Orell hat mist gebaut

main
Gideon Regehr 2023-05-24 09:52:05 +02:00
parent f8357c096c
commit 1ec42b3555
1 changed files with 13 additions and 209 deletions

View File

@ -1,85 +1,27 @@
from math import log as log
from numpy import zeros as zeros
from math import fabs as fabs from math import fabs as fabs
from math import floor as floor
from math import sqrt as sqrt from math import sqrt as sqrt
from scipy.special import erfc as erfc from scipy.special import erfc as erfc
from scipy.special import gammaincc as gammaincc import numpy as np
from scipy import stats
class TotOnline: class StartUPTest:
@staticmethod @staticmethod
def run_all_tests(binary_data: str): def run_all_tests(binary_data: str):
# Run total_failure_test
p_value, result = TotOnline.total_failure_test(binary_data, 10)
if not result:
return False
# Run monobit_test # Run monobit_test
p_value, result = TotOnline.monobit_test(binary_data) p_value, result = StartUPTest.monobit_test(binary_data)
if not result: if not result:
return False return False
# Run block_frequency_test # Run chi_square
p_value, result = TotOnline.block_frequency_test(binary_data, 128) p_value, result, chi2_statistic = StartUPTest.chi_square(binary_data)
if not result:
return False
# Run run_test
p_value, result = TotOnline.run_test(binary_data)
if not result:
return False
# Run longest_one_block_test
if len(binary_data)>127:
p_value, result = TotOnline.longest_one_block_test(binary_data)
if not result: if not result:
return False return False
# All tests passed # All tests passed
return True return True
@staticmethod
def total_failure_test(binary_data: str, pattern_length=10):
length_of_binary_data = len(binary_data)
# Augment the n-bit sequence to create n overlapping m-bit sequences by appending m-1 bits
# from the beginning of the sequence to the end of the sequence.
binary_data += binary_data[:pattern_length + 1:]
# Get max length one patterns for m, m-1, m-2
max_pattern = ''
for i in range(pattern_length + 2):
max_pattern += '1'
# Keep track of each pattern's frequency (how often it appears)
vobs_01 = zeros(int(max_pattern[0:pattern_length:], 2) + 1)
vobs_02 = zeros(int(max_pattern[0:pattern_length + 1:], 2) + 1)
for i in range(length_of_binary_data):
# Work out what pattern is observed
vobs_01[int(binary_data[i:i + pattern_length:], 2)] += 1
vobs_02[int(binary_data[i:i + pattern_length + 1:], 2)] += 1
# Calculate the test statistics and p values
vObs = [vobs_01, vobs_02]
sums = zeros(2)
for i in range(2):
for j in range(len(vObs[i])):
if vObs[i][j] > 0:
sums[i] += vObs[i][j] * log(vObs[i][j] / length_of_binary_data)
sums /= length_of_binary_data
ape = sums[0] - sums[1]
xObs = 2.0 * length_of_binary_data * (log(2) - ape)
p_value = gammaincc(pow(2, pattern_length - 1), xObs / 2.0)
return p_value, (p_value >= 0.01)
@staticmethod @staticmethod
def monobit_test(binary_data: str): def monobit_test(binary_data: str):
@ -106,151 +48,13 @@ class TotOnline:
return p_value, (p_value >= 0.01) return p_value, (p_value >= 0.01)
@staticmethod @staticmethod
def block_frequency_test(binary_data: str, block_size=128): def chi_square(binary_data: str):
length_of_bit_string = len(binary_data) observed_frequencies = [binary_data.count(48), binary_data.count(49)]
expected_probabilities = [0.5, 0.5] # Assuming equal probability for each bit value
total_observations = len(binary_data)
expected_frequencies = np.array(expected_probabilities) * total_observations
if length_of_bit_string < block_size: chi2_statistic, p_value = stats.chisquare(observed_frequencies, f_exp=expected_frequencies)
block_size = length_of_bit_string
# Compute the number of blocks based on the input given. Discard the remainder
number_of_blocks = floor(length_of_bit_string / block_size)
