
10.02.2026 | Team OpenAPI | Informatik-Workshop

API-Design und Dokumentation mit
OpenAPI

Béla Gallin
Serhat Göl
Fabian Hoppe
David Kubek
Jasmin Tschernoch

2 / 85

Wissensstand

Szenario und Erste Dokumentation

OpenAPI Einführung

Fertige OpenAPI-Dokumentation - Da wollen wir hin

Voraussetzungen und Tools

OpenAPI Spezifikation

Design First

Code First

Ausblick

Zusammenfassung

2.

10.

9.

6.

7.

8.

5.

4.

3.

1.

Agenda

3 / 85

1. Wissensstand

4 / 85

Was wisst ihr bereits
über APIs und REST?

Wie könnt ihr eine
(REST)API

dokumentieren?

5 / 85

WAS gehört alles
zu einer

Dokumentation?

WANN macht
man die

Dokumentation?

WIE macht man
die

Dokumentation?

Für WEN ist die
Dokumentation?

2. Szenario und Erste
Dokumentation

6 / 85

7 / 85

Food Express

Ihr wurdet als Entwicklerteam beauftragt, die API-Dokumentation für
FoodExpress zu erstellen - eine innovative Plattform zur

Online-Essensbestellung. Die Plattform verbindet hungrige Kunden mit lokalen
Restaurants und ermöglicht eine nahtlose Bestellabwicklung.

Restaurants

Verwaltung und
Anzeige von

Restaurants und
deren Speisekarten

Bestellungen

Erstellen, Abrufen und
Verwaltung von

Bestellungen

Kunden

Kundenverwaltung
und

Profilinformationen

Definiert diese
API schriftlich!

3. OpenAPI Einführung

8 / 85

Was ist OpenAPI?

9 / 85

OpenAPI

Standardisiere Spezifikation zur Beschreibung von HTTP-basierten APIs

➢ Beschreibt WAS eine API kann – nicht WIE sie intern implementiert ist
➢ Maschinen- und menschenlesbar
➢ Technologieneutral (Sprache, Framework egal)

Mit OpenAPI kann man u. a. definieren:

Endpunkte (URLs) HTTP-Methoden
(GET, POST,...)

Parameter,
Request- &
Response-

Struktur

Statuscodes Authentifizierung Beispiele &
Beschreibungen

Warum OpenAPI?

10 / 85

Zentrale Probleme ohne OpenAPI:

↯ Unklare API-Verträge
↯ Unterschiedliche Erwartung zwischen

Teams
↯ Dokumentation veraltet oder fehlt
↯ Hoher Abstimmungsaufwand

OpenAPI löst Probleme durch:

✓ Eine Single Source of Truth
✓ Klare, versionierbare API-Beschreibung
✓ Automatisierung (Code, Tests, Docs)

Historie & Swagger - von Swagger zu OpenAPI

11 / 85

ca. 2010 2015 & 2016

2011 Heute

➔ REST-APIs wurden immer verbreiteter
➔ Keine einheitliche, maschinenlesbare

Beschreibung
➔ Dokumentation oft manuell, inkonsistent

oder veraltet

Problem:

➔ Swagger entstand als
Spezifikation und Tooling

➔ Ziel: APIs beschreibbar, testbar
und verständlich zu machen

Lösung:

➔ Übergabe des Swagger Spezifikation
an die Linux Foundation

➔ Umbenennung & Standardisierung als
OpenAPI Specification

Weiterentwicklung:

➔ OpenAPI = offizieller
Standard

➔ Swagger = Tool-
Ökosystem rund um
OpenAPI

Was kann man mit OpenAPI machen?

12 / 85

Interaktive Doku (Swagger UI)

Mock-Server & Tests

API designen & reviewen

Client-Code generieren

Beides möglich

13 / 85

YAML

Besser lesbar

YAML vs. JSON

JSON

Technisch
gleichwertig

➔ wir nutzen YAML

4. Fertige
OpenAPI-Dokumentation - Da
wollen wir hin

14 / 85

15 / 85

API-Dokumentation für unser Szenario

16 / 85

Pause (15 min)

5. Voraussetzungen und Tools

17 / 85

Einführung YAML

18 / 85

✓ Lesbarkeit: Gut für Menschen lesbar
✓ Nutzung: Standard für Konfigurationsdateien

(Docker, Kubernetes, GitHub Actions, OpenAPI)

YAML = Yet Another Markup Language

Datenserialisierung → Daten speichern und übertragen

Zweck

Warum YAML?

