GMTROM/Archiv/StartUpTest_alt.py

96 lines
2.6 KiB
Python
Raw Normal View History

2023-06-13 09:13:31 +02:00
from math import fabs as fabs
from math import sqrt as sqrt
from scipy.special import erfc as erfc
class StartUPTest:
@staticmethod
def monobit_test(binary_data: bytes):
print(binary_data)
length_of_bit_string = len(binary_data) *8
# Variable for S(n)
count = 0
# Iterate each bit in the string and compute for S(n)
for byte in binary_data:
for i in range(8):
bit = (byte >> i) & 1
if bit == 0:
# If bit is 0, then -1 from the S(n)
count -= 1
elif bit == 1:
# If bit is 1, then +1 to the S(n)
count += 1
# Compute the test statistic
sObs = count / sqrt(length_of_bit_string)
# Compute p-Value
p_value = erfc(fabs(sObs) / sqrt(2))
# return a p_value and randomness result
return p_value, (p_value >= 0.01)
@staticmethod
def autocorrelation_test(binary_data: bytes):
shift_feld = [0] * 5000
max_korr_feld = [0] * 5000
bits = ' '
for b in binary_data:
bits += format(b, '08b')
print(bits)
# Fill BitFeldB with data
for tau in range(1, 5001):
z_tau = 0
for i in range(5000):
z_tau += StartUPTest.char_to_int(i, bits) ^ StartUPTest.char_to_int(i + tau, bits)
shift_feld[tau - 1] = z_tau
print(shift_feld)
# Find the index of the maximum deviation from 2500
max_deviation = 0
for tau in range(5000):
deviation = abs(shift_feld[tau] - 2500)
if deviation > max_deviation:
max_deviation = deviation
# Find all indices with the maximum deviation
j = 0
for tau in range(5000):
deviation = abs(shift_feld[tau] - 2500)
if deviation == max_deviation:
max_korr_feld[j] = tau
j += 1
print("Maximale z_tau-Abweichung von 2500:", max_deviation)
print("Aufgetreten für Shifts:")
for k in range(j):
print("Shift:", max_korr_feld[k] + 1)
tau = max_korr_feld[0]
z_tau = 0
for i in range(10000, 15000):
z_tau += StartUPTest.char_to_int(i, bits) ^ StartUPTest.char_to_int(i + tau + 1, bits)
tau += 1
print("Z_Tau:", z_tau)
ok = 2326 < z_tau < 2674
return z_tau, ok
@staticmethod
def char_to_int(index, binary_data: str):
if binary_data[index] == '1':
value = 1
else:
value = 0
return value