gai-ca2/project/scripts/tilemap/World.gd

124 lines
4.6 KiB
GDScript

class_name World
extends Node2D
var tilemap_ground: TileMapLayerAccess = TileMapLayerAccess.new()
var tilemap_non_interactive: TileMapLayerAccess = TileMapLayerAccess.new()
var tilemap_interactive: TileMapLayerAccess = TileMapLayerAccess.new()
var tilemap_player: TileMapLayerAccess = TileMapLayerAccess.new()
var tilemap_temperature: TileMapLayerAccess = TileMapLayerAccess.new()
#
var tilemap_types: TileMapTileTypes = TileMapTileTypes.new()
func _ready() -> void:
tilemap_ground.sid = 0
tilemap_ground.tilemap = $GroundLayer
tilemap_non_interactive.sid = 1
tilemap_non_interactive.tilemap = $NonInteractiveObjectsLayer
tilemap_interactive.sid = 1
tilemap_interactive.tilemap = $InteractiveObjectsLayer
tilemap_player.sid = 3
tilemap_player.tilemap = $PlayerLayer
tilemap_temperature.sid = 2
tilemap_temperature.tilemap = $TemperatureLayer
tilemap_ground.setup()
tilemap_non_interactive.setup()
tilemap_interactive.setup()
tilemap_player.setup()
tilemap_temperature.setup()
# example usage
# tilemap_temperature.fill_area(Vector2i(0, 0), Vector2i(10, 10), tilemap_types.TEMPERATURE_COLD_1)
# tilemap_temperature.fill_area(Vector2i(4, 4), Vector2i(6, 6), tilemap_types.TEMPERATURE_NORMAL)
# print(tilemap_non_interactive.get_cells_by_custom_data("walkable", true))
# tilemap_ground.clear_cells()
# tilemap_ground.set_cell(Vector2i(0, 0), tilemap_types.GROUND_GRASS)
# print(tilemap_ground.local_to_cell(get_local_mouse_position()))
func local_mouse_position() -> Vector2:
return get_local_mouse_position()
func tilemap_mouse_position() -> Vector2i:
return tilemap_ground.local_to_cell(get_local_mouse_position())
func is_walkable(position: Vector2i) -> bool:
var ground_tile_walkable: bool = tilemap_ground.get_custom_data(position, "walkable", false)
var non_interactive_walkable: bool = tilemap_non_interactive.get_custom_data(position, "walkable", true)
var interactive_walkable: bool = tilemap_interactive.get_custom_data(position, "walkable", true)
return ground_tile_walkable and non_interactive_walkable and interactive_walkable
func is_within_radius(position: Vector2i, center: Vector2i, radius: int) -> bool:
return manhattan_distance(position, center) <= radius
func manhattan_distance(a: Vector2i, b: Vector2i) -> int:
return abs(a.x - b.x) + abs(a.y - b.y)
var walking_directions: Array[Vector2i] = [Vector2i(0, -1), Vector2i(0, 1), Vector2i(-1, 0), Vector2i(1, 0)]
var f_score: Dictionary = {}
func find_path(start_position: Vector2i, end_position: Vector2i, max_radius: int = -1) -> Array[Vector2i]:
if max_radius > -1 and not is_within_radius(end_position, start_position, max_radius):
return []
if not is_walkable(end_position):
return []
var check_nodes = PriorityQueue.new() # lowest f_score
var came_from: Dictionary = {}
var g_score: Dictionary = {}
var walkable_cache: Dictionary = {}
f_score = {}
var visited_nodes: Dictionary = {}
check_nodes.insert(start_position, 0)
g_score[start_position] = 0
f_score[start_position] = manhattan_distance(start_position, end_position) * 1.1 # Heuristic weighting
while not check_nodes.empty():
var current: Vector2i = check_nodes.extract()
if current == end_position:
var path: Array[Vector2i] = []
while current in came_from:
path.insert(0, current)
current = came_from[current]
path.insert(0, start_position)
return path
visited_nodes[current] = true
for direction in walking_directions:
var neighbor: Vector2i = current + direction
# Combine checks for early skipping
if neighbor in visited_nodes or (max_radius > -1 and not is_within_radius(neighbor, start_position, max_radius)):
continue
if not walkable_cache.has(neighbor):
walkable_cache[neighbor] = is_walkable(neighbor)
if not walkable_cache[neighbor]:
continue
var cost: int = tilemap_ground.get_custom_data(neighbor, "cost", 1)
var tentative_g_score: int = g_score.get(current, INF) + cost
if tentative_g_score < g_score.get(neighbor, INF):
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
f_score[neighbor] = tentative_g_score + manhattan_distance(neighbor, end_position) * 1.1 # Heuristic weighting
if not check_nodes.contains(neighbor):
check_nodes.insert(neighbor, f_score[neighbor])
return []