Einführung YAML
Einrückung

19 / 85

Indentation um Hierarchien
zu bilden

Struktur durch Leerraum

Nutze immer Leerzeichen, keine Tabs!
 → 2 Leerzeichen pro Ebene

Regel

Nach dem Doppelpunkt muss ein
Leerzeichen folgen

Wichtig Alles nach einem # wird
ignoriert

Kommentare

Key-Value Paare
Grundelement ist
Schlüssel: Wert

Einführung YAML
Einrückung

20 / 85

Objekte (Dictionaries)
 Sammlung von Key-Value Paaren.

Listen (Arrays)
Mit einem Bindestrich - und Leerzeichen
eingeleitet

Verschachtelung
 Listen können Objekte enthalten und umgekehrt

Datentypen
Automatisch erkannt (String, Integer, Boolean, Float)

Anführungszeichen bei
Sonderzeichen benötigt

Swagger Tools
Editor, UI, Codegen

Funktion: Browser-basierter Editor

Vorteil: Feedback und Fehleranzeige,
live Vorschau

Nutzer: API-Architekten &
Backend-Entwickler

Funktion: Generiert Code aus
Spezifikation

Output:
● Server Stubs: Grundgerüst

Backend
● Client SDKs: Bibliotheken Frontend

Vorteil: Spart Zeit, verhindert Fehler
zwischen Doku und Code

Funktion: Rendert die Spezifikation in
interaktive HTML-Seite

Vorteil: Ermöglicht direktes Testen
(Requests im Browser)

Nutzer: Frontend-Entwickler, Tester &
Stakeholder

21 / 85

Swagger Editor (Design &
Entwurf)

Swagger UI (Visualisierung
& Testen)

Swagger Codegen
(Automatisierung)

OpenAPI
(Swagger) Editor

42crunch

YAML
Red Hat

VS Code Extensions

22 / 85

YAML
von Red Hat

Funktionen der Extension

● Validierung: Syntaxfehler, strukturelle Probleme

● Autovervollständigung: Kontextbezogene Vorschläge

● Hover-Informationen: Dokumentationen und Beschreibungen

● Dokumentgliederung: Hierarchische Baumstruktur des Dokuments → schnelle Navigation
in großen Dateien

● Formatierung: Formatierung des Codes

OpenAPI
(Swagger) Editor

42crunch

YAML
Red Hat

VS Code Extensions

23 / 85

OpenAPI (Swagger) Editor
von 42crunch

Funktionen der Extension

● Live-Preview: Rendert Swagger/OpenAPI-Dateien als grafische Benutzeroberfläche
(Swagger UI)

● Autovervollständigung: Für Swagger 2.0, OpenAPI 3.0 Tags und Keywords

● Echtzeit-Validierung: Syntaxfehler gemäß OpenAPI-Spezifikation

● Auto-Refresh: Vorschau aktualisiert bei Änderungen der Datei

6. OpenAPI Spezifikation

24 / 85

25 / 85

OpenAPI Spezifikation

Informationen hier sind nur ein Überblick über
grundlegende Funktionen und Anwendung.

Details in der Dokumentation nachlesen.

Ressourcen

Dokumentation mit Erklärung
The OpenAPI Specification Explained

Dokumentation
OpenAPI Specification versions 3.1.0

https://learn.openapis.org/specification/
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md

26 / 85

Struktur

● OpenAPI Dokument repräsentiert ein Objekt in YAML oder JSON

● Felder, die vorhanden sein müssen: openapi, info

○ Und eins dieser: paths, components, webhooks

● openapi: String, der Version der Spezifikation angibt

○ Wird zum Interpretieren des Dokuments genutzt

○ Aktuelle Major-Version: 3

● info: Allgemeine Infos zur API

○ Objekt mit den Feldern: title, version, description (optional)

