7Y/78+VAoFKhRowbOnDmD+fPnY9CgQcjIyIC1tTXef/992NrawsXFBfXr19d437m5ucjNzVUreyIKYKYwftm3joiISHs4dKWRJOvoFCYsAJCcnIzHjx+jXbt2sLGxUR1r1qxBamoqAOCLL77A+vXrUa9ePYSGhiIuLu6l4tStWxdWVlaq7/39/ZGTk4MrV66oypo0aQKFQqFW58KFCygoKEC7du3g4uICd3d3BAcHY+3atXj4UPMGnVFRUbC3t1c7Vuecf6n2EhERaZtQKiU7DJEkiY61tbXqa+X/f6P++OMPJCUlqY7k5GTVPJ0OHTrg8uXLGD16NK5evYo2bdpg3Lhxrxz/2cRGE1tbW5w8eRLr1q2Dk5MTIiMjUbduXdy9e7fEc8LCwnDv3j21o69N9VduKxEREcmnVImOmZkZCgoKNNbx9vaGubk5MjIy4OHhoXY4Ozur6lWoUAH9+vXDTz/9hAULFmDp0qWqGACKjXPq1CnVXB4AOHbsGGxsbPDOO++olT3r2LFj8PT0hLHx06EmExMTtG3bFrNmzcLp06eRnp6Offv2lXg/5ubmsLOzUzs4bEVERG8MpZDuMECleg7c1dUVx48fR3p6OmxsbFS9N8+ytbXFuHHjMGbMGCiVSjRr1gzZ2dmIi4uDjY0N+vbti8jISPj6+qJWrVrIzc3F9u3b4eXlBQCoWLEiLC0tERMTg3feeQcWFhawt7cHADx58gQDBgzAl19+icuXL2PSpEkYPny4an4OAFy5cgUhISEYPHgwTp48iUWLFmHu3LkAgO3btyMtLQ0tWrRA2bJlsWPHDiiVStSoUeOV30AiIiKdMtCnpaRSqkRn3Lhx6Nu3L7y9vfHo0SPVI+HPmzZtGipWrIioqCikpaWhTJkyaNCgAf73v/8BeNprExYWhvT0dFhaWqJ58+ZYv3790waZmGDhwoWYOnUqIiMj0bx5cxw4cAAA0KZNG3h6eqJFixbIzc3FJ598gsmTJ6vF7tOnDx49eoRGjRrB2NgYI0aMwOeffw4AKFOmDDZv3ozJkyfj8ePH8PT0xLp161CrVq3SvA1ERERvDgPtiZGKQgjD2SSjVatWqFevHhYsWKDVOMcrd9Pq9Z/3ndnLzUGSigXkH5pbGP+1rPFW1YuUNZ5dgfwfs0dG8v7cxJrmvriShNyFuazxAKBGrrx/OV83lXff5Vx5f2QAADYyd0aY66Dz49OrP2n1+g+m9pbsWtaRayW71puCSxgTERHpMwN9WkoqTHSIiIj0GYeuNJK3X1TLDhw4oPVhKyIiInpq8eLFcHNzg4WFBXx9fV+420Bubi7Cw8Ph4uICc3NzVKtWDStXrtRqG9mjQ0REpM909NTVhg0bMHr0aCxevBhNmzbF999/jw4dOiA5ORlVq1Yt9pzu3bvj2rVrWLFiBTw8PHD9+nXk5+drtZ1MdIiIiPSZjoau5s2bhwEDBmDgwIEAgAULFmDnzp1YsmQJoqKiitSPiYnBwYMHkZaWhnLlygFQ3wJKWwxq6IqIiIheXW5uLrKzs9WO5/d7BJ6ua5eQkIDAwEC18sDAwBK3ddq2bRv8/Pwwa9YsVKlSBdWrV8e4cePUFgLWBiY6REREekzKva6K29+xuN6ZmzdvoqCgAI6Ojmrljo6OyMrKKradaWlpOHLkCP7++29s2bIFCxYswMaNGzFs2DCtvC+FOHT1Cq4r5V2/45+84n9otKWrSRVZ4wHyr2vTL2mqrPHC/cJljQcAvrny/h1jq4P1l+T2t7m8C83cVWh37sLzqhfI/0/CeRPN2wpJrawwwJ9TCYeuwsLCEBISolZmbl7yv3nP7zUphChx/0mlUgmFQoG1a9eqdjyYN28ePvroI3z77bewtLR8zdYXj4kOERERAXia1GhKbAqVL18exsbGRXpvrl+/XqSXp5CTkxOqVKmiSnIAwMvLC0II/Pvvv/D09Hy9xpeAQ1dERET6TAebepqZmcHX1xe7d+9WK9+9ezcCAgKKPadp06a4evUqcnJyVGXnz5+HkZGR2ubcUmOiQ0REpM+EUrqjFEJCQrB8+XKsXLkSKSkpGDNmDDIyMjBkyBAAT4fB+vTpo6rfq1cvODg44LPPPkNycjIOHTqE8ePHo3///lobtgI4dEVERKTfdPR4eY8ePXDr1i1MnToVmZmZqF27Nnbs2AEXFxcAQGZmJjIyMlT1bWxssHv3bowYMQJ+fn5wcHBA9+7dMX36dK22k4kOERERvZKhQ4di6NChxb62atWqImU1a9YsMtylbUx0iIiI9JjgXlca6e0cnfT0dCgUCiQlJb3WdVxdXbk/FhER6S8dTEbWJ3qb6BARERG9CIeuiIiI9JlSN5t66os3vkdHqVRi5syZ8PDwgLm5OapWrYoZM2aoXk9LS0Pr1q1hZWWFunXr4ujRo2rnb9q0CbVq1YK5uTlcXV0xd+5cuW+BiIhIezh0pdEbn+iEhYVh5syZiIiIQHJyMn7++We1VRfDw8Mxbtw4JCUloXr16ujZs6dqy/eEhAR0794dn3zyCc6cOYPJkycjIiKi2JngREREZHje6KGr+/fvIzo6Gt988w369u0LAKhWrRqaNWuG9PR0AMC4cePw3nvvAQCmTJmCWrVq4eLFi6hZsybmzZuHNm3aICIiAgBQvXp1JCcnY/bs2ejXr99LtSE3N7fIzq15ogCmCgPcL4WIiPSPgfbESOWN7tFJSUlBbm4u2rRpU2KdOnXqqL52cnIC8HSvjcLzmzZtqla/adOmuHDhAgoKXm4jueJ2cv31QXJpb4WIiEgrhBCSHYbojU50XmZJaFNTU9XXhTumKv//xKzidlEt7f/IsLAw3Lt3T+342Nq7VNcgIiIi3XijEx1PT09YWlpi7969r3S+t7c3jhw5olYWFxeH6tWrw9j45YaezM3NYWdnp3Zw2IqIiN4YnIys0Rs9R8fCwgITJkxAaGgozMzM0LRpU9y4cQNnz57VOJxVaOzYsWjYsCGmTZuGHj164OjRo/jmm2+wePFiGVpPREQkAwNNUKTyRic6ABAREQETExNERkbi6tWrcHJyUu2M+iINGjTAL7/8gsjISEybNg1OTk6YOnXqS09EJiIietNxCwjN3vhEx8jICOHh4QgPDy/y2vPzbcqUKVOk7MMPP8SHH35Y4vULn94iIiIiw/PGJzpERESkAXt0NGKiQ0REpM+4A4RGb/RTV0RERESvgz06REREeoyTkTVjokNERKTPmOhoxKErIiIiMljs0SEiItJnnIysERMdIiIiPcY5Opox0XkF/5nKu9dVB6PKssZLVeTKGg8A3i0wkzVeuF/RBSi1aUb8DFnjAcBc30hZ48n9qzZHIf+fsXky36WDkPd3jYUOegbKGsl7jwWy/6SSrjHRISIi0mccutKIiQ4REZEe49CVZkx0iIiI9Bl7dDTi4+VERERksNijQ0REpMcEe3Q0YqJDRESkz5joaKTXQ1dCCHz++ecoV64cFAoFypQpg9GjR+u6WURERPSG0OtEJyYmBqtWrcL27duRmZmJ2rVr67pJREREshJK6Q5DpNdDV6mpqXByckJAQAAAwMREr2+HiIio9Aw0QZGK3vbo9OvXDyNGjEBGRgYUCgVcXV0BAPn5+Rg+fDjKlCkDBwcHfPnllxDi/9YYWLx4MTw9PWFhYQFHR0d89NFHOroDIiIi0ja9TXSio6MxdepUvPPOO8jMzMSJEycAAKtXr4aJiQmOHz+OhQsXYv78+Vi+fDkAID4+HiNHjsTUqVNx7tw5xMTEoEWLFrq8DSIiotfCoSvN9Hasx97eHra2tjA2NkalSpVU5c7Ozpg/fz4UCgVq1KiBM2fOYP78+Rg0aBAyMjJgbW2N999/H7a2tnBxcUH9+vU1xsnNzUVurvreT3miAKYKefdnISIiKo6hJihS0dsenZI0adIECoVC9b2/vz8uXLiAgoICtGvXDi4uLnB3d0dwcDDWrl2Lhw8farxeVFQU7O3t1Y6d2We1fRtEREQvhT06mhlcoqOJra0tTp48iXXr1sHJyQmRkZGoW7cu7t69W+I5YWFhuHfvntoRZFdLvkYTERHRKzO4ROfYsWNFvvf09ISx8dOhJhMTE7Rt2xazZs3C6dOnkZ6ejn379pV4PXNzc9jZ2akdHLYiIqI3hlBIdxggvZ2jU5IrV64gJCQEgwcPxsmTJ7Fo0SLMnTsXALB9+3akpaWhRYsWKFu2LHbs2AGlUokaNWrouNVERESvxlCHnKRicIlOnz598OjRIzRq1AjGxsYYMWIEPv/8cwBAmTJlsHnzZkyePBmPHz+Gp6cn1q1bh1q1OBRFRERkiPQ60Rk9erTalg8HDhxQfb1kyZIi9Zs1a6ZWh4iISN8JpWEOOUlFrxMdIiKitx2HrjQzuMnIRERERIWY6BAREekxIRSSHaW1ePFiuLm5wcLCAr6+vjh8+PBLnRcbGwsTExPUq1ev1DFLi4kOERGRHtPVgoEbNmzA6NGjER4ejsTERDRv3hwdOnRARkaGxvPu3buHPn36oE2bNq9x1y+PiQ4REREBeLrtUXZ2ttrx/DZIhebNm4cBAwZg4MCB8PLywoIFC+Ds7Fzsw0DPGjx4MHr16gV/f39t3EIRTHSIiIj0mFAqJDuK2/YoKiqqSMwnT54gISEBgYGBauWBgYGIi4srsa0//PADUlNTMWnSJMnfh5LwqSsiIiI9JoR01woLC0NISIhambm5eZF6N2/eREFBARwdHdXKHR0dkZWVVey1L1y4gIkTJ+Lw4cMwMZEv/WCi8wqsZH6UL9dYwp/il+Amiv5Qa9sjmfsWfXPlDTjXN1LWeAAwNmGqrPE+8x0na7z6wkrWeABgKe9HEeYyx8vTwXIs9xXy/kKtn2t4a85IuY6Oubl5sYlNSZ7dRBsAhBBFygCgoKAAvXr1wpQpU1C9evXXbmdpMNEhIiKiUilfvjyMjY2L9N5cv369SC8PANy/fx/x8fFITEzE8OHDAQBKpRJCCJiYmGDXrl149913tdJWJjpERER6TBcrI5uZmcHX1xe7d+9G165dVeW7d+9Gly5ditS3s7PDmTNn1MoWL16Mffv2YePGjXBzc9NaW5noEBER6TEp5+iURkhICIKDg+Hn5wd/f38sXboUGRkZGDJkCICn833+++8/rFmzBkZGRqhdu7ba+RUrVoSFhUWRcqkx0SEiIqJS69GjB27duoWpU6ciMzMTtWvXxo4dO+Di4gIAyMzMfOGaOnJQCKGrXFB/ranyqazxzpnKO1nPVsi/6kClfHnjWSrl/bG/ZCZ/1zInI0vP0Ccj62LLpHQTw5+M/FHmWq1eP80n8MWVXpL7mV2SXetNwR4dIiIiPfYqWze8TbhgIBERERmsN7JHp1+/frh79y62bt2q66YQERG90Uq7R9XbRiuJzpMnT2BmZqaNSxMREdEzlBy60kiSoatWrVph+PDhCAkJQfny5dGuXTskJyejY8eOsLGxgaOjI4KDg3Hz5k3VORs3boSPjw8sLS3h4OCAtm3b4sGDB5g8eTJWr16N3377DQqFAgqFAgcOHAAA/Pfff+jRowfKli0LBwcHdOnSBenp6WptWblyJWrVqgVzc3M4OTmpFiYCgH/++QfNmjWDhYUFvL29sWfPHigUCvYcERERGSjJ5uisXr0aJiYmiI2Nxddff42WLVuiXr16iI+PR0xMDK5du4bu3bsDePrIWc+ePdG/f3+kpKTgwIED6NatG4QQGDduHLp374727dsjMzMTmZmZCAgIwMOHD9G6dWvY2Njg0KFDOHLkCGxsbNC+fXs8efIEALBkyRIMGzYMn3/+Oc6cOYNt27bBw8MDwNMVGD/44ANYWVnh+PHjWLp0KcLDw6W6fSIiIp0QQiHZYYgkG7ry8PDArFmzAACRkZFo0KABvvrqK9XrK1euhLOzM86fP4+cnBzk5+ejW7duquftfXx8VHUtLS2Rm5uLSpUqqcp++uknGBkZYfny5ap9NH744QeUKVMGBw4cQGBgIKZPn46xY8di1KhRqvMaNmwIANi1axdSU1Nx4MAB1XVnzJiBdu3aabyv3NzcIlvU54kCmCqMS/0eERERSU0XKyPrE8l6dPz8/FRfJyQkYP/+/bCxsVEdNWvWBACkpqaibt26aNOmDXx8fPDxxx9j2bJluHPnjsbrJyQk4OLFi7C1tVVds1y5cnj8+DFSU1Nx/fp1XL16FW3atCn2/HPnzsHZ2VkteWrUqNEL76u4Leu33z/7Mm8JERGR1gkh3WGIJOvRsba2Vn2tVCrRqVMnzJw5s0g9JycnGBsbY/fu3YiLi8OuXbuwaNEihIeH4/jx4yXud6FUKuHr64u1a4suvFShQgUYGWnO2UraUfVFituy/teag0t9HSIiIpKfVp66atCgATZt2gRXV1eYmBQfQqFQoGnTpmjatCkiIyPh4uKCLVu2ICQkBGZmZigoKChyzQ0bNqBixYqws7Mr9pqurq7Yu3cvWrduXeS1mjVrIiMjA9euXVPtrHrixIkX3ktxW9Zz2IqIiN4UHLrSTCsLBg4bNgy3b99Gz5498ddffyEtLQ27du1C//79UVBQgOPHj+Orr75CfHw8MjIysHnzZty4cQNeXl4AniYsp0+fxrlz53Dz5k3k5eWhd+/eKF++PLp06YLDhw/j0qVLOHjwIEaNGoV///0XADB58mTMnTsXCxcuxIULF3Dy5EksWrQIANCuXTtUq1YNffv2xenTpxEbG6uajPwqPT1ERERvAqVQSHYYIq0kOpUrV0ZsbCwKCgoQFBSE2rVrY9SoUbC3t4eRkRHs7Oxw6NAhdOzYEdWrV8eXX36JuXPnokOHDgCAQYMGoUaNGvDz80OFChUQGxsLKysrHDp0CFWrVkW3bt3g5eWF/v3749GjR6oenr59+2LBggVYvHgxatWqhffffx8XLlwAABgbG2Pr1q3IyclBw4YNMXDgQHz55ZcAAAsLC228DURERKRjb/WmnrGxsWjWrBkuXryIatWqvfR53NRTetzUU3rc1FN63NRTetzU8/Wdcesk2bV8Lv0u2bXeFG/kFhDasmXLFtjY2MDT0xMXL17EqFGj0LRp01IlOURERG+St7e74uW8VYnO/fv3ERoaiitXrqB8+fJo27Yt5s6dq+tmERERkZa8VYlOnz590KdPH103g4iISDKGOolYKm9VokNERGRoDHXrBqnIP+uUiIiISCbs0SEiItJjnIysGRMdIiIiPcY5Opq91evovCpzC2dZ4/Wp1ETWeNvunJE1HgB0Luvz4koSsoW823jo4kN2QzyRNd4PCXNkjVem6ruyxgMAK1PzF1eSUM6Tx7LGc7V1lDUeAOSLghdXktCle1myxgOA/Cf/afX6J6p0lexaDf/bItm13hSco0NEREQGi0NXREREeoxDV5ox0SEiItJjnH+iGYeuiIiIyGCxR4eIiEiPcehKMyY6REREeowrI2umlaGrAwcOQKFQ4O7du691HVdXVyxYsECSNgFAq1atMHr0aMmuR0RERG82SRIdJhBERES6oZTwMEQcuiIiItJjAhy60uS1e3T69euHgwcPIjo6GgqFAgqFAunp6QCAhIQE+Pn5wcrKCgEBATh37pzqvNTUVHTp0gWOjo6wsbFBw4YNsWfPHo2x5s2bBx8fH1hbW8PZ2RlDhw5FTk6OWp3Y2Fi0bNkSVlZWKFu2LIKCgnDnzh3V60qlEqGhoShXrhwqVaqEyZMnv+5bQERERG+o1050oqOj4e/vj0GDBiEzMxOZmZlwdn66RUJ4eDjmzp2L+Ph4mJiYoH///qrzcnJy0LFjR+zZsweJiYkICgpCp06dkJGRUXJjjYywcOFC/P3331i9ejX27duH0NBQ1etJSUlo06YNatWqhaNHj+LIkSPo1KkTCgr+b4nx1atXw9raGsePH8esWbMwdepU7N69+3XfBiIiIp1QCukOQ/TaQ1f29vYwMzODlZUVKlWqBAD4559/AAAzZsxAy5YtAQATJ07Ee++9h8ePH8PCwgJ169ZF3bp1VdeZPn06tmzZgm3btmH48OHFxnp2HpCbmxumTZuGL774AosXLwYAzJo1C35+fqrvAaBWrVpq16hTpw4mTZoEAPD09MQ333yDvXv3ol27dq/5ThAREclPyaErjbQ6R6dOnTqqr52cnAAA169fR9WqVfHgwQNMmTIF27dvx9WrV5Gfn49Hjx5p7NHZv38/vvrqKyQnJyM7Oxv5+fl4/PgxHjx4AGtrayQlJeHjjz9+6TYVtuv69esl1s/NzUVubq5amRACCgV/sIiISPc4R0czra6MbGpqqvq6MDFQKp/O6x4/fjw2bdqEGTNm4PDhw0hKSoKPjw+ePCl+x+XLly+jY8eOqF27NjZt2oSEhAR8++23AIC8vDwAgKWlZanaVNiuwjYVJyoqCvb29mpHQUH2C+MQERGR7kmS6JiZmanNg3kZhw8fRr9+/dC1a1f4+PigUqVKqknMxYmPj0d+fj7mzp2LJk2aoHr16rh69apanTp16mDv3r2vcgslCgsLw71799QOY2M7SWMQERG9Kj5erpkkiY6rqyuOHz+O9PR03Lx5U2MPSSEPDw9s3rwZSUlJOHXqFHr16qXxvGrVqiE/Px+LFi1CWloafvzxR3z33XdqdcLCwnDixAkMHToUp0+fxj///IMlS5bg5