PR3_Skriptsprachen_GruppeD_SL1/s1_a51.py

48 lines
1.4 KiB
Python
Raw Normal View History

2022-11-08 14:28:42 +01:00
import collections
2022-11-05 15:33:32 +01:00
import numpy as np
from scipy import sparse
2022-11-08 14:28:42 +01:00
class Matrix:
def __init__(self):
2022-11-08 16:11:58 +01:00
self.__matrix = collections.defaultdict(dict)
2022-11-08 14:28:42 +01:00
2022-11-08 16:11:58 +01:00
def set(self, column, row, value):
2022-11-08 14:28:42 +01:00
if value == 0:
2022-11-08 16:11:58 +01:00
if self.__matrix.get(column) and self.__matrix.get(column).get(row):
del self.__matrix[column][row]
2022-11-08 14:28:42 +01:00
else:
2022-11-08 16:11:58 +01:00
self.__matrix[column][row] = value
2022-11-08 14:28:42 +01:00
2022-11-08 16:11:58 +01:00
def get(self, column, row):
if self.__matrix.get(column) and self.__matrix.get(column).get(row):
return self.__matrix[column][row]
2022-11-08 14:28:42 +01:00
else:
return 0
2022-11-08 16:11:58 +01:00
def print(self):
print(self.__matrix)
2022-11-08 14:28:42 +01:00
2022-11-05 15:33:32 +01:00
if __name__ == "__main__":
# Aufgabe 1b
input_matrix = [[3, 0, -2, 11],
[0, 0, 9, 0],
[0, 7, 0, 0],
[0, 0, 0, 0]]
2022-11-08 16:11:58 +01:00
sparse_matrix = Matrix()
for column in range(len(input_matrix)):
for row in range(len(input_matrix[0])):
sparse_matrix.set(column, row, input_matrix[row][column])
2022-11-05 15:33:32 +01:00
2022-11-08 16:11:58 +01:00
sparse_matrix.print()
2022-11-05 15:33:32 +01:00
# Aufgabe 1c
2022-11-08 14:28:42 +01:00
# print("\nThe sparce matrix computed without numpy\n" + str(sparse_matrix))
2022-11-05 15:33:32 +01:00
# faster way with numpy
input_matrix = np.array(input_matrix)
rows, columns = input_matrix.shape
sparse_matrix = sparse.csr_matrix(input_matrix)
print("\nThe sparce matrix computed with numpy\n" + str(sparse_matrix))