● paths: Beschreibt Endpunkte der API

openapi: 3.1.0
info:
 title: Students API
 version: 1.0.0
paths: {}

Struktur

Server

Endpunkte

und HTTP

Operationen

Responses

Contents

Path

Parameters

Dokumen-

tation

27 / 85

Server

● Basis-URL der API definieren

● Ist optional

● Relevantes Feld: servers

● Array im OpenAPI-Objekt

● Element im Array definiert ein Objekt mit Infos zum Server

● Felder im Objekt: url (MUSS), description, variables

● Endpunkte werden an Basis-URL angehängt

● variables: URL kann Variablen enthalten; hier definiert

○ Objekt mit Variablennamen als Feldern

○ Pro Variable min. default definiert

openapi: 3.1.0
info:
 title: Students API
 version: 1.0.0
servers:
 - url: http://localhost:4004/api/v1
 description: Local development server
 - url: https://{stage}.students.com/api/v1
 description: Stage server
 variables:
 stage:
 description: Stage
 enum:
 - dev
 - test
 - prod
 default: dev

Struktur

Server

Endpunkte

und HTTP

Operationen

Responses

Contents

Path

Parameters

Dokumen-

tation

28 / 85

Endpunkte und HTTP Operationen

● Endpunkte in OpenAPI paths

● In paths werden die Endpunktnamen angegeben

● Für jeden Pfad alle unterstützten HTTP-Operationen

aufgeführt

● Pfad muss mit / starten

● Zwei gleiche Operationen pro Pfad NICHT erlaubt

● Für Operation ein Objekt mit Infos über Verwendung

● Pro Operation: parameters, requestBody, responses

openapi: 3.1.0
info:
 title: Students API
 version: 1.0.0
paths:
 /students:
 get:
 summary: Get all students
 description: Retrieves all the students in
the system
 parameters: [...]
 requestBody: ...
 responses: ...

Struktur

Server

Endpunkte
und HTTP
Operationen

Responses

Contents

Path

Parameters

Dokumen-

tation

29 / 85

Responses

● In responses Reaktion der Operation definieren

● Pro Response ein Feld mit einem Objekt

● Felder müssen HTTP Response Codes sein

● Min. eine Response pro Operation

● Response definiert mit u. a.

○ description: Beschreibt Bedeutung (MUSS)

○ content: Möglicher Inhalt der Response

beschrieben

openapi: 3.1.0
info:
 title: Students API
 version: 1.0.0
paths:
 /students:
 get:
 summary: Get all students
 description: Retrieves all the students in
the system
 parameters: [...]
 requestBody: ...
 responses:
 "200":
 description: OK
 content: ...
 "400":
 description: Bad Request

Struktur

Server

Endpunkte

und HTTP

Operationen

Responses

Contents

Path

Parameters

Dokumen-

tation

30 / 85

Contents

● content Feld beschreibt Inhalt von Response-Body
oder Request-Body

● Mehrere Contents (Ein Feld pro Content mit Objekt)
● Name des Feldes hat Name eines Media-Types

(z. B. application/json, text/html, text/plain)
● Objekt beschreibt die Struktur des Inhalts mit schema
● In schema wird ein type definiert: number, integer,

string, boolean, array, object
● Basierend auf type weitere Angaben (siehe Beispiel)
● Für object braucht es properties für die Struktur
● Mit examples Beispiele angeben → gut für

Dokumentation

content:
application/json:
 schema:

type: object
properties:
 id:

type: string
examples: [1111111]

 name:
type: string
minLength: 1
examples: [Max Mustermann]

 semester:
type: integer
minimum: 1
examples: [1]

 vacationSemester:
type: boolean
examples: [false]

 courseOfStudy:
type: string
enum:

 - Informatik
 - Maschinenbau
 - Soziale Arbeit

examples: [Informatik]
 classes:

type: array
maxItems: 10
items:

 type: string
examples: [[PR1, MA1]]

Struktur

Server

Endpunkte

und HTTP
Operationen

Responses

Contents

Path

Parameters

Dokumen-

tation

31 / 85

Path Parameters

● Für GET Requests häufig verwendet

● Gibt auch noch weitere Parameter: Query, Header

● Für die HTTP Operation das parameters Feld definieren

● parameters ist ein Array von Parametern

● Pro Parameter folgende Felder:

○ name: Eindeutiger Name

○ in: Ort des Parameters (Pfad, Query, Header)

○ required: Ob vorhanden sein muss

○ schema: Struktur des Parameters

● Für schema gleiche Definition wie bei Contents (Typ,

Beispiele, …)

● Pfad Parameter: in: path angeben

○ Muss immer vorhanden sein (required: true)