s2br3xv5ubmsLOzUzs4bEVERG8KAYVkhyGSJNEZN24cjI2N4e3tjQoVKmicZ1No/vz5KFu2LAICAtCpUycEBQWhQYMGJdavV68e5s2bh5kzZ6J27dpYu3YtoqKi1OpUr14du3btwqlTp9CoUSP4+/vjt99+g4kJlwsiIiJ6GymEEAb6QJn2mFs4yxqvT6UmssbbdueMrPEAoHNZH1nj2cJY1ni6+JDdEMXPd9OWHxLmyBqvTNV3ZY0HAFam5rLGy3nyWNZ4rraOssYDgHxRumkPr+vSvSxZ4wFA/pP/tHr9GMdPJLtW+2vrJbvWm4JdHURERHrMUOfWSEWrT10RERER6RITHSIiIj2my8nIixcvhpubGywsLODr64vDhw+XWHfz5s1o164dKlSoADs7O/j7+2Pnzp2vc+svhYkOERGRHlMqpDtKY8OGDRg9ejTCw8ORmJiI5s2bo0OHDiU+kHTo0CG0a9cOO3bsQEJCAlq3bo1OnTohMTFRgnehZEx0iIiIqNTmzZuHAQMGYODAgfDy8sKCBQvg7OyMJUuWFFt/wYIFCA0NRcOGDeHp6YmvvvoKnp6e+P3337XaTk5GJiIi0mNS7nVV3LZH5ubmMDdXf+LwyZMnSEhIwMSJE9XKAwMDERcX91KxlEol7t+/j3Llyr1eo1+APTpERER6TEh4FLft0fNr1gHAzZs3UVBQAEdH9SUJHB0dkZX1co/wz507Fw8ePED37t1Lf9OlwB4dIiIiPSbl4+VhYWEICQlRK3u+N+dZz+8U8LKbXq9btw6TJ0/Gb7/9hooVK75aY18SE51X8HXFlrLGK5snaziEu8m7ICIArLsj70JscstRyL/SRX1hJWs8uRfwu5uxT9Z4AJBUd6ys8R4VyPsrOs1Y/s+hn/ldWePZuZSRNZ6+KW6Yqjjly5eHsbFxkd6b69evF+nled6GDRswYMAA/Prrr2jbtu1rtfdlcOiKiIhIjykVCsmOl2VmZgZfX1/s3r1brXz37t0ICAgo8bx169ahX79++Pnnn/Hee++98j2XBnt0iIiI9Jiu9nEKCQlBcHAw/Pz84O/vj6VLlyIjIwNDhgwB8HQY7L///sOaNWsAPE1y+vTpg+joaDRp0kTVG2RpaQl7e3uttZOJDhEREZVajx49cOvWLUydOhWZmZmoXbs2duzYARcXFwBAZmam2po633//PfLz8zFs2DAMGzZMVd63b1+sWrVKa+1kokNERKTHdLnX1dChQzF06NBiX3s+eTlw4ID2G1QMJjpERER6rLQrGr9tOBmZiIiIDBZ7dIiIiPSYlCsjGyImOkRERHpMV09d6QsOXREREZHBki3REUJg1qxZcHd3h6WlJerWrYuNGzdCCIG2bduiffv2EOJpXnr37l1UrVoV4eHhAICCggIMGDAAbm5usLS0RI0aNRAdHa12/X79+uGDDz7AnDlz4OTkBAcHBwwbNgx5ef+3rHBmZibee+89WFpaws3NDT///DNcXV2xYMECud4GIiIiSSkV0h2GSLahqy+//BKbN2/GkiVL4OnpiUOHDuHTTz9FhQoVsHr1avj4+GDhwoUYNWoUhgwZAkdHR0yePBnA0x1O33nnHfzyyy8oX7484uLi8Pnnn8PJyUltM7D9+/fDyckJ+/fvx8WLF9GjRw/Uq1cPgwYNAgD06dMHN2/exIEDB2BqaoqQkBBcv35drreAiIhIcrp8vFwfyJLoPHjwAPPmzcO+ffvg7+8PAHB3d8eRI0fw/fff4+eff8b333+P4OBgXLt2Db///jsSExNhamoKADA1NcWUKVNU13Nzc0NcXBx++eUXtUSnbNmy+Oabb2BsbIyaNWvivffew969ezFo0CD8888/2LNnD06cOAE/Pz8AwPLly+Hp6amx7cVtWZ8vCmCiMJbkvSEiInodnKOjmSyJTnJyMh4/fox27dqplT958gT169cHAHz88cfYsmULoqKisGTJElSvXl2t7nfffYfly5fj8uXLePToEZ48eYJ69eqp1alVqxaMjf8vAXFycsKZM2cAAOfOnYOJiQkaNGiget3DwwNly5bV2PaoqCi1JAsAAu180N6+zsvdPBEREemMLImOUvm0Y+2PP/5AlSpV1F4r3CX14cOHSEhIgLGxMS5cuKBW55dffsGYMWMwd+5c+Pv7w9bWFrNnz8bx48fV6hX2ABVSKBSq2IXzf55XUnmh4ras/77WYI3nEBERycVQ59ZIRZZEx9vbG+bm5sjIyEDLli2LrTN27FgYGRnhzz//RMeOHfHee+/h3XffBQAcPnwYAQEBastMp6amlqoNNWvWRH5+PhITE+Hr6wsAuHjxIu7evavxvOK2rOewFRERvSk4R0czWRIdW1tbjBs3DmPGjIFSqUSzZs2QnZ2NuLg42NjYoHz58li5ciWOHj2KBg0aYOLEiejbty9Onz6NsmXLwsPDA2vWrMHOnTvh5uaGH3/8ESdOnICbm9tLt6FmzZpo27YtPv/8cyxZsgSmpqYYO3YsLC0toSjF1vRERESkP2R7vHzatGmIjIxEVFQUvLy8EBQUhN9//x2urq4YMGAAJk+erJo/M2nSJFSuXFm11fuQIUPQrVs39OjRA40bN8atW7dK3ERMkzVr1sDR0REtWrRA165dMWjQINja2sLCwkLSeyUiIpKLUsLDECnEiyapGLB///0Xzs7O2LNnD9q0afPS582v+qkWW1VU2QJZw6FVhWvyBgSw7o6j7DHllKOQ/1dIOaW864FG3jwia7y7GftkjQcASXXHyhrvUYG8i9enGZu/uJLE/MzvyhrPrtwjWeMBQNX4vVq9/nfO0v2bNOTKT5Jd603xVm0BsW/fPuTk5MDHxweZmZkIDQ2Fq6srWrRooeumERERkRa8VYlOXl4e/ve//yEtLQ22trYICAjA2rVrizytRUREpC8MdchJKm9VohMUFISgoCBdN4OIiEgyTHQ046aeREREZLDeqh4dIiIiQ/PWPlH0kpjoEBER6TGujKwZEx0iIiI9xjk6mjHReQXuT+T9scowlXcq1amsCrLGA4AaMn9U/zaX90+gPB10LlvKHNLKVN41WORe0wYA6p2aK2u83K9GyxrP6pc8WeMBgLGxvJ99O0+mBW8bJjpERER6jKmbZkx0iIiI9BgnI2vGx8uJiIjIYLFHh4iISI/xqSvNmOgQERHpMc7R0YxDV0RERGSwJE90Dhw4AIVCgbt375ZYZ9WqVShTpozUoV9o8uTJqFevnuxxiYiItEVIeBgiDl0RERHpMaXBpijS4NAVERERGaxXSnRyc3MxcuRIVKxYERYWFmjWrBlOnDhRYv1Vq1ahatWqsLKyQteuXXHr1i211wuHlL7//ns4OzvDysoKH3/8cZHhrx9++AFeXl6wsLBAzZo1sXjxYrXXJ0yYgOrVq8PKygru7u6IiIhAXl7JK31eunQJHh4e+OKLL6BUcjoXERHpH6WEhyF6pUQnNDQUmzZtwurVq3Hy5El4eHggKCgIt2/fLlL3+PHj6N+/P4YOHYqkpCS0bt0a06dPL1Lv4sWL+OWXX/D7778jJiYGSUlJGDZsmOr1ZcuWITw8HDNmzEBKSgq++uorREREYPXq1ao6tra2WLVqFZKTkxEdHY1ly5Zh/vz5xd7D33//jaZNm+Ljjz/GkiVLYGTEzi0iItI/nKOjWann6Dx48ABLlizBqlWr0KFDBwBPk5Ddu3djxYoVaNiwoVr96OhoBAUFYeLEiQCA6tWrIy4uDjExMWr1Hj9+jNWrV+Odd94BACxatAjvvfce5s6di0qVKmHatGmYO3cuunXrBgBwc3NDcnIyvv/+e/Tt2xcA8OWXX6qu5+rqirFjx2LDhg0IDQ1Vi3X06FG8//77CAsLw7hx4zTeb25uLnJzc9XK8kQBTBXGL/V+ERERaZOh9sRIpdTdGKmpqcjLy0PTpk1VZaampmjUqBFSUlKK1E9JSYG/v79a2fPfA0DVqlVVSU5hHaVSiXPnzuHGjRu4cuUKBgwYABsbG9Uxffp0pKamqs7ZuHEjmjVrhkqVKsHGxgYRERHIyMhQi5ORkYG2bdviyy+/fGGSAwBRUVGwt7dXOzY+SH7heURERKR7pU50hHjauaVQKIqUP1/2bP3SKryWQqFQzZ9ZtmwZkpKSVMfff/+NY8eOAQCOHTuGTz75BB06dMD27duRmJiI8PBwPHnyRO26FSpUQKNGjbB+/XpkZ2e/sB1hYWG4d++e2vGRtfcr3RMREZHUlArpDkNU6kTHw8MDZmZmOHLkiKosLy8P8fHx8PLyKlLf29tblYwUev574GlPy9WrV1XfHz16FEZGRqhevTocHR