gai-ca2/project/scripts/tilemap/TilemapNavigation.gd

145 lines
5.3 KiB
GDScript

class_name TilemapNavigation
extends Node
var tilemap_types: TileMapTileTypes = TileMapTileTypes.new()
#
var world: World = null
var player: PlayerManager = null
#
# Dictionary[Vector2i, Array[Vector2i]] (target, path)
var found_paths: Dictionary = {}
var failed_positions: Array[Vector2i] = []
var chosen_path: Array[Vector2i] = []
func game_tick_start() -> void:
found_paths.clear()
failed_positions = []
chosen_path = []
func game_tick_end() -> void:
world.tilemap_nav_vis.clear_cells()
for path in found_paths.values():
for pos in path:
world.tilemap_nav_vis.set_cell(pos, tilemap_types.NAVIGATION_CHECKED)
for pos in failed_positions:
world.tilemap_nav_vis.set_cell(pos, tilemap_types.NAVIGATION_FAILED)
for pos in chosen_path:
world.tilemap_nav_vis.set_cell(pos, tilemap_types.NAVIGATION_CHOSEN)
# mark last in chosen path as NAVIGATION_TARGET
if chosen_path.size() > 0:
world.tilemap_nav_vis.set_cell(chosen_path[chosen_path.size() - 1], tilemap_types.NAVIGATION_TARGET)
func is_within_radius(position: Vector2i, center: Vector2i, radius: int, record: bool = false) -> bool:
return TilemapNavigation.manhattan_distance(position, center, record) <= radius
static func manhattan_distance(a: Vector2i, b: Vector2i, record: bool = false) -> int:
var dist: int = abs(a.x - b.x) + abs(a.y - b.y)
if record:
StepVisualization.add_line_tileset(a, b, str(dist))
return dist
func manhattan_distance_closest(options: Array[Vector2i], target: Vector2i) -> Vector2i:
var closest: Vector2i = tilemap_types.NO_TILE_FOUND
var shortest: int = 9999999999
for option in options:
var distance: int = manhattan_distance(option, target)
if distance < shortest:
closest = option
shortest = distance
return closest
var walking_directions: Array[Vector2i] = [Vector2i(0, -1), Vector2i(0, 1), Vector2i(-1, 0), Vector2i(1, 0)]
var f_score: Dictionary = {}
func find_path_allow_neighbors(start_position: Vector2i, end_position: Vector2i, max_radius: int = -1) -> Array[Vector2i]:
if world.is_walkable(end_position):
# check the tile itself first, then check the four surrounding tiles
var path: Array[Vector2i] = find_path(start_position, end_position, max_radius)
if path.size() != 0:
return path
else:
for direction in walking_directions:
var neighbor: Vector2i = end_position + direction
var path: Array[Vector2i] = find_path(start_position, neighbor, max_radius)
if path.size() != 0:
return path
return []
func has_arrived(position: Vector2i, path: Array[Vector2i]) -> bool:
return path.size() > 0 and path[path.size() - 1] == position
func find_path(start_position: Vector2i, end_position: Vector2i, max_radius: int = -1) -> Array[Vector2i]:
var path: Array[Vector2i] = _find_path_internal(start_position, end_position, max_radius)
if path.size() > 0:
found_paths[end_position] = path
else:
failed_positions.append(end_position)
return path
func _find_path_internal(start_position: Vector2i, end_position: Vector2i, max_radius: int = -1) -> Array[Vector2i]:
if max_radius > -1 and not is_within_radius(end_position, start_position, max_radius):
return []
if not world.is_walkable(end_position):
return []
var check_nodes = PriorityQueue.new() # lowest f_score
var came_from: Dictionary = {}
var g_score: Dictionary = {}
var walkable_cache: Dictionary = {}
f_score = {}
var visited_nodes: Dictionary = {}
check_nodes.insert(start_position, 0)
g_score[start_position] = 0
f_score[start_position] = manhattan_distance(start_position, end_position) * 1.1 # Heuristic weighting
while not check_nodes.empty():
var current: Vector2i = check_nodes.extract()
if current == end_position:
var path: Array[Vector2i] = []
while current in came_from:
path.insert(0, current)
current = came_from[current]
path.insert(0, start_position)
return path
visited_nodes[current] = true
for direction in walking_directions:
var neighbor: Vector2i = current + direction
# Combine checks for early skipping
if neighbor in visited_nodes or (max_radius > -1 and not is_within_radius(neighbor, start_position, max_radius)):
continue
if not walkable_cache.has(neighbor):
walkable_cache[neighbor] = world.is_walkable(neighbor)
if not walkable_cache[neighbor]:
continue
var cost: int = world.tilemap_ground.get_custom_data(neighbor, "cost", 1)
var tentative_g_score: int = g_score.get(current, INF) + cost
if tentative_g_score < g_score.get(neighbor, INF):
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
f_score[neighbor] = tentative_g_score + manhattan_distance(neighbor, end_position) * 1.1 # Heuristic weighting
if not check_nodes.contains(neighbor):
check_nodes.insert(neighbor, f_score[neighbor])
return []