○ name des Parameters in Pfad-URL angeben (mit {})

openapi: 3.1.0
info:
 title: Students API
 version: 1.0.0
paths:

/students/{id}:
get:

parameters:
- in: path

name: id
required: true
schema:

type: string
examples:

[c0f89721-f331-4470-b160-d61c205beac8]
responses: …

Struktur

Server

Endpunkte

und HTTP
Operationen

Responses

Contents

Path
Parameters

Dokumen-

tation

32 / 85

Dokumentation

● Bei vielen Objekten sind summary und description

vorhanden

● Gut zur Dokumentation des jeweiligen Elements

● summary für eine Kurzbeschreibung des Elements

● description für ausführlichere Beschreibung

○ Hier auch Markdown anwendbar für Formatierung

usw.

● In schema auch examples vorhanden

○ Passende Beispiele angeben

● externalDocs für Referenz auf externe Dokumentation

Struktur

Server

Endpunkte

und HTTP
Operationen

Responses

Contents

Path

Parameters

Dokumen-
tation

33 / 85

Praxis: Spezifikation Teil 1

Szenario auf Gitty https://gitty.informatik.hs-mannheim.de/2121190/IWS-OpenAPI

● OpenAPI Dokumentation in

VSCode

● Info ausfüllen

● Server definieren (mehrere

sinnvolle)

● GET requests für Szenario

● Responses mit Contents

definieren

● Sinnvolle summaries,

descriptions und Beispiele

https://gitty.informatik.hs-mannheim.de/2121190/IWS-OpenAPI

34 / 85

Pause (10 min)

paths:
/students:

get:
parameters:

 - name: limit
 in: query
 description: Number of Students to return
 required: true
 schema:
 type: integer

minimum: 1
maximum: 100
default: 25

- name: Accept-Language
in: header
description: Preferred language for the

response
required: false
schema:

type: string
example: "de-DE"

- name: sessionId
in: cookie
description: Session identifier
required: false
schema:

type: string
example: "abc1234"

Weitere Parameter

35 / 85

Weitere
Parameter

Payload

Tags

Komponenten

API Security

in

steuert

Typische
Nutzung

Query CookieHeader

query header cookie

Filter,
Sortierung,
Pagination

Sprache,
Content-

Type, Tokens

Sitzungs-/
Tracking-

informationen

Antwort Metadaten
Zustand/Ses-
sion-Kontext

Payload

● Operationen können einen Request
Body (Payload) haben

● typisch für POST, PUT und PATCH
● definiert durch schema
● klar getrennt von parameters

36 / 85

paths:
/students:

post:
…
requestBody:
…

patch:
…
requestBody:
…

requestBody:
description: Create a student
required: true
content:

application/json:
schema:

type: object
required: [id, name …]
properties:

id:
type: string

name:
type: string

…

requestBody:
description: Update fields for a student
required: true
content:

application/json:
schema:

type: object
properties:

id:
type: string

name:
type: string

…

Weitere

Parameter

Payload

Tags

Komponenten

API Security

Tags

37 / 85

Weitere

Parameter

Payload

Tags

Komponenten

API Security

Tags

38 / 85

tags:
- Students
- Courses
- Notes

paths:
/students/{id}:

get:
tags: [Students]
…

patch:
tags: [Students]
…

/courses:
get:

tags: [Courses]
…

post:
tags: [Courses]
…

/notes{id}:
get:

tags: [Notes, Students]
…

Weitere

Parameter

Payload

Tags

Komponenten

API Security

● Tags gruppieren einzelne Operationen
● jeder API-Operation kann eine Liste von Tags

zugewiesen werden
● Übersichtlichkeit und schnelles Finden von

Endpunkten

Komponenten

● components = wiederverwendbare Bausteine

● per Referenz $ref genutzt

Vorteile:

➢ Wiederverwendung

➢ Weniger Duplikate

➢ Konsistenz

39 / 85

paths:
/student/{id}:

get:
…
responses:

"200":
$ref: "#/components/responses/Student"

…
components:

parameters:
…

schemas:
…

responses:
Student:

…
requestBodies:

…
examples:

…
securitySchemes:

…

Weitere

Parameter

Payload

Tags

Komponenten

API Security

40 / 85

paths:
/students:

get:
…
parameters:

- in: query
name: id
schema:

type: string
description: Filter by course id

- in: query:
name: courseOfStudy
…

responses:
"200":

description: Successful
content:

application/json:
 schema:

type: array
items:

type: object
properties:

id:
type: string

…

paths:
/students:

get:
…
parameters:

- $ref: "#/components/parameters/FilterByCourse"
- $ref: "#/components/parameters/FilterByCourseOfStudy"

responses:
"200":

description: Successful
content:

application/json:
 schema:

type: array
items:

$ref: "#/components/schemas/Student"
…

components:
parameters:

FilterByCourse:
description: Filter by course name
name: courseName
in: query
schema:

type: string
…

schemas:
Student:

type: object
properties:

id:
type: string

…

ohne components

mit components

Weitere

Parameter

Payload

Tags

Komponenten

API Security

Komponenten

41 / 85

paths:
/students:

post:
…
requestBody:

required: true
content:

application/json:
schema:

type: object
properties:

id:
type: string

…
responses:

"201":
description: Successful
content:

application/json:
 schema:

type: object
properties:

id:
type: string
examples: [111111]
…

paths:
/students:

post:
requestBody:

$ref: "#/components/requestBodies/CreateStudent"
responses:

"201":
$ref: "#/components/responses/Student"

components:
responses:

Student:
description: Successful
content:

application/json:
schema:

$ref: "#/components/schemas/Student"
examples:

newStudent:
 $ref: "#/components/examples/StudentExample"

requestBodies:
CreateStudent:

required: true
content:

application/json:
schema:

$ref: "#/components/schemas/CreateStudent"
examples:

StudentExample:
value:

 id: 111111
…

ohne components

mit components

Weitere

Parameter

Payload

Tags

Komponenten

API Security

Komponenten

API Security

● API Security = Authentifizierung und

Autorisierung

● verschiedene Sicherheitsschemata unterstützt

● zentrale Begriffe:
○ securitySchemes: Was ist möglich?

○ security: Was wird genutzt?

● Geltungsbereich: global oder pro Operation

42 / 85

paths:
/students:

post:
…
security:

- BasicAuth[]
/notes/{studentId}:

…
get:

…
security:

- AuthBearer[]

components:
…
securitySchemes:

BasicAuth:
scheme: basic
type: http

AuthBearer:
scheme: bearer
type: http
bearerFormat: jwt

ApiKeyAuth:
type: apiKey
in: header
name: X-API-Key

Weitere

Parameter

Payload

Tags

Komponenten

API Security

43 / 85

Praxis: Spezifikation Teil 2

Szenario auf Gitty https://gitty.informatik.hs-mannheim.de/2121190/IWS-OpenAPI

● GET, POST und PATCH

Operationen

● Weitere Parameter definieren

(siehe Szenario)

● Payload bei POST, PATCH

● Tags verwenden

● Sinnvolle Komponenten

einfügen

● Security für API definieren

https://gitty.informatik.hs-mannheim.de/2121190/IWS-OpenAPI

44 / 85

Mittagspause (45 min)

7. Design First

45 / 85

Was ist Design First?

46 / 85

Design First

➢ OpenAPI Spezifikation wird in einem Texteditor geschrieben

➢ Aus der Spezifikation wird ein REST Api Client erstellt

➢ Codegenerierung von Serverrouten möglich

Felder

47 / 85

OpenAPI version

Version der Spezifikation

info (title, description, version)

Name der API-Schnittstelle (Beschreibung, Version)

servers (url)

paths / Endpunkte

components (SecuritySchemes)

schemas / Formatierung der Parameter

⧫

⧫

⧫

⧫

⧫

⧫

Vor- und Nachteile

48 / 85

✓ Technologieunabhängigkeit

✓ Keine Programmierkenntnisse erforderlich

✓ Implementierung an API gebunden

� Projektplanung

Vorteile Nachteile

GUI Editoren

49 / 85

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry
❖ Apicurio Studio wird nicht mehr unterstützt
❖ Funktionalität zur Bearbeitung von API Dokumenten über “Draft”-Feature

curl -o docker-compose.yml
https://raw.githubusercontent.com/Apicurio/apicurio-registry/main/distro/doc
ker-compose/in-memory-with-studio/docker-compose.yml

https://tools.openapis.org/categories/gui-editors.html

GUI Editoren

50 / 85

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry

Installation über Docker

$ curl -o docker-compose.yml
https://raw.githubusercontent.com/Apicurio/apicurio-registry/main/dist
ro/docker-compose/in-memory-with-studio/docker-compose.yml