1RpUoVpKWlwcPDQ+1wc3MDAMTGxsLFxQXh4eHw8/ODp6cnLl++XCSOpaUltm/fDgsLCwQFBeH+/fsa79fc3Bx2dnZqB4etiIjoTaGEkOwwRKWeo2NtbY0vvvgC48ePR7ly5VC1alXMmjULDx8+xIABA3Dq1Cm1+iNHjkRAQABmzZqFDz74ALt27SoyPwcALCws0LdvX8yZMwfZ2dkYOXIkunfvjkqVKgF4+mTWyJEjYWdnhw4dOiA3Nxfx8fG4c+cOQkJC4OHhgYyMDKxfvx4NGzbEH3/8gS1btpR4D3/88Qc6dOiADh06ICYmBjY2NqV9K4iIiOgN90qPGn399df48MMPERwcjAYNGuDixYvYuXMnypYtW6RukyZNsHz5cixatAj16tXDrl271CYNF/Lw8EC3bt3QsWNHBAYGonbt2mqPjw8cOBDLly/HqlWr4OPjg5YtW2LVqlWqHp0uXbpgzJgxGD58OOrVq4e4uDhERESUeA82Njb4888/IYRAx44d8eDBg1d5K4iIiHSKT11pphCvOolGQpMnT8bWrVuRlJSk66a8lN8q9ZI1XoapvI++V82Tfw5/gczx/jaXdzA6RyH/e+paIO8Q66TsktfS0oYdNvLPlat3aq6s8XK/Gi1rvH9+kX+ZDWvLJy+uJCEnv0eyxgOAMuv2a/X6Ya7S/ZsUlf6zZNd6U3DxGCIiIjJYTHSIiIj0mC4nIy9evBhubm6wsLCAr68vDh8+rLH+wYMH4evrCwsLC7i7u+O777571dt+aW9EojN58mS9GbYiIiJ6k+hqjs6GDRswevRohIeHIzExEc2bN0eHDh2KrF9X6NKlS+jYsSOaN2+OxMRE/O9//8PIkSOxadOm0t5yqbwRiQ4RERHpl3nz5mHAgAEYOHAgvLy8sGDBAjg7O2PJkiXF1v/uu+9QtWpVLFiwAF5eXhg4cCD69++POXPmaLWdTHSIiIj0mJSbeubm5iI7O1vteH4bJAB48uQJEhISEBgYqFYeGBiIuLi4Ytt59OjRIvWDgoIQHx+vcQPu18VEh4iISI9JOUenuG2PoqKiisS8efMmCgoK4OjoqFbu6OiIrKysYtuZlZVVbP38/HzcvHlTujfkOaVeMJCIiIjeHFKuERMWFoaQkBC1MnNz8xLrv+x2UJrqF1cuJSY6REREBOBpUqMpsSlUvnx5GBsbF+m9uX79epFem0KVKlUqtr6JiQkcHBxevdEvwETnFeQYyTvid8NY3jUd7ZXyj2g+lDnkXUW+rPEchPz7o5nLvBRozpPHssZ7VCD/ry+5F/Az/98CWeP99WukrPEAoOFDeVelv5OsvbkgJSmj5evLvxwpYGZmBl9fX+zevRtdu3ZVle/evRtdunQp9hx/f3/8/vvvamW7du2Cn58fTE1NtdZWztEhIiLSY0LC/0ojJCQEy5cvx8qVK5GSkoIxY8YgIyMDQ4YMAfB0GKxPnz6q+kOGDMHly5cREhKClJQUrFy5EitWrMC4ceMkfT+exx4dIiIiKrUePXrg1q1bmDp1KjIzM1G7dm3s2LEDLi4uAIDMzEy1NXXc3NywY8cOjBkzBt9++y0qV66MhQsX4sMPP9RqO5noEBER6TFdDF0VGjp0KIYOHVrsa6tWrSpS1rJlS5w8eVLLrVLHRIeIiEiPvcrWDW8TztEhIiIig8UeHSIiIj3G/hzN3thEp1+/frh79y62bt2q66YQERG9sTh0pRmHroiIiMhgvbE9OkRERPRiunzqSh/ovEdn48aN8PHxgaWlJRwcHNC2bVs8eFB0pczc3FyMHDkSFStWhIWFBZo1a4YTJ06oXj9w4AAUCgX++OMP1K1bFxYWFmjcuDHOnDmjdp24uDi0aNEClpaWcHZ2xsiRI4uNR0REpA90tWCgvtBpopOZmYmePXuif//+SElJwYEDB9CtWzfVJl/PCg0NxaZNm7B69WqcPHkSHh4eCAoKwu3bt9XqjR8/HnPmzMGJEydQsWJFdO7cWbX9+5kzZxAUFIRu3brh9OnT2LBhA44cOYLhw4fLcr9ERERSU0p4GCKdJzr5+fno1q0bXF1d4ePjg6FDh8LGxkat3oMHD7BkyRLMnj0bHTp0gLe3N5YtWwZLS0usWLFCre6kSZPQrl07+Pj4YPXq1bh27Rq2bNkCAJg9ezZ69eqF0aNHw9PTEwEBAVi4cCHWrFmDx4+L36cnNzcX2dnZakeeKNDOG0JERESS0mmiU7duXbRp0wY+Pj74+OOPsWzZMty5c6dIvdTUVOTl5aFp06aqMlNTUzRq1AgpKSlqdf39/VVflytXDjVq1FDVSUhIwKpVq2BjY6M6goKCoFQqcenSpWLbGBUVBXt7e7VjW85ZKW6fiIjotXHoSjOdJjrGxsbYvXs3/vzzT3h7e2PRokWoUaNGkaSjcChLoVAUKX++rDiFdZRKJQYPHoykpCTVcerUKVy4cAHVqlUr9tywsDDcu3dP7ehsU+tVbpeIiEhyHLrSTOeTkRUKBZo2bYopU6YgMTERZmZmqqGmQh4eHjAzM8ORI0dUZXl5eYiPj4eXl5da3WPHjqm+vnPnDs6fP4+aNWsCABo0aICzZ8/Cw8OjyGFmZlZs+8zNzWFnZ6d2mCqMpbp9IiIi0iKdPl5+/Phx7N27F4GBgahYsSKOHz+OGzduwMvLC6dPn1bVs7a2xhdffIHx48ejXLlyqFq1KmbNmoWHDx9iwIABatecOnUqHBwc4OjoiPDwcJQvXx4ffPABAGDChAlo0qQJhg0bhkGDBsHa2hopKSnYvXs3Fi1aJOetExERSUJZzAM89H90mujY2dnh0KFDWLBgAbKzs+Hi4oK5c+eiQ4cO2LBhg1rdr7/+GkqlEsHBwbh//z78/Pywc+dOlC1btki9UaNG4cKFC6hbty62bdum6q2pU6cODh48iPDwcDRv3hxCCFSrVg09evSQ7Z6JiIikxDRHM50mOl5eXoiJiSn2tee3d7ewsMDChQuxcOFCjdds1qwZ/v777xJfb9iwIXbt2lXqthIREZH+4crIREREeox7XWnGRIeIiEiPGepj4VIxmESnVatWxa6oTERERG8vg0l0iIiI3kaGuv6NVJjoEBER6THO0dGMiQ4REZEe4xwdzXS+MjIRERGRtrBH5xU0LnND1njXcyrIGs8pP0/WeACQbG4qa7zqBfL+6FvoYBA978XbwEnK1dZR1nhpxuayxgMAq1/k/Wz89WukrPEGJU6VNR4AHK09QdZ45eoY3owWw7sjaTHRISIi0mN84lgzDl0RERGRwWKPDhERkR7jU1eaMdEhIiLSY5yjoxmHroiIiMhgsUeHiIhIj3EdHc2Y6BAREekxztHRjENXREREZLDYo0NERKTHuI6OZgbZo6NUKjFz5kx4eHjA3NwcVatWxYwZMwAAEyZMQPXq1WFlZQV3d3dEREQgL0/+lYCJiIikoJTwMEQG2aMTFhaGZcuWYf78+WjWrBkyMzPxzz//AABsbW2xatUqVK5cGWfOnMGgQYNga2uL0NBQHbeaiIio9DgZWTODS3Tu37+P6OhofPPNN+jbty8AoFq1amjWrBkA4Msvv1TVdXV1xdixY7Fhw4YSE53c3Fzk5uaqlymVMDcyyM4wIiIig2Jw/1qnpKQgNzcXbdq0Kfb1jRs3olmzZqhUqRJsbGwQERGBjIyMEq8XFRUFe3t7teP7W2naaj4REVGpKCEkOwyRwSU6lpaWJb527NgxfPLJJ+jQoQO2b9+OxMREhIeH48mTJyWeExYWhnv37qkdgx3ctdF0IiKiUhNCSHYYIoMbuvL09ISlpSX27t2LgQMHqr0WGxsLFxcXhIeHq8ouX76s8Xrm5uYwNzdXL+OwFRERkV4wuETHwsICEyZMQGhoKMzMzNC0aVPcuHEDZ8+ehYeHBzIyMrB+/Xo0bNgQf/zxB7Zs2aLrJhMREb0yQx1ykopBdk1ERERg7NixiIyMhJeXF3r06IHr16+jS5cuGDNmDIYPH4569eohLi4OERERum4uERHRKxMS/meIDK5HBwCMjIwQHh6uNkRVaNasWZg1a5Za2ejRo2VqGREREcnJIHt0iIiI3hZKISQ7tOXOnTsIDg5WPb0cHByMu3fvllg/Ly8PEyZMgI+PD6ytrVG5cmX06dMHV69eLXVsJjpERER6TEh4aEuvXr2QlJSEmJgYxMTEICkpCcHBwSXWf/jwIU6ePImIiAicPHkSmzdvxvnz59G5c+dSxzbIoSsiIiJ6M6SkpCAmJgbHjh1D48aNAQDLli2Dv78/zp07hxo1ahQ5x97eHrt371YrW7RoERo1aoSMjAxUrVr1peMz0SEiItJjUj51