from math import fabs as fabs from math import sqrt as sqrt from scipy.special import erfc as erfc import numpy as np from scipy import stats class StartUPTest: @staticmethod def monobit_test(binary_data: str): length_of_bit_string = len(binary_data) # Variable for S(n) count = 0 # Iterate each bit in the string and compute for S(n) for bit in binary_data: if bit == 48: # If bit is 0, then -1 from the S(n) count -= 1 elif bit == 49: # If bit is 1, then +1 to the S(n) count += 1 # Compute the test statistic sObs = count / sqrt(length_of_bit_string) # Compute p-Value p_value = erfc(fabs(sObs) / sqrt(2)) # return a p_value and randomness result return p_value, (p_value >= 0.01) @staticmethod def chi_square(binary_data: str): observed_frequencies = [binary_data.count(48), binary_data.count(49)] expected_probabilities = [0.5, 0.5] # Assuming equal probability for each bit value total_observations = len(binary_data) expected_frequencies = np.array(expected_probabilities) * total_observations chi2_statistic, p_value = stats.chisquare(observed_frequencies, f_exp=expected_frequencies) return p_value, p_value >= 0.01, chi2_statistic