if number_of_blocks == 1:
# For block size M=1, this test degenerates to test 1, the Frequency (Monobit) test.
return TotOnline.monobit_test(binary_data[0:block_size])
# Initialized variables
block_start = 0
block_end = block_size
proportion_sum = 0.0
# Create a for loop to process each block
for counter in range(number_of_blocks):
# Partition the input sequence and get the data for block
block_data = binary_data[block_start:block_end]
# Determine the proportion 蟺i of ones in each M-bit
one_count = 0
for bit in block_data:
if bit == 49:
one_count += 1
# compute π
pi = one_count / block_size
# Compute Σ(πi -½)^2.
proportion_sum += pow(pi - 0.5, 2.0)
# Next Block
block_start += block_size
block_end += block_size
# Compute 4M Σ(πi -½)^2.
result = 4.0 * block_size * proportion_sum
# Compute P-Value
p_value = gammaincc(number_of_blocks / 2, result / 2)
return p_value, (p_value >= 0.01)
@staticmethod
def run_test(binary_data: str):
vObs = 0
length_of_binary_data = len(binary_data)
# Predefined tau = 2 / sqrt(n)
tau = 2 / sqrt(length_of_binary_data)
# Step 1 - Compute the pre-test proportion πof ones in the input sequence: π = Σjεj / n
one_count = binary_data.count(49)
pi = one_count / length_of_binary_data
# Step 2 - If it can be shown that absolute value of (π - 0.5) is greater than or equal to tau
# then the run test need not be performed.
if abs(pi - 0.5) >= tau:
return 0.0000
else:
# Step 3 - Compute vObs
for item in range(1, length_of_binary_data):
if binary_data[item] != binary_data[item - 1]:
vObs += 1
vObs += 1
# Step 4 - Compute p_value = erfc((|vObs 2nπ * (1π)|)/(2 * sqrt(2n) * π * (1π)))
p_value = erfc(abs(vObs - (2 * length_of_binary_data * pi * (1 - pi))) / (2 * sqrt(2 * length_of_binary_data) * pi * (1 - pi)))
return p_value, (p_value > 0.01)
@staticmethod
def longest_one_block_test(binary_data: str):
length_of_binary_data = len(binary_data)
# print('Length of binary string: ', length_of_binary_data)
# Initialized k, m. n, pi and v_values
if length_of_binary_data < 6272:
k = 3
m = 8
v_values = [1, 2, 3, 4]
pi_values = [0.2148, 0.3672, 0.2305, 0.1875]
elif length_of_binary_data < 750000:
k = 5
m = 128
v_values = [4, 5, 6, 7, 8, 9]
pi_values = [0.1174, 0.2430, 0.2493, 0.1752, 0.1027, 0.1124]
else:
# If length_of_bit_string > 750000
k = 6
m = 10000
v_values = [10, 11, 12, 13, 14, 15, 16]
pi_values = [0.0882, 0.2092, 0.2483, 0.1933, 0.1208, 0.0675, 0.0727]
number_of_blocks = floor(length_of_binary_data / m)
block_start = 0
block_end = m
xObs = 0
# This will initialize an array with a number of 0 you specified.
frequencies = zeros(k + 1)
# print('Number of Blocks: ', number_of_blocks)
for count in range(number_of_blocks):
block_data = binary_data[block_start:block_end]
max_run_count = 0
run_count = 0
# This will count the number of ones in the block
for bit in block_data:
if bit == 49:
run_count += 1
max_run_count = max(max_run_count, run_count)
else:
max_run_count = max(max_run_count, run_count)
run_count = 0
max(max_run_count, run_count)
# print('Block Data: ', block_data, '. Run Count: ', max_run_count)
if max_run_count < v_values[0]:
frequencies[0] += 1
for j in range(k):
if max_run_count == v_values[j]:
frequencies[j] += 1
if max_run_count > v_values[k - 1]:
frequencies[k] += 1
block_start += m
block_end += m
# print("Frequencies: ", frequencies)
# Compute xObs
for count in range(len(frequencies)):
xObs += pow((frequencies[count] - (number_of_blocks * pi_values[count])), 2.0) / (
number_of_blocks * pi_values[count])
p_value = gammaincc(float(k / 2), float(xObs / 2))
return p_value, (p_value > 0.01)
return p_value, p_value >= 0.01, chi2_statistic