$ docker compose up

https://tools.openapis.org/categories/gui-editors.html
https://raw.githubusercontent.com/Apicurio/apicurio-registry/main/distro/docker-compose/in-memory-with-studio/docker-compose.yml
https://raw.githubusercontent.com/Apicurio/apicurio-registry/main/distro/docker-compose/in-memory-with-studio/docker-compose.yml

GUI Editoren

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry

51 / 85

https://tools.openapis.org/categories/gui-editors.html

GUI Editoren

52 / 85

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry

https://tools.openapis.org/categories/gui-editors.html

53 / 85

GUI Editoren

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry
❖ JSON und YAML Ansicht
❖ Editieren nicht möglich

https://tools.openapis.org/categories/gui-editors.html

GUI Editoren

54 / 85

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry
Dokumentation

https://tools.openapis.org/categories/gui-editors.html

GUI Editoren

55 / 85

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry

❖ Generierung des Clients
❖ Unterstützung für

verschiedene
Programmiersprachen

https://tools.openapis.org/categories/gui-editors.html

GUI Editoren

56 / 85

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry

Drafts können editiert werden

https://tools.openapis.org/categories/gui-editors.html

GUI Editoren

57 / 85

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

Apicurio Registry

https://tools.openapis.org/categories/gui-editors.html

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

GUI Editoren

58 / 85

Apicurio Registry Textuelle Bearbeitung

https://tools.openapis.org/categories/gui-editors.html

Apicurio Registry

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

GUI Editoren

59 / 85

❖ Funktionalität ähnlich wie Apicurio Registry
❖ weitere Features: Git-Integration,

Sicherheitshinweise, Testen der Routen

https://tools.openapis.org/categories/gui-editors.html

Apicurio Registry

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

GUI Editoren

60 / 85

https://tools.openapis.org/categories/gui-editors.html

Apicurio Registry

OpenAPI
Specifications
Plugin

OpenAPI Designer

APIGit

GUI Editoren

61 / 85

❖ Website:
https://openapidesigner.com

❖ geringere Funktionalität

https://tools.openapis.org/categories/gui-editors.html
https://openapidesigner.com

Apicurio Registry

OpenAPI
Specifications
Plugin

OpenAPI
Designer

APIGit

GUI Editoren

62 / 85

Funktionen:
❖ Validierung
❖ Codegenerierung
❖ Strukturansicht der

Elemente (z. B. Routen)
❖ Swagger UI / Redoc

Vorschau
❖ Autovervollständigung

https://tools.openapis.org/categories/gui-editors.html

Validierung

63 / 85

OpenAPI Spec Validator (PyPI)

openapi-spec-validator openapi.yaml

Openapi-schema-validator (PyPI)

validate({"name": "John", "city": "London"},
schema)

Überprüfung der Kompatibilität eines OpenAPI Dokument mit der Spezifikation

Codegenerierung

64 / 85

npm install @openapitools/openapi-generator-cli -g

pip install openapi-generator-cli[jdk4py]

Docker: openapitools/openapi-generator-cli

Generatoren (Auswahl):

python-aiohttp, python-blueplanet, python-fast api (beta), python-flask

$ openapi-generator-cli generate -i input.yaml -g [generator] -o client

OpenAPI Generator (https://openapi-generator.tech/)

❖ Unterstützung für über 40 verschiedene Server- und Clienttechnologien

Installation (alternativ):

https://openapi-generator.tech/docs/generators/python-aiohttp
https://openapi-generator.tech/docs/generators/python-blueplanet
https://openapi-generator.tech/docs/generators/python-fastapi
https://openapi-generator.tech/docs/generators/python-flask

Beispiel Server/Client

65 / 85

openapi: 3.0.1

info:

 title: Book Management API

 description: API for managing books in a digital library

 version: 1.0.0

servers:

 - url: http://localhost:8080

 description: Local development server

paths:

 /books:

 get:

 summary: Get all books

 responses:

 '200':

 description: A list of books

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Book'

 /books/{id}:

 get:

 summary: Get a book by ID

 parameters:

 - in: path

 name: id

 schema:

 type: integer

 required: true

 description: ID of the book to retrieve

 responses:

 '200':

 description: Book found

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Book'

 '404':

 description: Book not found

components:

 schemas:

 Book:

 type: object

 properties:

 id:

 type: integer

 example: 1

 title:

 type: string

 example: Effective Java

 author:

 type: string

 example: Joshua Bloch

Praxis (Server/Client)

66 / 85

$ uv run openapi-generator-cli generate -i openapi.yaml -g python-fastapi -o server

$ cd server

$ uv sync

$ uv add –dev fastapi uvicorn

README:

PYTHONPATH=src uv run uvicorn openapi_server.main:app --host 0.0.0.0 --port 8080

VS Code: Installation z. B. OpenAPI Toolkit (SpecLynx) für Syntax Highlighting

➜ Terminal öffnen

Danach im Browser http://127.0.0.1:8080/docs öffnen

http://127.0.0.1:8080/docs

Praxis (Server/Client)

67 / 85

VS Code: Installation z. B. OpenAPI Toolkit (SpecLynx) für Syntax
Highlighting

$ uv run openapi-generator-cli generate -i openapi.yaml -g python -o client

$ cd client

$ uv sync

➜ Terminal öffnen

README.md

Praxis (Server/Client)

68 / 85

import openapi_client

from openapi_client.rest import ApiException

from pprint import pprint

Defining the host is optional and defaults to http://localhost:8080

See configuration.py for a list of all supported configuration parameters.

configuration = openapi_client.Configuration(

 host = "http://localhost:8080"

)

Enter a context with an instance of the API client

with openapi_client.ApiClient(configuration) as api_client:

 # Create an instance of the API class

 api_instance = openapi_client.DefaultApi(api_client)

 try:

 # Get all books

 api_response = api_instance.books_get()

 print("The response of DefaultApi->books_get:\n")

 pprint(api_response)

 except ApiException as e:

 print("Exception when calling DefaultApi->books_get: %s\n" % e)

Praxis (Server/Client)

69 / 85

Exception when calling DefaultApi->books_get: (500)

Reason: Internal Server Error

HTTP response headers: HTTPHeaderDict({'date': 'Thu, 05 Feb 2026 23:00:52 GMT', 'server':
'uvicorn', 'content-length': '28', 'content-type': 'application/json'})

HTTP response body: {"detail":"Not implemented"}

uv run client.py

➥ Dies liegt daran, dass die Funktion “books_get” nicht im Code implementiert wurde

Praxis (Server/Client)

70 / 85

@router.get(

 "/books",

 responses={

 200: {"model": List[Book], "description": "A list of books"},

 },

 tags=["default"],

 summary="Get all books",

 response_model_by_alias=True,

)

async def books_get(

) -> List[Book]:

 if not BaseDefaultApi.subclasses:

 raise HTTPException(status_code=500, detail="Not implemented")

 return await BaseDefaultApi.subclasses[0]().books_get()

Praxis: Design First

71 / 85

Gegeben ist die API-Dokumentation für FoodExpress:
https://gitty.informatik.hs-mannheim.de/2121190/IWS-OpenAPI

● Generiere einen Python Client und einen Python FastAPI Server

● Es soll das Tool openapi-generator-cli verwendet werden

● Ergänze die Implementierung für die Routen des Python FastAPI Servers

● Überprüfe jeweils die Funktionalität des Servers und Clients mit Mockdaten

https://gitty.informatik.hs-mannheim.de/2121190/IWS-OpenAPI

72 / 85

Pause (10 min)?

8. Code First

73 / 85

Code First – Grundidee & Einordnung

74 / 85

Was bedeutet Code First?

Eigenschaften von Code First

Typische Einsatzszenarien

Code First beschreibt einen Ansatz, bei dem:

● die API zuerst implementiert wird
● die API-Dokumentation automatisch aus dem Code

entsteht
● der Code die Quelle der Wahrheit ist

Die OpenAPI-Dokumentation wird dabei z. B. aus:

● Typannotationen
● Modellen
● Annotationen / Metadaten

generiert.