VdxuAMUts1IaR48ehb29vSrJAYAmTZrA3t4ecXFxxSY6xbl37x4UCgXKlClTqvgcuiIiItJjUq6MXNxuAFFRUa/VvqysLFSsWLFIecWKFZGVlfVS13j8+DEmTpyIXr16wc7OrlTxmegQERHpMSlXRi5uN4CwsLBi406ePBkKhULjER8fDwBQKBTFtru48ufl5eXhk08+gVKpxOLFi0v9/nDoioiIiACUbphq+PDh+OSTTzTWcXV1xenTp3Ht2rUir924cQOOjo4az8/Ly0P37t1x6dIl7Nu3r9S9OQATnVeyP7uCrPG6li/6A6JN/2XZyxoPAGyUprLGO29SIGu8skbGssYDgPsKpazx8nPlfU/9zO/KGg8AjI3lfU8bPnwga7yjtSfIGg8A/P+eKWu8B6MGvriSntHVysjly5dH+fLlX1jP398f9+7dw19//YVGjRoBAI4fP4579+4hICCgxPMKk5wLFy5g//79cHBweKV2cuiKiIhIj73pKyN7eXmhffv2GDRoEI4dO4Zjx45h0KBBeP/999UmItesWVO1LVN+fj4++ugjxMfHY+3atSgoKEBWVhaysrI0bsRdHCY6REREpFVr166Fj48PAgMDERgYiDp16uDHH39Uq3Pu3Dncu3cPAPDvv/9i27Zt+Pfff1GvXj04OTmpjri4uFLF5tAVERGRHhNaXNFYKuXKlcNPP/2ksc6z9+Hq6irZfTHRISIi0mPcvVwzDl0RERGRwWKPDhERkR7Th6ErXdLbHp0DBw5AoVBo3P30Zbi6umLBggWStImIiEhuUq6MbIj0JtFp1aoVRo8eretmEBERkR7h0BUREZEe09b6N4ZCL3p0+vXrh4MHDyI6Olq1f0Z6ejoAICEhAX5+frCyskJAQADOnTunOi81NRVdunSBo6MjbGxs0LBhQ+zZs0dHd0FERCQ9pRCSHYZILxKd6Oho+Pv7Y9CgQcjMzERmZiacnZ0BAOHh4Zg7dy7i4+NhYmKC/v37q87LyclBx44dsWfPHiQmJiIoKAidOnVCRkaGrm6FiIhIUm/6ysi6pheJjr29PczMzGBlZYVKlSqhUqVKMDZ+unfQjBkz0LJlS3h7e2PixImIi4vD48ePAQB169bF4MGD4ePjA09PT0yfPh3u7u7Ytm2bLm+HiIiIZKL3c3Tq1Kmj+trJyQkAcP36dVStWhUPHjzAlClTsH37dly9ehX5+fl49OhRqXp0cnNzkZubq1aWJwpgqpB/k0YiIqLnGeqQk1T0okdHE1PT/9v1WqFQAACUyqc7DI8fPx6bNm3CjBkzcPjwYSQlJcHHx6dUG4JFRUXB3t5e7fjz/llpb4KIiOgVcehKM71JdMzMzFBQUFCqcw4fPox+/fqha9eu8PHxQaVKlVSTmF9WWFgY7t27p3Z0sK1VqmsQERGRbujN0JWrqyuOHz+O9PR02NjYqHptNPHw8MDmzZvRqVMnKBQKREREvNR5zzI3N4e5ublaGYetiIjoTcGhK830pkdn3LhxMDY2hre3NypUqPBS82zmz5+PsmXLIiAgAJ06dUJQUBAaNGggQ2uJiIjkwaErzfSmR6d69eo4evSoWlm/fv3Uvq9Xr16Rbd737dunVmfYsGFq35d2KIuIiIj0h94kOkRERFQUh640Y6JDRESkxwx1yEkqejNHh4iIiKi02KNDRESkx4Qo3dPEbxsmOkRERHpMyaErjZjoEBER6THBycgacY4OERERGSz26BAREekxDl1pxkTnFTjn5csa759MB1nj1Xa9Lms8ALh0pbKs8coKebfxKNDBL6L6uQpZ4828lyVrPDuXMrLGAwA7T3knfd5JzpM1Xrk68k9qfTBqoKzxrKOXyxpPDhy60oxDV0RERGSw2KNDRESkx7gysmZMdIiIiPQYV0bWjENXREREZLDYo0NERKTHOBlZMyY6REREeoyPl2v21g9dtWrVCqNHj9Z1M4iIiEgL2KNDRESkxzh0pRkTHSIiIj3Gx8s1e6OHru7fv4/evXvD2toaTk5OmD9/vtpQ0507d9CnTx+ULVsWVlZW6NChAy5cuKA6/9atW+jZsyfeeecdWFlZwcfHB+vWrdPR3RAREUlPCCHZYYje6EQnJCQEsbGx2LZtG3bv3o3Dhw/j5MmTqtf79euH+Ph4bNu2DUePHoUQAh07dkRe3tNl0x8/fgxfX19s374df//9Nz7//HMEBwfj+PHjurolIiIiktEbO3R1//59rF69Gj///DPatGkDAPjhhx9QufLTPZEuXLiAbdu2ITY2FgEBAQCAtWvXwtnZGVu3bsXHH3+MKlWqYNy4caprjhgxAjExMfj111/RuHHjl2pHbm4ucnNz1cqeiAKYKeTdK4mIiKg4fOpKsze2RyctLQ15eXlo1KiRqsze3h41atQAAKSkpMDExEQtYXFwcECNGjWQkpICACgoKMCMGTNQp04dODg4wMbGBrt27UJGRsZLtyMqKgr29vZqxy8PUiS6SyIiotfDoSvN3thEp/ANVygUxZaX9D9ECKE6Z+7cuZg/fz5CQ0Oxb98+JCUlISgoCE+ePHnpdoSFheHevXtqR3drr1e5JSIiIpLZG5voVKtWDaampvjrr79UZdnZ2arJxt7e3sjPz1ebb3Pr1i2cP38eXl5PE5HDhw+jS5cu+PTTT1G3bl24u7urTVZ+Gebm5rCzs1M7OGxFRERvCqUQkh2G6I1NdGxtbdG3b1+MHz8e+/fvx9mzZ9G/f38YGRlBoVDA09MTXbp0waBBg3DkyBGcOnUKn376KapUqYIuXboAADw8PLB7927ExcUhJSUFgwcPRlZWlo7vjIiISDpCwv8M0Rub6ADAvHnz4O/vj/fffx9t27ZF06ZN4eXlBQsLCwBPJyf7+vri/fffh7+/P4QQ2LFjB0xNTQEAERERaNCgAYKCgtCqVStUqlQJH3zwgQ7viIiIiOT0xj51BTzt1Vm7dq3q+wcPHmDKlCn4/PPPAQBly5bFmjVrSjy/XLly2Lp1q8YYBw4ckKKpREREOmGoQ05SeaN7dBITE7Fu3Tqkpqbi5MmT6N27NwCohqaIiIjedvrw1NWdO3cQHByseno5ODgYd+/efenzBw8eDIVCgQULFpQ69hud6ADAnDlzULduXbRt2xYPHjzA4cOHUb58eV03i4iIiF5Sr169kJSUhJiYGMTExCApKQnBwcEvde7WrVtx/Phx1Tp6pfVGD13Vr18fCQkJum4GERHRG0vKScTFLZJrbm4Oc3PzV75mSkoKYmJicOzYMdXad8uWLYO/vz/OnTunWh+vOP/99x+GDx+OnTt34r333nul+G98jw4RERGVTMqhq+IWyY2Kinqt9h09ehT29vZqC/w2adIE9vb2iIuLK/E8pVKJ4OBgjB8/HrVq1Xrl+G90jw4RERFpJuXcmrCwMISEhKiVvU5vDgBkZWWhYsWKRcorVqyoccmXmTNnwsTEBCNHjnyt+OzRISIiIgDFL5JbUqIzefJkKBQKjUd8fDyAorscAOo7GTwvISEB0dHRWLVqVYl1XhZ7dIiIiPSYrh4uHz58OD755BONdVxdXXH69Glcu3atyGs3btyAo6NjsecdPnwY169fR9WqVVVlBQUFGDt2LBYsWID09PSXb6ggWTx+/FhMmjRJPH782CDj6SKmocfTRUxDj6eLmIYeTxcxDT2eoUlOThYAxPHjx1Vlx44dEwDEP//8U+w5N2/eFGfOnFE7KleuLCZMmFDiOSVRCMGVhuSQnZ0Ne3t73Lt3D3Z2dgYXTxcxDT2eLmIaejxdxDT0eLqIaejxDFGHDh1w9epVfP/99wCAzz//HC4uLvj9999VdWrWrImoqCh07dq12Gu4urpi9OjRGD16dKlic44OERERadXatWvh4+ODwMBABAYGok6dOvjxxx/V6pw7dw737t2TPDbn6BAREZFWlStXDj/99JPGOi8aYCrVvJxnsEeHiIiIDBYTHZmYm5tj0qRJr70ewZsaTxcxDT2eLmIaejxdxDT0eLqIaejxSFqcjExEREQGiz06REREZLCY6BAREZHBYqJDREREBouJDhERERksJjpERERksJjovCX4cB3Rm+HRo0e6bgLRW4WJjgwuXryInTt3qn7BaSvpCA4ORk5OTpHy9PR0tGjRQisx79y5gzlz5mDAgAEYOHAg5syZg9u3b2sl1vOys7OxdetWpKSkyBJPF96GezREw4YNK7b8wYMH6NChg9biPnnyBOfOnUN+fr7WYhDpG66jo0W3bt1Cjx49sG/fPigUCly4cAHu7u4YMGAAypQpg7lz50oaz9fXF7dv38ZPP/2Epk2bAgBWr16NkSNHol