diff --git a/TotOnline.py b/Old_Code/TotOnline.py similarity index 96% rename from TotOnline.py rename to Old_Code/TotOnline.py index b8a03c6..211a3f5 100644 --- a/TotOnline.py +++ b/Old_Code/TotOnline.py @@ -1,231 +1,231 @@ -from math import log as log -from numpy import zeros as zeros -from math import fabs as fabs -from math import floor as floor -from math import sqrt as sqrt -from scipy.special import erfc as erfc -from scipy.special import gammaincc as gammaincc - - -class TotOnline: - - @staticmethod - def monobit_test(binary_data:str): - - length_of_bit_string = len(binary_data) - - # Variable for S(n) - count = 0 - # Iterate each bit in the string and compute for S(n) - for bit in binary_data: - if bit == '0': - # If bit is 0, then -1 from the S(n) - count -= 1 - elif bit == '1': - # If bit is 1, then +1 to the S(n) - count += 1 - - # Compute the test statistic - sObs = count / sqrt(length_of_bit_string) - - # Compute p-Value - p_value = erfc(fabs(sObs) / sqrt(2)) - - # return a p_value and randomness result - return (p_value, (p_value >= 0.01)) - - @staticmethod - def block_frequency(binary_data:str, block_size=128): - - length_of_bit_string = len(binary_data) - - if length_of_bit_string < block_size: - block_size = length_of_bit_string - - # Compute the number of blocks based on the input given. Discard the remainder - number_of_blocks = floor(length_of_bit_string / block_size) - - if number_of_blocks == 1: - # For block size M=1, this test degenerates to test 1, the Frequency (Monobit) test. - return TotOnline.monobit_test(binary_data[0:block_size]) - - # Initialized variables - block_start = 0 - block_end = block_size - proportion_sum = 0.0 - - # Create a for loop to process each block - for counter in range(number_of_blocks): - # Partition the input sequence and get the data for block - block_data = binary_data[block_start:block_end] - - # Determine the proportion 蟺i of ones in each M-bit - one_count = 0 - for bit in block_data: - if bit == '1': - one_count += 1 - # compute π - pi = one_count / block_size - - # Compute Σ(πi -½)^2. - proportion_sum += pow(pi - 0.5, 2.0) - - # Next Block - block_start += block_size - block_end += block_size - - # Compute 4M Σ(πi -½)^2. - result = 4.0 * block_size * proportion_sum - - # Compute P-Value - p_value = gammaincc(number_of_blocks / 2, result / 2) - - return (p_value, (p_value >= 0.01)) - - @staticmethod - def approximate_entropy_test(binary_data:str, pattern_length=10): - - length_of_binary_data = len(binary_data) - - # Augment the n-bit sequence to create n overlapping m-bit sequences by appending m-1 bits - # from the beginning of the sequence to the end of the sequence. - # NOTE: documentation says m-1 bits but that doesnt make sense, or work. - binary_data += binary_data[:pattern_length + 1:] - - # Get max length one patterns for m, m-1, m-2 - max_pattern = '' - for i in range(pattern_length + 2): - max_pattern += '1' - - # Keep track of each pattern's frequency (how often it appears) - vobs_01 = zeros(int(max_pattern[0:pattern_length:], 2) + 1) - vobs_02 = zeros(int(max_pattern[0:pattern_length + 1:], 2) + 1) - - for i in range(length_of_binary_data): - # Work out what pattern is observed - vobs_01[int(binary_data[i:i + pattern_length:], 2)] += 1 - vobs_02[int(binary_data[i:i + pattern_length + 1:], 2)] += 1 - - # Calculate the test statistics and p values - vobs = [vobs_01, vobs_02] - - sums = zeros(2) - for i in range(2): - for j in range(len(vobs[i])): - if vobs[i][j] > 0: - sums[i] += vobs[i][j] * log(vobs[i][j] / length_of_binary_data) - sums /= length_of_binary_data - ape = sums[0] - sums[1] - - xObs = 2.0 * length_of_binary_data * (log(2) - ape) - - p_value = gammaincc(pow(2, pattern_length - 1), xObs / 2.0) - - return (p_value, (p_value >= 0.01)) - - @staticmethod - def run_test(binary_data:str): - - one_count = 0 - vObs = 0 - length_of_binary_data = len(binary_data) - - # Predefined tau = 2 / sqrt(n) - tau = 2 / sqrt(length_of_binary_data) - - # Step 1 - Compute the pre-test proportion πof ones in the input sequence: π = Σjεj / n - one_count = binary_data.count('1') - - pi = one_count / length_of_binary_data - - # Step 2 - If it can be shown that absolute value of (π - 0.5) is greater than or equal to tau - # then the run test need not be performed. - if abs(pi - 0.5) >= tau: - return (0.0000) - else: - # Step 3 - Compute vObs - for item in range(1, length_of_binary_data): - if binary_data[item] != binary_data[item - 1]: - vObs += 1 - vObs += 1 - - # Step 4 - Compute p_value = erfc((|vObs − 2nπ * (1−π)|)/(2 * sqrt(2n) * π * (1−π))) - p_value = erfc(abs(vObs - (2 * (length_of_binary_data) * pi * (1 - pi))) / (2 * sqrt(2 * length_of_binary_data) * pi * (1 - pi))) - - - - return (p_value, (p_value > 0.01)) - - @staticmethod - def longest_one_block_test(binary_data:str): - - length_of_binary_data = len(binary_data) - # print('Length of binary string: ', length_of_binary_data) - - # Initialized k, m. n, pi and v_values - if length_of_binary_data < 128: - # Not enough data to run this test - return (0.00000, 'Error: Not enough data to run this test') - elif length_of_binary_data < 6272: - k = 3 - m = 8 - v_values = [1, 2, 3, 4] - pi_values = [0.2148, 0.3672, 0.2305, 0.1875] - elif length_of_binary_data < 750000: - k = 5 - m = 128 - v_values = [4, 5, 6, 7, 8, 9] - pi_values = [0.1174, 0.2430, 0.2493, 0.1752, 0.1027, 0.1124] - else: - # If length_of_bit_string > 750000 - k = 6 - m = 10000 - v_values = [10, 11, 12, 13, 14, 15, 16] - pi_values = [0.0882, 0.2092, 0.2483, 0.1933, 0.1208, 0.0675, 0.0727] - - number_of_blocks = floor(length_of_binary_data / m) - block_start = 0 - block_end = m - xObs = 0 - # This will intialized an array with a number of 0 you specified. - frequencies = zeros(k + 1) - - # print('Number of Blocks: ', number_of_blocks) - - for count in range(number_of_blocks): - block_data = binary_data[block_start:block_end] - max_run_count = 0 - run_count = 0 - - # This will count the number of ones in the block - for bit in block_data: - if bit == '1': - run_count += 1 - max_run_count = max(max_run_count, run_count) - else: - max_run_count = max(max_run_count, run_count) - run_count = 0 - - max(max_run_count, run_count) - - #print('Block Data: ', block_data, '. Run Count: ', max_run_count) - if max_run_count < v_values[0]: - frequencies[0] += 1 - for j in range(k): - if max_run_count == v_values[j]: - frequencies[j] += 1 - if max_run_count > v_values[k - 1]: - frequencies[k] += 1 - - block_start += m - block_end += m - - # print("Frequencies: ", frequencies) - # Compute xObs - for count in range(len(frequencies)): - xObs += pow((frequencies[count] - (number_of_blocks * pi_values[count])), 2.0) / ( - number_of_blocks * pi_values[count]) - - p_value = gammaincc(float(k / 2), float(xObs / 2)) - +from math import log as log +from numpy import zeros as zeros +from math import fabs as fabs +from math import floor as floor +from math import sqrt as sqrt +from scipy.special import erfc as erfc +from scipy.special import gammaincc as gammaincc + + +class TotOnline: + + @staticmethod + def monobit_test(binary_data:str): + + length_of_bit_string = len(binary_data) + + # Variable for S(n) + count = 0 + # Iterate each bit in the string and compute for S(n) + for bit in binary_data: + if bit == '0': + # If bit is 0, then -1 from the S(n) + count -= 1 + elif bit == '1': + # If bit is 1, then +1 to the S(n) + count += 1 + + # Compute the test statistic + sObs = count / sqrt(length_of_bit_string) + + # Compute p-Value + p_value = erfc(fabs(sObs) / sqrt(2)) + + # return a p_value and randomness result + return (p_value, (p_value >= 0.01)) + + @staticmethod + def block_frequency(binary_data:str, block_size=128): + + length_of_bit_string = len(binary_data) + + if length_of_bit_string < block_size: + block_size = length_of_bit_string + + # Compute the number of blocks based on the input given. Discard the remainder + number_of_blocks = floor(length_of_bit_string / block_size) + + if number_of_blocks == 1: + # For block size M=1, this test degenerates to test 1, the Frequency (Monobit) test. + return TotOnline.monobit_test(binary_data[0:block_size]) + + # Initialized variables + block_start = 0 + block_end = block_size + proportion_sum = 0.0 + + # Create a for loop to process each block + for counter in range(number_of_blocks): + # Partition the input sequence and get the data for block + block_data = binary_data[block_start:block_end] + + # Determine the proportion 蟺i of ones in each M-bit + one_count = 0 + for bit in block_data: + if bit == '1': + one_count += 1 + # compute π + pi = one_count / block_size + + # Compute Σ(πi -½)^2. + proportion_sum += pow(pi - 0.5, 2.0) + + # Next Block + block_start += block_size + block_end += block_size + + # Compute 4M Σ(πi -½)^2. + result = 4.0 * block_size * proportion_sum + + # Compute P-Value + p_value = gammaincc(number_of_blocks / 2, result / 2) + + return (p_value, (p_value >= 