„Tets_Python/TotOnline.py“ ändern
parent
9b7af12c8e
commit
c1ddda4493
|
@ -9,7 +9,7 @@ from scipy.special import gammaincc as gammaincc
|
|||
|
||||
class TotOnline:
|
||||
@staticmethod
|
||||
def total_failure(binary_data: str, pattern_length=10):
|
||||
def total_failure_test(binary_data: str, pattern_length=10):
|
||||
|
||||
length_of_binary_data = len(binary_data)
|
||||
|
||||
|
@ -32,13 +32,13 @@ class TotOnline:
|
|||
vobs_02[int(binary_data[i:i + pattern_length + 1:], 2)] += 1
|
||||
|
||||
# Calculate the test statistics and p values
|
||||
vobs = [vobs_01, vobs_02]
|
||||
vObs = [vobs_01, vobs_02]
|
||||
|
||||
sums = zeros(2)
|
||||
for i in range(2):
|
||||
for j in range(len(vobs[i])):
|
||||
if vobs[i][j] > 0:
|
||||
sums[i] += vobs[i][j] * log(vobs[i][j] / length_of_binary_data)
|
||||
for j in range(len(vObs[i])):
|
||||
if vObs[i][j] > 0:
|
||||
sums[i] += vObs[i][j] * log(vObs[i][j] / length_of_binary_data)
|
||||
sums /= length_of_binary_data
|
||||
ape = sums[0] - sums[1]
|
||||
|
||||
|
@ -46,7 +46,7 @@ class TotOnline:
|
|||
|
||||
p_value = gammaincc(pow(2, pattern_length - 1), xObs / 2.0)
|
||||
|
||||
return (p_value, (p_value >= 0.01))
|
||||
return p_value, (p_value >= 0.01)
|
||||
|
||||
@staticmethod
|
||||
def monobit_test(binary_data: str):
|
||||
|
@ -71,10 +71,10 @@ class TotOnline:
|
|||
p_value = erfc(fabs(sObs) / sqrt(2))
|
||||
|
||||
# return a p_value and randomness result
|
||||
return (p_value, (p_value >= 0.01))
|
||||
return p_value, (p_value >= 0.01)
|
||||
|
||||
@staticmethod
|
||||
def block_frequency(binary_data: str, block_size=128):
|
||||
def block_frequency_test(binary_data: str, block_size=128):
|
||||
|
||||
length_of_bit_string = len(binary_data)
|
||||
|
||||
|
@ -119,12 +119,11 @@ class TotOnline:
|
|||
# Compute P-Value
|
||||
p_value = gammaincc(number_of_blocks / 2, result / 2)
|
||||
|
||||
return (p_value, (p_value >= 0.01))
|
||||
return p_value, (p_value >= 0.01)
|
||||
|
||||
@staticmethod
|
||||
def run_test(binary_data: str):
|
||||
|
||||
one_count = 0
|
||||
vObs = 0
|
||||
length_of_binary_data = len(binary_data)
|
||||
|
||||
|
@ -139,7 +138,7 @@ class TotOnline:
|
|||
# Step 2 - If it can be shown that absolute value of (π - 0.5) is greater than or equal to tau
|
||||
# then the run test need not be performed.
|
||||
if abs(pi - 0.5) >= tau:
|
||||
return (0.0000)
|
||||
return 0.0000
|
||||
else:
|
||||
# Step 3 - Compute vObs
|
||||
for item in range(1, length_of_binary_data):
|
||||
|
@ -148,9 +147,9 @@ class TotOnline:
|
|||
vObs += 1
|
||||
|
||||
# Step 4 - Compute p_value = erfc((|vObs − 2nπ * (1−π)|)/(2 * sqrt(2n) * π * (1−π)))
|
||||
p_value = erfc(abs(vObs - (2 * (length_of_binary_data) * pi * (1 - pi))) / (2 * sqrt(2 * length_of_binary_data) * pi * (1 - pi)))
|
||||
p_value = erfc(abs(vObs - (2 * length_of_binary_data * pi * (1 - pi))) / (2 * sqrt(2 * length_of_binary_data) * pi * (1 - pi)))
|
||||
|
||||
return (p_value, (p_value > 0.01))
|
||||
return p_value, (p_value > 0.01)
|
||||
|
||||
@staticmethod
|
||||
def longest_one_block_test(binary_data: str):
|
||||
|
@ -161,7 +160,7 @@ class TotOnline:
|
|||
# Initialized k, m. n, pi and v_values
|
||||
if length_of_binary_data < 128:
|
||||
# Not enough data to run this test
|
||||
return (0.00000, 'Error: Not enough data to run this test')
|
||||
return 0.00000, 'Error: Not enough data to run this test'
|
||||
elif length_of_binary_data < 6272:
|
||||
k = 3
|
||||
m = 8
|
||||
|
@ -183,7 +182,7 @@ class TotOnline:
|
|||
block_start = 0
|
||||
block_end = m
|
||||
xObs = 0
|
||||
# This will intialized an array with a number of 0 you specified.
|
||||
# This will initialize an array with a number of 0 you specified.
|
||||
frequencies = zeros(k + 1)
|
||||
|
||||
# print('Number of Blocks: ', number_of_blocks)
|
||||
|
@ -224,4 +223,4 @@ class TotOnline:
|
|||
|
||||
p_value = gammaincc(float(k / 2), float(xObs / 2))
|
||||
|
||||
return (p_value, (p_value > 0.01))
|
||||
return p_value, (p_value > 0.01)
|
||||
|
|
Loading…
Reference in New Issue