27dti4caOk8Q4ePIguXbrAzs4Ofn5+AICEhATcvXsX27ZtQ8uWLSWN1717d7Ro0QLDhw/Ho0ePULduXaSnp0MIgfXr1+PDDz+UJM7ChQtfuu7IkSMliVlIrnt81rZt24otVygUsLCwgIeHB9zc3CSNuXfvXuzduxfXr1+HUqlUe23lypWSxirp/+ez99eiRQsYGxtLFtPT0xM9evTA9OnTVWUPHjxA+/btAQCHDx+WLBYAPHz4ECNGjMDq1asBAOfPn4e7uztGjhyJypUrY+LEiZLGKygowPz58/HLL78gIyMDT548UXtdij92dPE5DAkJeem68+bNkyQmyaD0G67TywoODhZBQUHiypUrwsbGRqSmpgohhNi5c6fw9vaWPF5eXp6YMGGCMDMzE2FhYeKjjz4SNjY2YsWKFZLHEkKIWrVqiUGDBon8/HxVWX5+vvj8889FrVq1JI/n6OgokpKShBBCrF27Vnh4eIgHDx6IxYsXi3r16kkWx9XV9aUONzc3yWIWkusen6VQKISRkZFQKBRqR2GZkZGRaNGihbh9+7Yk8SZPniyMjIxEo0aNRJcuXcQHH3ygdkjN1dVVWFtbC4VCIcqVKyfKli0rFAqFsLa2Fo6OjkKhUIhq1aqJjIwMyWKmpaWJypUri3nz5gkhhMjOzhb+/v6iefPmIicnR7I4hUaOHCl8fX3F4cOHhbW1tep3zW+//aaVn5uIiAjh5OQkZs+eLSwsLMS0adPEgAEDhIODg4iOjpYkhi4+h61atXqpo3Xr1pLFJO1joqNFz/6j9Wyik5aWJqytrbUWNzIyUigUCmFqairi4uK0FsfCwkL8888/Rcr/+ecfYWFhoZV4hf8YBQcHiwkTJgghhLh8+bJW30856eIe9+zZIxo3biz27NkjsrOzRXZ2ttizZ49o0qSJ+OOPP8SRI0dErVq1RP/+/SWJV6lSJbFmzRpJrvUyfv75Z9GqVStx8eJFVdmFCxfEu+++K9avXy+uXLkimjZtKj788ENJ4545c0Y4ODiIBQsWiCZNmoiWLVtqJckRQoiqVauKo0ePCiHUf9dcuHBB2NraSh7P3d1dbN++XRWv8L2Njo4WPXv2lDwe0etgoqNFNjY24vz586qvC3/5/PXXX6JcuXKSx3vy5IkICQkR5ubm4n//+59o0aKFcHR0FH/88YfksYQQIiAgQGzZsqVI+ZYtW0STJk0kj+fp6Sk2bNggcnJyRIUKFcTevXuFEEIkJSUJBwcHyeM9T6lUCqVSqdUYurjHWrVqidjY2CLlR44cUfU87t69Wzg7O0sSr1y5cmpJh7a5u7uLxMTEIuUnT55U9QbExsaKSpUqSR776NGjwtraWrz77rvi4cOHkl+/kKWlper3y7O/a5KSkoSdnZ3k8aysrMTly5eFEE8T14SEBCGEEKmpqVqJR/Q6THQ9dGbIWrRogTVr1mDatGkAns4JUCqVmD17Nlq3bi15PD8/Pzx8+BAHDhxAkyZNIITArFmz0K1bN/Tv3x+LFy+WNN7IkSMxatQoXLx4EU2aNAEAHDt2DN9++y2+/vprnD59WlW3Tp06rx1v9OjR6N27N2xsbODi4oJWrVoBAA4dOgQfH5/Xvn5J1qxZg9mzZ+PChQsAgOrVq2P8+PEIDg6WPJYu7jE1NRV2dnZFyu3s7JCWlgbg6ZyTmzdvShJv4MCB+PnnnxERESHJ9V4kMzOz2Mm5+fn5yMrKAgBUrlwZ9+/ff6049evXh0KhKFJubm6Oq1evqubNAcDJkydfK9bzGjZsiD/++AMjRowAAFU7li1bBn9/f0ljAcA777yDzMxMVK1aFR4eHti1axcaNGiAEydOaG3jy3///Rfbtm0rdk6QtubLnDhxAr/++muxMTdv3qyVmCQ9JjpaNHv2bLRq1Qrx8fF48uQJQkNDcfbsWdy+fRuxsbGSx/Pz88PChQthbW0N4OkvuwkTJiAoKAiffvqp5PF69uwJAAgNDS32NYVCASEEFAoFCgoKXjve0KFD0ahRI1y5cgXt2rWDkdHThwbd3d3VJn1Kad68eYiIiMDw4cPRtGlTCCEQGxuLIUOG4ObNmxgzZoyk8XRxj76+vhg/fjzWrFmDChUqAABu3LiB0NBQNGzYEABw4cIFvPPOO68c49lJnkqlEkuXLsWePXtQp04dmJqaqtWV+h+t1q1bY/DgwVi+fDnq168PAEhMTMQXX3yBd999FwBw5syZ155w/cEHH7xuU19ZVFQU2rdvj+TkZOTn5yM6Ohpnz57F0aNHcfDgQcnjde3aFXv37kXjxo0xatQo9OzZEytWrEBGRobknwng6eT1zp07w83NDefOnUPt2rVVk/QbNGggeTwAWL9+Pfr06YPAwEDs3r0bgYGBuHDhArKystC1a1etxCTt4FNXWpaVlYUlS5YgISEBSqUSDRo0wLBhw+Dk5CRrO3JzcyX/S+vy5csvXdfFxUXS2IU/tsX9BS0lNzc3TJkyBX369FErX716NSZPnoxLly5pLbZc93ju3Dl06dIFly5dgrOzMxQKBTIyMuDu7o7ffvsN1atXx9atW3H//v1X7sV62R5MhUKBffv2vVKMkmRlZSE4OBh79+5VJVX5+flo06YNfvzxRzg6OmL//v3Iy8tDYGCgpLHldObMGcyZM0ftd82ECRO02ttZ6Pjx44iNjYWHhwc6d+4s+fUbNWqE9u3bY+rUqbC1tcWpU6dQsWJF9O7dG+3bt8cXX3whecw6depg8ODBGDZsmCqmm5sbBg8eDCcnJ0yZMkXymKQluhs1I21Ys2aNCAgIEE5OTiI9PV0IIcT8+fPF1q1bJY/11VdfFftE14oVK8TXX38teTwhhFi+fLmoVauWMDMzE2ZmZqJWrVpi2bJlWoklhBDm5ubiwoULRcrPnz8vzM3NtRJT7nsU4un8oz///FNER0eLBQsWiJiYGFFQUKDVmHJLSUkRv/32m9i6dWuxk+jp5cn92X92wnOZMmXE33//LYR4OgfJxcVF8nhCPJ2HdOnSJSGEEA4ODuL06dNCCCGSk5O1Mp+LtIdDV1r07ByVZxWu31G1alVJe1mWLFmCyMhIjB49GjNmzFANF5UpUwYLFixAly5dJIsFAN9//z1+/vnnIuW1atXCJ598ggkTJkgaLyIiAvPnz8eIESNU8w6OHj2KMWPGID09XStDOx4eHvjll1/wv//9T618w4YN8PT0lDyeLu4RePoz2b59e9U6L9p07949FBQUoFy5cmrlt2/fhomJSbHzhaRQs2ZN1KxZUyvXfp4c68wUF3PLli1ISUmBQqGAl5cXunTpAhMT6X/Ny/3Zt7a2Rm5uLoCn86lSU1NRq1YtAJBs7tjzypUrp5q3VaVKFfz999/w8fHB3bt38fDhQ63EJC3RdaZlyArXIHl2jZLC742MjIS5ubno06ePePTokSTxvLy8VE9BPfvkReFjrlIzNzcXaWlpRcpTU1O10tvh4OAgfv755yLlP//8s9aeSNq4caMwNjYWQUFBYurUqWLatGkiKChImJiYiM2bN0seTxf3OGLEiGLXPlm0aJEYNWqU5PHat28vvv322yLlS5YsER06dJA8Xn5+vli+fLno2bOnaNOmjWjdurXaoQ1yrDPzrDNnzgh3d3dhZWUl6tevL+rXry+sra2Fq6urqidCSnJ/9rt06SKWLl0qhBBi/PjxwsPDQ0yfPl00aNBAtGnTRvJ4QgjRs2dPMXfuXCGEENOnTxcVKlQQAwcOFC4uLqJr165aiUnawURHi7Zu3Spq1Kghli9fLk6fPi1OnTolli9fLry8vMT69evFTz/9JN555x0xduxYSeJZWFiohqueTXTOnz+vlXVtPDw8xI8//likfM2aNVpZTK9MmTKqx/Wfde7cOWFvby95vELx8fGid+/eokGDBqJ+/fqid+/e4uTJk1qJpYt7rFy5soiPjy9SnpCQIKpUqSJ5vLJly4rk5OQi5SkpKVpZdmHYsGHC2tpadO/eXYwaNUqMHj1a7dAGudeZady4sejUqZPaoo63b98WnTt31spSD3J/9lNTU8WpU6eEEEI8ePBAfPHFF8LHx0d07dpV9TtPardu3RL//fefEEKIgoICMXPmTNGpUycxZswYyRbPJHkw0dGihg0bipiYmCLlMTExomHDhkKIp2vOuLu7SxLPy8tLNRfn2UQnOjpaNGjQQJIYz/r666+Fg4ODWLlypUhPTxfp6elixYoVwsHBQXz11VeSxxs+fLgYM2ZMkfKxY8eKoUOHSh5PF3RxjyXNQ7pw4YJW/jq3srIqtpfh9OnTwtLSUvJ4Dg4OWltLqiRyrzNjYWGhmrfyrDNnzmjljxy5P/tEr4NzdLTozJkzxT5t5OLigjNnzgAA6tWrh8zMTEnijR8/HsOGDcPjx48hhMBff/2FdevWISoqCsuXL5ckxrNCQ0Nx+/ZtDB06VDUHwcLCAhMmTEBYWJjk8QBgxYoV2LVrl9q6PVeuXEGfPn3UHmGW8hFlpVKJixcvFrsvkxSbpT6/v87y5ctLvEdt8PDwQExMDIYPH65W/ueff8Ld3V3yeA0bNsTSpUuxaNEitfLvvvsOvr6+ksczMzODh4eH5NfVRO51ZmrUqIFr166p5q0Uun79ulbuXReffeDppqXFfQ6rVq2qlXgFBQWqTXUVCgW8vb3RuXNnSfdFI+3j4+VaVL9+fdStWxdLly6FmZkZACAvLw+DBg3CqVOnkJiYiNjYWHz66aeSPaa8bNkyTJ8+HVeuXAHw9BfupEmTMGDAAEmuX5ycnBykpKTA0tISnp6eWlswTBePKB87dgy9evXC5cuXi+w6L9X6QGXLlkXt2rVhYmKiWnuoONp49Bp4uonm8OHDMX78eNW6Mnv37sXcuXOxYMECDBo0SNJ4sbGxaNu2LRo2bIg2bdqo4p04cQK7du1C8+bNJY03d+5cpKWl4ZtvvtH6o/qFJk6cCDs7O/zvf//Dxo0b0bNnT7i6uqrWmfn6668ljbdjxw6EhoZi8uTJagny1KlT8fXXX6NZs2aqulJO9pbrs3/+/HkMGDAAcXFxauVCwnW6nnfx4kW89957+Pfff1GjRg0IIXD+/Hk4Ozvjjz/+QLVq1SSPSdrBREeL4uLi0LlzZxgZGaFOnTpQKBQ4ffo0CgoKsH37djRp0gQ//vgjsrKyMH78+NeO9+jRIwghYGVlhZs3byItLQ2xsbHw9vZGUFCQBHf09qlXrx6qV6+OKVOmwMnJqcg/lPb29q8dw8jICFlZWahYsSLc3d1x4sQJODg4vPZ1S2PJkiWYMWMGrl69CgBwdXXF5MmTtdaLlJSUhNmzZyMpKQmWlpaoU6cOwsLCtPIkW9euXbF//36UK1cOtWrVKrJAoRwr3B47dgxxcXFaW2emcGFJ4P/WXRLPrcOkzaRA25o2bQoTExNMnDix2M9h3bp1JY/ZsWNHCCGwdu1a1ROCt27dwqeffgojIyP88ccfksck7WCio2U5OTn46aefcP78eQghULNmTfTq1Qu2traSxwoMDES3bt0wZMgQ3L17FzVr1oSpqSlu3ryJefPmaWVRLV25cuUKFArFa63W+zKsra1x6tQprQ59ODg4YMeOHWjcuDGMjIxw7do11QrFcrtx4wYsLS1hY2Ojk/ja8Nlnn2l8/YcffpCpJdpTmtWPW7ZsqcWWaIe1tTUSEhJkWx6gMOaxY8eKLLh46tQpNG3aFDk5ObK1hV4P5+homY2NDVq0aAFXV1fVWPb+/fsBQPK/7E6ePIn58+cDADZu3AhHR0ckJiZi06ZNiIyM1PtEJz8/H1OmTMHChQtVv2RsbGwwYsQITJo0qchf6lJo3LgxLl68qNVE58MPP0SLFi1QuXJlKBQK+Pn5lTgHoHDvKanl5+fjwIEDSE1NRa9evQAAV69ehZ2dnVaTnkePHiEvL0+tTOp1dHSVyPz444/47rvvcOnSJRw9ehQuLi5YsGAB3NzcJF/TSh+Tl9Lw9vbW2no5JTE3Ny92/7OcnBzVVATSD0x0tCgtLQ1du3bFmTNn1PZ9KiR1F/LDhw9VPUW7du1Ct27dYGRkhCZNmpRqu4Y31fDhw7FlyxbMmjVLbTG9yZMn4+bNm/juu+8kifPsQo8jRozA2LFjkZWVBR8fnyLJlBSblS5duhTdunXDxYsXMXLkSAwaNEgrPX4luXz5Mtq3b4+MjAzk5uaiXbt2sLW1xaxZs/D48WPJ3tdCDx8+RGhoKH755RfcunWryOv6OLTyPLkX7wSAu3fvYsWKFWoTZ/v37y/J8KouZGdnq76eOXMmQkND8dVXXxX7OdTGIpPvv/8+Pv/8c6xYsQKNGjUC8HSriyFDhmhl+JG0SPbnvN4i77//vujSpYu4fv26sLGxEWfPnhWHDx8WjRo1EocOHZI8no+Pj4iOjhYZGRnCzs5OxMXFCSGergPj6OgoeTy52dnZiR07dhQp37Fjh6SP7BYu7Fi4yOPzR+FrRkZGksUs1K9fP5GdnS35dTXp0qWL+PTTT0Vubq7asgQHDhwQHh4ekscbOnSo8PLyEr/++quwtLQUK1euFNOmTRPvvPOO+OmnnySPJ4QQv/76q/j4449F48aNVQvqFR7aIPfinSdOnBDlypUTVapUEV27dhUffPCBeOedd4SDg4Pq0XZ98/wCq89/r83PoRBC3LlzR3Tu3FkoFArVdiwKhUJ88MEH4s6dO1qJSdrBHh0tOnr0KPbt24cKFSrAyMgIxsbGaNasGaKiojBy5EgkJiZKGi8yMhK9evXCmDFj0KZNG1Wvx65du1S7NuszCwsLuLq6Fil3dXWVtCtZmxt1voguhlmOHDmC2NjYIu+hi4sL/vvvP8nj/f7771izZg1atWqF/v37o3nz5vDw8ICLiwvWrl2L3r17Sxpv4cKFCA8PR9++ffHbb7/hs88+Q2pqKk6cOIFhw4ZJGqvQpUuXiv3MmZub48GDB5LHGzNmDDp37oxly5aptnzIz8/HwIEDMXr0aBw6dEjymNpWOMQPAOnp6XB2di4ypKtUKpGRkaGV+GXKlMFvv/2GixcvIiUlBUIIeHt7y75UAb0+JjpaVFBQoJrfUL58eVy9ehU1atSAi4sLzp07J3m8jz76CM2aNUNmZqbaUwht2rRB165dJY8nt2HDhmHatGn44YcfVI+x5ubmYsaMGUXWgHkdz659FBUVBUdHR/Tv31+tzsqVK3Hjxg3J9/TRBaVSWexw0b///quVIbTbt2/Dzc0NwNMhh8J9n5o1a6aVeWSLFy/G0qVL0bNnT6xevRqhoaFwd3dHZGSkVvacAp7uep+UlFRkHa0///wT3t7ekseLj49XS3IAwMTEBKGhofDz85M8nhyenXf07rvvIjMzExUrVlSrc+vWLbRt2xZ9+/aVPP7z61sBwIEDB1R7FXp4eKBLly5F9myjNw8THS2qXbs2Tp8+DXd3dzRu3BizZs2CmZkZli5dqpWF2ACgUqVKqFSpklpZ4fiyPurWrZva93v27ME777yjSuROnTqFJ0+eqNZjkZrcmxfqQrt27bBgwQIsXboUwNPHkXNycjBp0iR07NhR8nju7u5IT0+Hi4sLvL298csvv6BRo0b4/fffUaZMGcnjZWRkICAgAABgaWmpmmAaHByMJk2a4JtvvpE8ptyLd9rZ2SEjI6PIU0lXrlyRdb6Xtojn5jcWysnJgYWFhVZiJiYm4uTJkygoKFCto3PhwgUYGxujZs2aWLx4McaOHYsjR45oJXkl6TDR0aIvv/xS1U09ffp0vP/++2jevDkcHBywYcMGHbdOPzw/kfLDDz9U+97Z2Vmr8bOysuDk5FSkvEKFCpKtaK1r8+fPR+vWreHt7Y3Hjx+jV69euHDhAsqXL49169ZJHu+zzz7DqVOn0LJlS4SFheG9997DokWLkJ+fL+mK1oUqVaqEW7duwcXFBS4uLjh27Bjq1q2LS5culbg44+v67LPPkJ+fj9DQUDx8+BC9evVClSpVEB0djU8++UTyeD169MCAAQMwZ84cBAQEQKFQ4MiRIxg/fjx69uwpeTy5FPaqKBQKREREwMrKSvVaQUEBjh8/jnr16mkldmFvzQ8//KCa7JydnY0BAwagWbNmGDRokGqqwM6dO7XSBpIG19GR2e3bt1G2bFnZVmil1+Pp6YlJkybh008/VSv/8ccfMWnSJK097i23R48eYf369UhISIBSqUSDBg3Qu3dvWFpaaj12RkYG4uPjUa1aNa0s/DZw4EA4Oztj0qRJ+O677xASEoKmTZsiPj4e3bp1w4oVKySP+aybN29CqVQWGXaR0pMnTzB+/Hh89913yM/PBwCYmpriiy++wNdff621FYu1rXA19IMHD8Lf319tHpmZmRlcXV0xbtw4rSw0WaVKFezevbtIb83Zs2cRGBiI//77DydPnkRgYKDsj75TKelwIjRRqbRu3brYpx3u3bsnWrdurZWYb8PmhQcPHhR5eXlFyvPy8sTBgwd10CJpFRQUqN3fhg0bxIgRI0R0dLTIzc3Vauxr166JQ4cOicOHD4vr169rNZYQT3f2Pn36tDh16pR48OCB1uPJpV+/fuLevXuyxrS2thb79+8vUr5//35hY2MjhHi6Sautra2s7aLSY48O6Y1nt0p41vXr11GlSpUiC89JQQiBiRMnYuHChUU2L4yMjJQ8ni4YGxuXONGzYsWKkqxrs3DhwpeuO3LkyNeOp2vZ2dkYNmwY1q1bp9qA0tjYGD169MC3336rt2vbvE169+6No0ePYu7cuWjYsCEUCgX++usvjBs3DgEBAfjxxx+xfv16zJkzB/Hx8bpuLmnARIfeeIUL+NWrVw/79u1Te8qhoKAAMTEx+P7775Genq61Nsi1eaEulLTtxPnz5+Hn56e2cNurKnzK6kUUCoXkw4ERERGYPHlykUeT7927hyFDhmhlHlL37t2RlJSERYsWwd/fHwqFAnFxcRg1ahTq1KmDX3755bVjPD9RXxM59vMyNDk5ORgzZgzWrFmjGg40MTFB3759MX/+fFhbWyMpKQkAtDZPiKTBRIfeeEZGRkU2KnyWpaUlFi1aVOQRcNKs8B/K3377De3bt1dL3goKCnD69GnUqFEDMTExumqiJFxcXODk5IS1a9eqdpw+cOAA+vTpgypVquDo0aOSx7S2tsbOnTvVdg0HgMOHD6N9+/aSrKXzoj28nmUI+3npSk5ODtLS0iCEQLVq1QxqH7i3BZ+6ojde4dMx7u7u+Ouvv9R6HszMzFCxYsUS94aikhUOnwghYGtrqzbx2MzMDE2aNMGgQYN01TzJnD59GoMHD0a9evUwb948nD9/HtHR0Zg4cSImTZqklZgODg7FDk/Z29ujbNmyksR4Nnl59OgRlEolrK2tATxdYG/r1q3w8vJCUFCQJPHeVjY2NpJs9UK6wx4dorfclClTMG7cONU/knL4999/sW3bNmRkZKjmPhXSxiPmABAeHo6oqCiYmJjgzz//1NraS8DT/ct+/fVXrFmzRrU8QVZWFvr27Ytu3bph8ODBksYLDAxEt27dMGTIENy9exc1a9aEqakpbt68iXnz5un9hr5Er4OJDumN1atXo3z58njvvfcAAKGhoVi6dCm8vb2xbt26IqvQ0st59OgRhBCqNUouX76MLVu2wNvbG4GBgZLH27t3Lzp37gw3NzecO3cOtWvXRnp6OoQQaNCgAfbt2yd5zEWLFmHChAno2rUrEhISYGxsjJ9//lkrj7MDQP369XHx4kXk5uaiatWqAJ4+Rm9ubl7kUeiTJ0++drzy5cvj4MGDqFWrFpYvX45FixYhMTERmzZtQmRkJFJSUl47BpG+4tAV6Y2vvvoKS5YsAfB0H7FvvvkGCxYswPbt2zFmzBhOuHxFXbp0UesNaNSoEczMzLTWGxAWFoaxY8di6tSpsLW1xaZNm1CxYkX07t0b7du3lzQWAHTo0AF//fUX1qxZg48++giPHj1CSEgImjRpgilTpiA0NFTymB988IHk19Tk4cOHqhWQd+3ahW7dusHIyAhNmjTB5cuXZW0L0RtH9gfaiV6RpaWluHz5shBCiNDQUBEcHCyEEOLvv/8W5cuX12XT9JqDg4P4+++/hRBCLFu2TNSpU0cUFBSIX375RdSsWVPyeDY2NuLixYtCCCHKlCmjip2UlCRcXFwkj9e2bVvx33//FSnfvn27qFSpkuTxdMHHx0dER0eLjIwMYWdnJ+Li4oQQQsTHxwtHR0cdt45It4x0nWgRvSwbGxvcunULwNO/Wtu2bQvg6bo2jx490mXT9JrcvQHW1tbIzc0FAFSuXBmpqamq17Sxwuzu3buRmpqKTz/9FP7+/qod2W/fvi3JY95vgsjISIwbNw6urq5o3Lgx/P39ATz9/1ncLupEbxMOXZHeaNeuHQYOHIj69evj/Pnzqrk6Z8+ehaurq24bp8c8PDywdetWdO3aFTt37sSYMWMAPF2IsXCPHyk1adIEsbGx8Pb2xnvvvYexY8fizJkz2Lx5M5o0aSJ5vE2bNiE4OBi9e/dGYmKiKsm6f/8+oqKi0Lx5c0nilGZrF6l3Tf/oo4/QrFkzZGZmqs07atOmDbp27SppLCJ9w8nIpDfu3r2LL7/8EleuXMEXX3yhms8xadIkmJmZITw8XMct1E8bN25Er169UFBQgHfffRe7d+8GAERFReHQoUP4888/JY2XlpaGnJwc1KlTBw8fPsS4ceNw5MgReHh4YP78+ZJPKq9fvz7GjBmDPn36wNbWFqdOnYK7uzuSkpLQvn17ZGVlSRJn9erVqq9v3bqF6dOnIygoSNW7cvToUezcuRMRERGqZJKItI+JDhEhKytL1RtgZPR0RPuvv/6CnZ0datasqePWvR4rKyskJyfD1dVVLdFJS0tT7dgutQ8//BCtW7fG8OHD1cq/+eYb7NmzB1u3bpU8JhEVj3N0SK8cPnwYn376KQICAlRzLX788UccOXJExy3Tb5UqVYKtrS12796tmu/UsGFDrSY5T548wb///ouMjAy1Q2pOTk64ePFikfIjR47A3d1d8ngAsHPnzmKfIAsKCsKePXu0EpOIisdEh/TGpk2bEBQUBEtLS5w8eVJtrsVXX32l49bpr1u3bqFNmzaoXr06OnbsiMzMTADAwIEDMXbsWMnjnT9/Hs2bN4elpSVcXFzg5uYGNzc3uLq6vvSeWKUxePBgjBo1CsePH4dCocDVq1exdu1ajBs3DkOHDpU8HvB0ZeQtW7YUKd+6dSscHBy0EpOIisfJyKQ3pk+fju+++w59+vTB+vXrVeUBAQGYOnWqDlum38aMGQNTU1NkZGTAy8tLVd6jRw+MGTMGc+fOlTTeZ599BhMTE2zfvh1OTk4vPYH3VYWGhuLevXto3bo1Hj9+jBYtWsDc3Bzjxo0rMrQklSlTpmDAgAE4cOCAao7OsWPHEBMTg+XLl2slJhEVj3N0SG/oYq7F26BSpUrYuXMn6tatq/a+Xrp0CT4+PsjJyZE0nrW1NRISEmSf+/Pw4UMkJydDqVTC29tb65szHj9+HAsXLkRKSgqEEPD29sbIkSPRuHFjrcYlInXs0SG9UTjX4vlHybU51+Jt8ODBA9X2D8+6efOm2o7mUvH29tbKejkvYmVlBT8/P9niNW7cGGvXrpUtHhEVj3N0SG/oYq7F26BFixZYs2aN6nuFQgGlUonZs2ejdevWksTIzs5WHTNnzkRoaCgOHDiAW7duqb2WnZ0tSTxdeP4+NB1EJB8OXZFeCQ8Px/z581XDVIVzLaZNm6bjlumvlJQUtGzZEr6+vti3bx86d+6Ms2fP4vbt24iNjUW1atVeO4aRkZHaXBwhRJG5OYVlBQUFrx1PF56/x+Lo+z0S6SMmOqQXCgoKcOTIEfj4+MDCwkLWuRaGLC8vD4GBgYiKisKff/6JhIQEKJVKNGjQAMOGDYOTk5MkcQ4ePKj6Oj09Hc7OzjA2Nlaro1QqkZGRgb59+0oSU27P3uOLtGzZUostIaJnMdEhvWFhYYGUlBStPIL8NqtQoQLi4uLg6ekpSzxjY2NkZmaiYsWKauW3bt1CxYoVDaa34+7du1ixYgVSUlKgUCjg5eWFAQMGwN7eXtdNI3qrcI4O6Q0fHx+kpaXpuhkGp0+fPlixYoVs8YobtgKAnJwcWFhYyNYObYqPj1dtaXH79m3cvHkT8+fPR7Vq1XDy5EldN4/orcIeHdIbu3btwoQJEzBt2jT4+vrC2tpa7XVtbED5NhgxYgTWrFkDDw8P+Pn5FXlf582bJ0mckJAQAEB0dDQGDRqk9qRXQUEBjh8/DmNjY8TGxkoST5eaN28ODw8PLFu2DCYmTx9uzc/Px8CBA5GWloZDhw7puIVEbw8mOqQ3CvdgAlDsxFZDGfKQm6YnqxQKBfbt2ydpnIMHD8Lf3x9mZmaq18zMzODq6opx48bJNoSmTZaWlkhMTCyyVlBycjL8/Pzw8OFDHbWM6O3DdXRIb/zwww8aJ7HSq9m/f7+scT777DNER0cbdA+cnZ0dMjIyiiQ6V65cga2trY5aRfR2Yo8O6Y23ZRIr6b+RI0diy5YtmDNnDgICAqBQKHDkyBGMHz8eH374IRYsWKDrJhK9NdijQ3rjbZjESoZhzpw5UCgU6NOnD/Lz8wEApqam+OKLL/D111/ruHVEbxf26NAb722axEqG5eHDh0hNTYUQAh4eHsVutUFE2sUeHXrjJSYmAnjao3PmzJkik1jr1q2LcePG6ap5RCWysrKCj4+PrptB9FZjjw7pjbdhEisREUmLiQ4REREZLK6MTERERAaLiQ4REREZLCY6REREZLCY6BAREZHBYqJDREREBouJDhERERksJjpERERksP4fnQXCMj99YYcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "corr = df.corr()\n", + "\n", + "sns.heatmap(corr)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}