forked from 2211275/gnn
added uebung2
parent
a96c60c72b
commit
a11a8b95b5
|
|
@ -64,4 +64,4 @@ while True: # Endlosschleife
|
||||||
ax.set_zlabel('Ausgabe\ndes Neurons')
|
ax.set_zlabel('Ausgabe\ndes Neurons')
|
||||||
ax.set_zlim(0, 1)
|
ax.set_zlim(0, 1)
|
||||||
plt.draw()
|
plt.draw()
|
||||||
plt.pause(0.00001)
|
plt.pause(0.3)
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,73 @@
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Sigmoide Aktivierungsfunktion und ihre Ableitung
|
||||||
|
def sigmoid(x):
|
||||||
|
return 1 / (1 + np.exp(-x)) # Sigmoidfunktion
|
||||||
|
|
||||||
|
def deriv_sigmoid(x):
|
||||||
|
return x * (1 - x) # Ableitung der Sigmoiden
|
||||||
|
|
||||||
|
# Das XOR-Problem, input [bias, x, y] und Target-Daten
|
||||||
|
inp = np.array([[1,0,0], [1,0,1], [1,1,0], [1,1,1]])
|
||||||
|
target = np.array([[0], [1], [1], [0]])
|
||||||
|
|
||||||
|
# Die Architektur des neuronalen Netzes
|
||||||
|
inp_size = 3 # Eingabeneuronen
|
||||||
|
hid_size = 4 # Hidden-Neuronen
|
||||||
|
out_size = 1 # Ausgabeneuron
|
||||||
|
|
||||||
|
# Gewichte zufällig initialisieren (Mittelwert = 0)
|
||||||
|
w0 = np.random.random((inp_size, hid_size)) - 0.5
|
||||||
|
w1 = np.random.random((hid_size, out_size)) - 0.5
|
||||||
|
|
||||||
|
def multiply_learnrate(old, new):
|
||||||
|
if old * new > 0:
|
||||||
|
return 1.2
|
||||||
|
elif old * new < 0:
|
||||||
|
return 0.5
|
||||||
|
return 1
|
||||||
|
|
||||||
|
v_multiply_learnrate = np.vectorize(multiply_learnrate)
|
||||||
|
|
||||||
|
L2_grad_old = np.zeros((4,1))
|
||||||
|
L1_grad_old = np.zeros((3,4))
|
||||||
|
|
||||||
|
# Netzwerk trainieren
|
||||||
|
for i in range(600):
|
||||||
|
|
||||||
|
# Vorwärtsaktivierung
|
||||||
|
L0 = inp
|
||||||
|
L1 = sigmoid(np.matmul(L0, w0))
|
||||||
|
L1[0] = 1 # Bias-Neuron in der Hiddenschicht
|
||||||
|
L2 = sigmoid(np.matmul(L1, w1))
|
||||||
|
|
||||||
|
# Fehler berechnen
|
||||||
|
L2_error = L2 - target
|
||||||
|
|
||||||
|
# Backpropagation
|
||||||
|
L2_delta = L2_error * deriv_sigmoid(L2) # Gradient eL2
|
||||||
|
L1_error = np.matmul(L2_delta, w1.T)
|
||||||
|
L1_delta = L1_error * deriv_sigmoid(L1)
|
||||||
|
|
||||||
|
# Gradienten
|
||||||
|
L2_grad_new = np.matmul(L1.T, L2_delta)
|
||||||
|
L1_grad_new = np.matmul(L0.T, L1_delta)
|
||||||
|
|
||||||
|
# Gewichte aktualisieren
|
||||||
|
learnrate = 0.1
|
||||||
|
w1 -= learnrate * v_multiply_learnrate(L2_grad_old, L2_grad_new) * np.sign(L2_grad_new)
|
||||||
|
w0 -= learnrate * v_multiply_learnrate(L1_grad_old, L1_grad_new) * np.sign(L1_grad_new)
|
||||||
|
|
||||||
|
# Gradienten aktualisieren
|
||||||
|
|
||||||
|
L1_grad_old = np.copy(L1_grad_new)
|
||||||
|
L2_grad_old = np.copy(L2_grad_new)
|
||||||
|
|
||||||
|
|
||||||
|
# Netzwerk testen
|
||||||
|
L0 = inp
|
||||||
|
L1 = sigmoid(np.matmul(inp, w0))
|
||||||
|
L1[0] = 1 # Bias-Neuron in der Hiddenschicht
|
||||||
|
L2 = sigmoid(np.matmul(L1, w1))
|
||||||
|
|
||||||
|
print(L2)
|
||||||
Loading…
Reference in New Issue