0.01)) + + @staticmethod + def approximate_entropy_test(binary_data:str, pattern_length=10): + + length_of_binary_data = len(binary_data) + + # Augment the n-bit sequence to create n overlapping m-bit sequences by appending m-1 bits + # from the beginning of the sequence to the end of the sequence. + # NOTE: documentation says m-1 bits but that doesnt make sense, or work. + binary_data += binary_data[:pattern_length + 1:] + + # Get max length one patterns for m, m-1, m-2 + max_pattern = '' + for i in range(pattern_length + 2): + max_pattern += '1' + + # Keep track of each pattern's frequency (how often it appears) + vobs_01 = zeros(int(max_pattern[0:pattern_length:], 2) + 1) + vobs_02 = zeros(int(max_pattern[0:pattern_length + 1:], 2) + 1) + + for i in range(length_of_binary_data): + # Work out what pattern is observed + vobs_01[int(binary_data[i:i + pattern_length:], 2)] += 1 + vobs_02[int(binary_data[i:i + pattern_length + 1:], 2)] += 1 + + # Calculate the test statistics and p values + vobs = [vobs_01, vobs_02] + + sums = zeros(2) + for i in range(2): + for j in range(len(vobs[i])): + if vobs[i][j] > 0: + sums[i] += vobs[i][j] * log(vobs[i][j] / length_of_binary_data) + sums /= length_of_binary_data + ape = sums[0] - sums[1] + + xObs = 2.0 * length_of_binary_data * (log(2) - ape) + + p_value = gammaincc(pow(2, pattern_length - 1), xObs / 2.0) + + return (p_value, (p_value >= 0.01)) + + @staticmethod + def run_test(binary_data:str): + + one_count = 0 + vObs = 0 + length_of_binary_data = len(binary_data) + + # Predefined tau = 2 / sqrt(n) + tau = 2 / sqrt(length_of_binary_data) + + # Step 1 - Compute the pre-test proportion πof ones in the input sequence: π = Σjεj / n + one_count = binary_data.count('1') + + pi = one_count / length_of_binary_data + + # Step 2 - If it can be shown that absolute value of (π - 0.5) is greater than or equal to tau + # then the run test need not be performed. + if abs(pi - 0.5) >= tau: + return (0.0000) + else: + # Step 3 - Compute vObs + for item in range(1, length_of_binary_data): + if binary_data[item] != binary_data[item - 1]: + vObs += 1 + vObs += 1 + + # Step 4 - Compute p_value = erfc((|vObs − 2nπ * (1−π)|)/(2 * sqrt(2n) * π * (1−π))) + p_value = erfc(abs(vObs - (2 * (length_of_binary_data) * pi * (1 - pi))) / (2 * sqrt(2 * length_of_binary_data) * pi * (1 - pi))) + + + + return (p_value, (p_value > 0.01)) + + @staticmethod + def longest_one_block_test(binary_data:str): + + length_of_binary_data = len(binary_data) + # print('Length of binary string: ', length_of_binary_data) + + # Initialized k, m. n, pi and v_values + if length_of_binary_data < 128: + # Not enough data to run this test + return (0.00000, 'Error: Not enough data to run this test') + elif length_of_binary_data < 6272: + k = 3 + m = 8 + v_values = [1, 2, 3, 4] + pi_values = [0.2148, 0.3672, 0.2305, 0.1875] + elif length_of_binary_data < 750000: + k = 5 + m = 128 + v_values = [4, 5, 6, 7, 8, 9] + pi_values = [0.1174, 0.2430, 0.2493, 0.1752, 0.1027, 0.1124] + else: + # If length_of_bit_string > 750000 + k = 6 + m = 10000 + v_values = [10, 11, 12, 13, 14, 15, 16] + pi_values = [0.0882, 0.2092, 0.2483, 0.1933, 0.1208, 0.0675, 0.0727] + + number_of_blocks = floor(length_of_binary_data / m) + block_start = 0 + block_end = m + xObs = 0 + # This will intialized an array with a number of 0 you specified. + frequencies = zeros(k + 1) + + # print('Number of Blocks: ', number_of_blocks) + + for count in range(number_of_blocks): + block_data = binary_data[block_start:block_end] + max_run_count = 0 + run_count = 0 + + # This will count the number of ones in the block + for bit in block_data: + if bit == '1': + run_count += 1 + max_run_count = max(max_run_count, run_count) + else: + max_run_count = max(max_run_count, run_count) + run_count = 0 + + max(max_run_count, run_count) + + #print('Block Data: ', block_data, '. Run Count: ', max_run_count) + if max_run_count < v_values[0]: + frequencies[0] += 1 + for j in range(k): + if max_run_count == v_values[j]: + frequencies[j] += 1 + if max_run_count > v_values[k - 1]: + frequencies[k] += 1 + + block_start += m + block_end += m + + # print("Frequencies: ", frequencies) + # Compute xObs + for count in range(len(frequencies)): + xObs += pow((frequencies[count] - (number_of_blocks * pi_values[count])), 2.0) / ( + number_of_blocks * pi_values[count]) + + p_value = gammaincc(float(k / 2), float(xObs / 2)) + return (p_value, (p_value > 0.01)) \ No newline at end of file