● Schneller Einstieg
● Wenig initialer Overhead
● Sehr nah an der Implementierung
● Dokumentation und Code bleiben synchron

● Prototypen
● Kleine bis mittlere Teams
● Bestehende APIs
● Backend-getriebene Entwicklung

FastAPI & Typannotationen

75 / 85

@app.get("/users/{user_id}")

def get_user(user_id: int):

 ...

Beispiel

➨ user_id muss eine Zahl sein
➨ FastAPI validiert automatisch
➨ OpenAPI kennt den Typ
➨ Swagger zeigt es korrekt an

➥ Python-Typen beschreiben:
➞ Request-Parameter
➞ Request-Body
➞ Response-Strukturen

FASTAPI: Typen sind der Vertrag

FastAPI ist ein Python-Webframework, das stark auf
Typannotationen setzt.

Was bedeutet das konkret?

➥ Diese Typinformationen werden
automatisch genutzt für:
➞ Validierung
➞ OpenAPI-Dokumentation
➞ Swagger UI

FastAPI App & CRUD (Code First)

76 / 85

@app.post("/users")
def create_user(user: UserCreate):
 ...

Beispiel: Create User

➨ UserCreate = Pydantic-Model
➨ Definiert:

➝ Pflichtfelder
➝ Datentypen
➝ Validierung

➨ OpenAPI übernimmt das Schema
automatisch

Create POST /users

Operation HTTP Beispiel

Read GET /users, /users/{id}

Update PUT/PATCH /users/{id}

Delete DELETE /users/{id}

R

➢ app ist die zentrale API-Instanz
➢ Alle Endpoints werden daran registriert
➢ OpenAPI wird automatisch aus der App erzeugt

app = FastAPI()

U

C

D

77 / 85

Praxis: Code First

Szenario auf Gitty https://gitty.informatik.hs-mannheim.de/2121190/IWS-OpenAPI

● Server starten

● JSON prüfen

● User-Objekt anpassen.

● Testen

https://gitty.informatik.hs-mannheim.de/2121190/IWS-OpenAPI

9. Ausblick

78 / 85

Über den
Tellerrand (Trends)

Management &
Betrieb (Ops)

Was ist sonst noch möglich?

79 / 85

Beschleunigung &
Qualität (Dev)

Contract Testing

Prüft automatisch: Stimmt der
Code noch mit der Doku überein?
(Verhindert „Drift")

Über den
Tellerrand (Trends)

Beschleunigung
 & Qualität (Dev)

Was ist sonst noch möglich?

80 / 85

Management &
Betrieb (Ops)

Import der Spec zur Konfiguration

Automatisiertes Rate-Limiting,
Security & Auth

API Gateway Developer Portals

Generierung zentraler
„Bibliotheken" für alle Firmen-APIs
(„API Appstore”)

Management &
Betrieb (Ops)

Beschleunigung
 & Qualität (Dev)

Was ist sonst noch möglich?

81 / 85

Über den Tellerrand
(Trends)

Wie OpenAPI, aber für asynchrone
Events (Kafka, WebSockets,
RabbitMQ)

SwaggerHub & Cloud

Zentrale Plattform für Teams
(Versionierung, Kollaboration,
Style-Guides)

AsyncAPI

10. Zusammenfassung

82 / 85

Zusammenfassung

83 / 85

Standard für REST-APIs

Spezifikation als „Vertrag” zwischen Frontend, Backend und externen
Partnern

Tools: Kein YAML auswendig lernen – nutzt Editoren, Linter und Plugins, um
die Qualität eurer Spezifikation zu sichern.

Workflow-Flexibilität:

Design First: Erst planen, dann bauen (Team-Kollaboration).

Code First: Dokumentation direkt aus dem Code generieren
(schnelle Entwicklung).

Noch Fragen?

84 / 85

85 / 85

Quellen

● https://swagger.io/docs/specification/v3_0/about/
● https://learn.openapis.org/specification/
● https://idratherbewriting.com/learnapidoc/pubapis_openapi_tutorial_overview.html
● https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md
● https://www.javacodegeeks.com/openapi-documentation-yml-file-example.html
● https://yaml.org/spec/1.2.2/

https://swagger.io/docs/specification/v3_0/about/
https://learn.openapis.org/specification/
https://idratherbewriting.com/learnapidoc/pubapis_openapi_tutorial_overview.html
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md
https://www.javacodegeeks.com/openapi-documentation-yml-file-example.html
https://yaml.org/spec/1.2.2/

